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APPENDIX A: LITERATURE REVIEW

Previous Works in the Medical Literature

Hospitals have been investigating and investing in prog-
nostic risk scoring systems that quantify and anticipate the
acuity of critically ill inpatients in real-time based on their
(temporally evolving) physiological signals in order to ensure
timely ICU transfer [1]–[7]. Prognosis in hospital wards is fea-
sible since unanticipated adverse events are often preceded by
disorders in a patient’s physiological parameters [8], [9]. How-
ever, the subtlety of evidence for clinical deterioration in the
physiological parameters makes the problem of constructing
an “informative” risk score quite challenging: overestimating
a patient’s risk can lead to alarm fatigue and inefficient uti-
lization of clinical resources [10], whereas underestimating her
risk can undermine the effectiveness of consequent therapeutic
interventions [11], [12].

Recent systematic reviews have shown that currently de-
ployed expert-based risk scores, such as the MEWS score
[13], provide only modest contributions to clinical outcomes
[14]–[16]. Alternatives for expert-based risk scores can be
constructed by training a risk scoring model using the data
available in the electronic health records (EHR) [2]. Recently,
a data-driven risk score, named the Rothman index, has been
developed using regression analysis [3], and was shown to
outperform the MEWS score and its variants [7]. However,
this score lacks a principled model for the hospitalized pa-
tient’s physiological parameters, and is mainly constructed
using a “one-size-fits-all” approach that leaves no room for
personalized risk assessment that is tailored to the individual
patient. Personalized models that account for the patient’s
individual traits are anticipated to provide significant accuracy
and granularity in risk assessments [17].

Two broad categories of risk models and scores that
quantify a patient’s risk for an adverse event have been
developed in the medical literature. The first category
comprises early-warning scores (EWS), which hinge on
expert-based models for triggering transfer to ICU [13].
Notable examples of such scores are MEWS and its variant
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VitalPAC [5]. These scores rely mainly on experts to specify
the risk factors and the risk scores associated with these
factors [10]. A major drawback of this class of scores is that
since the model construction is largely relying on experts,
the implied risk functions that map physiological parameters
to risk scores do not have any rigorous validation. Recent
systematic reviews have shown that EWS-based alarm systems
only marginally improve patient outcomes while substantially
increasing clinician and nursing workloads [14]–[16]. Other
expert-based prognostication scores that were constructed to
predict mortality in the ICU, such as SOFA and APACHE
scores, has been shown to provide a reasonable predictive
power when applied to predict deterioration for patients in
wards [18].

The second category of risk scores relies on more rigorous,
data-intensive regression models to derive and validate
risk scoring functions using the electronic medical record.
Examples for such risk scores include the regression-based
risk models developed by Kirkland et al. [2], and by Escobar
et al. [19]. Rothman et al. build a more comprehensive model
for computing risk scores on a continuous basis in order
to detect a declining trend in time [3], [7]. The risk score
computed therein, which is termed as the “Rothman index”,
quantifies the individual patient condition using 26 clinical
variables (vital signs, lab results, cardiac rhythms and nursing
assessments). Table I summarizes the state-of-the-art risk
scores used for critical care prognostication.

The Rothman index is the state-of-the-art risk scoring
technology for patients in wards: about 70 hospitals and
health-care facilities, including Houston Methodist hospital
in Texas, and Yale-New Haven hospital in Connecticut, are
currently deploying this technology [20]. While validation
of the Rothman index have shown its superiority to MEWS-
based models in terms of false alarm rates [7], the risk
scoring scheme used for computing the Rothman index
adopts various simplifying assumptions. For instance, the risk
score computed for the patient at every point of time relies
on instantaneous measurements, and ignores the history of
previous vital sign measurements (see Equation (1) in [3]).
Moreover, correlations among vital signs are ignored, which
leads to double counting of risk factors. Finally, the Rothman
scoring model is fitted to provide a reasonable “average”
predictive power for the whole population of patients, but
does not offer “personalized” risk assessments for individual
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patients, i.e. it ignores baseline and demographic information
available about the patient at admission time. Our risk scoring
model addresses all these limitations, and hence provides a
significant gain in the predictive power as compared to the
Rothman index as we show in Section IV.

Previous Works in the Machine Learning Literature

The problem of modeling multivariate physiological time
series has been recently investigated by the machine learning
community [4], [22], [30]–[37]; some of the previous works
have also adopted multitask GP models [4], [30]–[33].
However, most of these works have focused on a forecasting
problem in which the goal is to predict the future values
of an observable bio-marker. For instance, [33] focuses on
predicting the PFVC clinical marker (a measure of lung
severity) for scleroderma patients, [4], [30]–[32] focus on
predicting the future values of SOFA, APACHE and SAPS
scores for ICU patients, and [37] focuses on predicting the
GFR bio-marker values for patients with chronic kidney
disease. Unfortunately, a major challenge encountered in our
setting is that patients in regular wards have no such strongly
indicative bio-markers; we face this challenge by resorting to
a latent class modeling approach, in which different classes
correspond to different severity states. Our model adopts two
latent classes, which allows the risk scoring problem to be
formulated as a sequential hypothesis test [38]. Consequently,
our multitask GP model serves as a tool for computing the
optimal test statistic, and not for performing GP regression
as it is the case in the forecasting problems in [4], [30]–[33].
To the best of our knowledge, our model is the first to
conceptualize real-time risk scoring as a sequential testing
procedure.

Our risk scoring model handles the heterogeneity of the
patients’ population via subtyping. Unlike previous works on
subtyping in longitudinal disease progression models [33],
[37], in which one set of subtypes is learned for the entire
population of “sick” patients, the nature of the critical care
setting (manifesting in our sequential testing framework)
entails the need for learning different sets of subtypes for
both clinical stability and deterioration. This imposes the
challenge of learning a separate set of subtypes for the
clinically deteriorating patients under class imbalance (ICU
admission rate is less than 10%); we face this challenge
via a novel learning algorithm that uses ideas from transfer
learning to transfer the knowledge learned from the clinical
stable population to the deteriorating population.

Most of the previous works on clinical risk prognosis used
clinical endpoints (ICU admission or discharge) as “surrogate
labels” for a patient’s clinical deterioration, and hence used
those labels to train a supervised (regression) model using
the physiological data in a fixed-size time window before
censoring. The supervised models used in the literature
included logistic regression [39], [40] and SVMs [41]. We
compare the performance of our model with these methods

in Section IV. A detailed, tabulated comparisons with other
risk scoring methodologies is provided in Appendix A in the
supporting document.

Various other important tools for risk prognosis that do
not rely on GP models have been recently developed. In
[22] and [34], a Cox regression-based model was used to
develop a sepsis shock severity score that can handle data
streams that are censored due to interventions. However, this
approach does not account for personalization in its severity
assessments, and relies heavily on the existence of ordered
pairs of comparisons for the extent of disease severity at
different times, which may not always be available and cannot
be practically obtained from experts. Our model does not
suffer from such limitations: it does not rely on proportional
hazard estimates, and hence does not require ordered pairs
of disease severity temporal comparisons, and can be trained
using the raw physiological stream records that are normally
fed into the EHR during the patients’ stay in the ward.

In [42] and [43], personalized risk factors are computed for a
new patient by constructing a dataset of K “similar patients” in
the training data, and train a predictive model for that patient.
This approach would be computationally very expensive when
applied in real-time for patients in a ward since it requires re-
training a model for every new patient, and more importantly,
it does not recognize the extent of heterogeneity of the patients,
i.e. the constructed dataset has a fixed size of K irrespective
of the underlying patients’ physiological heterogeneity. Hence,
such methods may incur efficiency loss if K is underestimated,
and may perform unnecessary computations if the underlying
population is already homogeneous. Our model overcomes
this problem by learning the number of latent subtypes from
the data, and hence it can adapt to both homogeneous and
heterogeneous patient populations.

Table II presents a detailed comparisons with state-of-the-
art risk scoring methodologies, highlighting the limitations of
these methods that were addressed by out model.

APPENDIX B: DATA DESCRIPTION

The Patient Cohort and ICD-9 Codes

Experiments were conducted on a cohort of 6,321 pa-
tients who were hospitalized in a general medicine floor in
the Ronald Reagan UCLA medical center during the period
between March 3rd 2013, to February 4rd 2016 (excluding
patients who were initially admitted to the ICU and then trans-
ferred to the ward after stabilization since for those patients the
data were not recorded in the EHR). The patients’ population
is heterogeneous with a wide variety of diagnoses and ICD-9
codes: the patient’s cohort included an overall number of 1,643
ICD-9 codes; the most frequent of which corresponded to con-
ditions such as shortness of breath, hypertension, septicemia,
sepsis, fever, pneumonia and renal failure. The distribution of
the ICD-9 codes associated with the patients in the cohort is
illustrated in Fig. 2 and Table III. The cohort included patients
who were not on immunosuppression and others who were
on immunosuppression, including patients that have received
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Reference Risk scores Details Limitations

[5], [10], [13],
[21]–[24]

MEWS, ViEWS and
TREWS

Expert-based risk assessment methodologies
(also known as “track and trigger” systems) • Neither personalized nor data-driven, does

not take advantage of the EHR.
• Modest performance reported by recent sys-

tematic reviews in [14]–[16].

[18], [25]–[27] SOFA A combination of organ dysfunction scores
for respiratory, coagulation, liver, cardiovascular
and renal systems. Originally developed for pre-
dicting mortality in ICU patients, but was shown
in [18] to function as a prognostication tool for
non-ICU ward patients.

• Not personalized, i.e. uses the same scoring
scheme for all patients (see Table 3. in [25]).

• Does not consider correlations between or-
gan dysfunction scores and endpoint out-
comes.

• Predictions can corporate the mean statistics
of the computed score over time but does
not consider the full temporal trajectory.

[18], [28], [29] APACHE II and III A disease severity score used for ICU patients
(usually applied within 24 hours of admission
of a patient to the ICU [28]). It has been shown
in [18] that it can be used for prognostication in
regular wards.

• Does not consider the temporal trajectory of
score evaluations during the patients stay in
ICU (or in the ward).

[3], [7] Rothman index A regression-based data-driven model that uti-
lizes physiological data to predict mortality, 30-
days readmission, and ICU admissions.

• Not personalized. Uses vital signs and
lab tests to construct a “one-size-fits” all
population-level model.

• Ignores correlations between vital signs, and
hence may double-count risk factors (see Eq.
(1) in [3]).

• Uses the instantaneous vital signs and lab
tests measurements, and ignores the physio-
logical stream trajectory.

TABLE I: Summary of the state-of-the-art critical care risk scores.

solid organ transplantation. In addition, there were some
patients that had diagnoses of leukemia or lymphoma. Some
of these patients received stem cell transplantation as part of
their treatment. Because these patients receive chemotherapy
to significantly ablate their immune system prior to stem cell
transplantation, they are at an increased risk of clinical dete-
rioration. Of the 6,321 patients (the dataset D), 524 patients
experienced clinical deterioration and were admitted to the
ICU (the dataset D1), and 5,788 patients were discharged
home (the dataset Do). Thus, the ICU admission rate is 8.30%.
The vast heterogeneity of the patients’ cohort motivates the
need for a “personalized” risk model, and suggests the general
applicability of the experimental results presented in the paper.

Patients in the dataset D were monitored for 11 vital signs
(e.g. O2 saturation, heart rate, systolic blood pressure, etc) and
10 lab tests (e.g. Glucose, white blood cell count, etc). Hence,
the dimension of the physiological stream for every patient
is D = 21. Each physiological stream is a temporal, irregu-
larly sampled time series, which resemble the data structure
depicted in Fig. 1. The ICD-9 code ranges were converted to
a set of 18 categorical values, where each value bundles a set
of ICD-9 codes for “related diseases”; such a “categorization”
allows the algorithm to handle newly hospitalized patients with
rare ICD-9 codes that were not present in the dataset. The
ICD-9 ranges used for categorization are shown in Table IV.
The sampling rate for the physiological streams {xij , tij}i,j
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Fig. 1: An exemplary physiological stream for a patient
hospitalized in a regular ward.

ranges from 1 hour to 4 hours, and the length of hospital
stay for the patients ranged from 2 to 2,762 hours. Correlated
feature selection (CFS) was used to select the physiological
streams that are relevant to predicting the endpoint outcomes
(i.e. ICU admission); the CFS algorithm selected 7 vital signs
(Diastolic blood pressure, eye opening, Glasgow coma scale
score, heart rate, temperature, O2 device assistance and O2

saturation), and 3 lab tests (Glucose, Urea Nitrogen and white
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Reference Method Details Limitations

[4], [30]–
[32]

Multitask GPs Model physiological time series data with a
Multitask GP likelihood • Does not capture non-stationarity.

• Does not account for latent patient sub-
types.

• Estimate observable severity score (which is
not available for patients in wards).

[33], [37] GPs for disease pro-
gression models

Model long-term longitudinal disease progres-
sion (via severity scores) using subtypes and GP
regression for the severity scores

• Does not capture non-stationarity.
• Uses the same set of sub-types for the entire

population.
• Estimate observable severity score (which is

not available for patients in wards).
• Does not fit for distinguishing between pa-

tient latent classes of patients; models only
the physiological trajectory of a sick patient.

[39]–[41] Sliding-window
regression

Use the clinical endpoints (ICU admission or
discharge) as surrogate labels for a patient’s clin-
ical deterioration, and hence used those labels to
train a supervised (regression) model using the
physiological data in a fixed-size time window
before censoring

• Does not capture non-stationarity.
• No time-series model: does not exploit the

information conveyed in different adjacent
sliding window.

[22], [34] Proportional Hazard
Models

Cox regression-based model used to develop a
sepsis shock severity score that can handle data
streams that are censored due to interventions

• Does not capture non-stationarity.
• Relies on the existence of ordered pairs

of comparisons for the extent of disease
severity at different times (not available for
ward patients.

• Does not incorporate static information or
patient subtypes.

TABLE II: Summary of the state-of-the-art risk scoring methodologies.
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Fig. 2: Distribution of the ICD-9 codes in the patient cohort.

blood cell count).

For all the experiments conducted in the paper, the training
and testing datasets are constructed as follows. The training
set comprises 5,130 patients who were admitted to the ward in
the period between March 2013 and July 2015. Among those
patients, the ICU admission rate was 8.34%. The algorithms
are trained via this dataset, and then tested on a separate
dataset that comprises the remaining 1,191 patients who were
admitted to the ward in the period between July 2015 and
April 2016.

In Figure 3 we display a snapshot for the temporal risk
score trajectories computed by various risk scoring methods
for one clinically stable patient, and one clinically deteriorating
patient. All risk scores are normalized such that their optimal
alarm threshold is fixed at 0.7. For the clinically stable patient,
the proposed score as a function of time displays a higher
level of smoothness as opposed to the MEWS and Rothman
scores which falsely alarm for an ICU admission for that
patient because of their drastic fluctuations. For the clinically
deteriorating patient, the proposed score is able to track the
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Fig. 3: Snapshots for real-time risk scores computed for two typical patients.

TABLE III: ICD-9 codes in the patient cohort under study.

ICD-9 code Diagnosis % Freq.
(786.05) Shortness of Breath 7%
(401.9) Hypertension 6%
(38.9) Septicemia 5%

(995.91) Sepsis 5%
(780.6) Fever 5%
(486) Pneumonia 5%

(584.9) Renal failure 5%
(599) Urethra and urinary attack 5%

(780.97) Altered mental status 4%
(285.9) Anemia 4%
(786.5) Chest pain 4%
(585) Chronic renal failure 4%

(780.79) Malaise and fatigue 3%
(578) Gastrointestinal hemorrhage 3%
(428) Heart failure 3%

(427.31) Atrial fibrillation 3%
(787.01) Nausea 3%

— Other 22.5%

trend of the patient’s clinical deterioration, and hit the alarm
threshold quicker than the Rothman index, whereas the MEWS
score even fails to identify the patients clinical deterioration.
In this case, the patient’s clinical status starts to progressively
worsen approximately 250 hours prior to the emergent ICU
transfer. Our risk model demonstrates a steady increase in risk
of clinical deterioration until it crosses the threshold where
a warning would be sent to the clinician taking care of the
patient. Even after that point, the risk model continues to
cross the threshold until the patient finally decompensates to
the point that the clinician makes the decision to transfer
to the ICU. It is worth mentioning that many patients in
the cohort under study were receiving chemotherapy or stem
cell transplantation, and hence their immune systems often do
not recover for several days during which time they are at
increased risk of infection. The fact that our risk model can
predict several days prior to the actual clinical deterioration
event provides hope that an earlier intervention can be pro-

vided to reverse the course of decompensation.

APPENDIX C: ALGORITHMIC DETAILS

The EM Algorithm

We show the E and M steps for the EM algorithm (Al-
gorithm 1) for the clinically stable patients. The same steps
are conducted for the deteriorating patients but separately for
every epoch.

We start by writing the proximal likelihood function as
follows:

Q(Γo; Γ
p−1
o ) = E[log(P(Do, {Z(n)}No

n=1 |Γo)) | Do,Γ
p−1
o ],

where Z(n) is the latent subtype of the nth entry of the
dataset Do. The parametrization is updated in the M-step
by maximizing Q(Γo; Γ

p−1
o ) with respect to Γo (closed-form

expressions are available for the jointly Gaussian data in Do as
per the GP model). The pth iteration is concluded by updating
expert z’s responsibility towards the nth patient in the dataset
Do as follows

β(n)
z,p = P(Z(n) = z | {x(n)

ij , t
(n)
ij }i,j ,Γp

o)

=
πp
z f({x

(n)
ij , t

(n)
ij }i,j |Θp,z

o )∑G
z′=1 π

p

z′ f({x(n)
ij , t

(n)
ij }i,j |Θp,z′

o )
,

where πp
z is the estimate for P(Z = z) in the pth iteration,

and f(.) is the Gaussian distribution function. The term β
(n)
z,p

represents the posterior probability of patient n’s membership
in subtype z given the realization of her physiological data
{xij , tij}i,j .
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TABLE IV: ICD-9 codes in the patient cohort under study.

ICD-9 code Category Categorical value
001-139 Infectious and parasitic diseases 1
140-239 Neoplasms 2
240-279 Endocrine, nutritional and metabolic diseases, and immunity disorders 3
280-289 Blood diseases and blood-forming organs 4
90-319 Mental disorders 5

320-359 Nervous system diseases 6
360-389 Sense organs diseases 7
390-459 Circulatory system diseases 8
460-519 Respiratory system diseases 9
520-579 Digestive system diseases 10
580-629 Genitourinary system diseases 11
630-679 Pregnancy, childbirth, and the puerperium complications 12
680-709 Skin and subcutaneous tissue diseases 13
710-739 Musculoskeletal system and connective tissue diseases 14
740-759 Congenital anomalies 15
760-779 Conditions originating in perinatal period 16
780-799 Symptoms, signs, and ill-defined conditions 17
800-999 Injury and poisoning 18

Given the above, we can rewrite the proximal likelihood
function as follows

Q(Γo; Γ
p−1
o ) = E[log(P(Do, {Z(n)}No

n=1 |Γo)) | Do,Γ
p−1
o ]

= E[log(
No∏
n=1

P({x(n)
ij , t

(n)
ij }i,j , Z(n) |Γo)) |Γp−1

o ]

=

No∑
n=1

E[log(P({x(n)
ij , t

(n)
ij }i,j , Z(n) |Γo)) |Γp−1

o ]

=

No∑
n=1

∑
z

β(n)
z,p log(f({x(n)

ij , t
(n)
ij }i,j |Θz

o)),

where the expression for the Gaussian distribution
f({x(n)

ij , t
(n)
ij }i,j |Θz

o) can be easily formulated by
constructing the corresponding covariance matrix.

Similar to conventional Gaussian mixture models, the M-
step proceeds as follows:

πp+1
z =

1

No

No∑
n=1

β(n)
z,p

mz,p+1
o (t, i) =

∑No

n=1 β
(n)
z,p

∑
i x

(n)
ij∑No

n=1 β
(n)
z,p

,

where mz,p+1
o (t, j) is the constant mean function for the jth

physiological stream in subtype z. Our adoption of a constant
mean function allows us to use the direct weighted sample
mean as the updated mean function in each EM iteration.
The covariance parameters Σ and ℓ are estimated separately
conditioned on every subtype using the gradient method in
[44] (an online MATLAB package for hyper-parameter tuning
is provided by the authors), this yields a set of subtype-specific
estimates Σ̂n

z and ℓ̂nz for every patient’s time series, which are
used to update the covariance hyper-parameters as follows:

ℓ̂z,p+1
o =

∑No

n=1 β
(n)
z,p ℓ̂nz∑No

n=1 β
(n)
z,p

Σz,p+1
o =

∑No

n=1 β
(n)
z,p Σ̂n

z∑No

n=1 β
(n)
z,p

.

Depending on the problem and the size of the dataset, this
process can be computationally expensive, in which case the
EM algorithm can be terminated after a predefined number of
iterations.

Computation of P(k̄|{xij , tij ≤ t}ij ,Γ1)

We compute P(k̄|{xij , tij ≤ t}ij ,Γ1) recursively every T1

hours in a similar manner to the forward filtering algorithm
used for inference in Hidden Markov Models; forward mes-
sages are fixed over segments of length T1. We define the
forward message αt(ht) as follows

αk(hk) = P(hk, {xij , (k − 1)T1 ≤ tij ≤ k T1}ij ,Γ1),

where hk is the latent epoch index, and αo(hk = k̄) =
f(hk = k̄). The forward messages can be computed using
the following dynamic programming recursion

αk(hk) = P({xij , (k − 1)T1 ≤ tij ≤ k T1}ij |hk,Γ1)×

P(hk|hk−1 = hk − 1)αk−1(hk−1).

Note that the valid values of hk are restricted such that hk ∈
{K − k + 1, . . .,K}. The posterior distribution of the latent
epoch index is easily evaluated using Bayes rule as follows

P(k̄ | {xij , tij ≤ t}ij ,Γ1) =
αk(hk)∑K

h=K−k+1 αk(h)
.

APPENDIX D: DETAILS OF THE BENCHMARK ALGORITHMS

• Feature Selection: The correlated feature selection (CFS)
algorithm was used to select the relevant features for
all the algorithms [45]. The same relevant features were
used for all the benchmarks. All excluded features were
realized to be highly irrelevant by virtue of their CFS
relevance scores. The CFS selected 7 vital signs (Dias-
tolic blood pressure, eye opening, Glasgow coma scale
score, heart rate, temperature, O2 device assistance and
O2 saturation), and 3 lab tests (Glucose, Urea Nitrogen
and white blood cell count). These features, augmented
with all the static admission information were used to
train the benchmarks.
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• Validation: We divided the data into a training set of
4,130 patients and a validation set of 1,000 patients.
The same splits were used for all the benchmarks. The
validation set was used to tune the hyper-parameters of
each algorithm by optimizing its AUC.

• Feature Extraction: In order to ensure that the infor-
mation in the clinical endpoints are utilized properly by
all the sliding-window predictors, we trained every pre-
dictor by constructing a training dataset that comprises:
(1) the physiological data gathered within a temporal
window before the terminating event (ICU admission
or patient discharge), and using the clinical endpoints
as the labels, (2) summary statistics of the entire time
series episode (means, standard deviations, skewness,
kurtosis, maximum and minimum values), and (3) the
static features. This creates a fixed length training set to
train the model. In real-time, a sliding-window is used
to extract sequential data from the running time series,
augments it with the summary statistics up to the current
time and the static features, and a risk score is used as
a sliding-window regression outcome. The size of this
window is a hyper-parameter that is tuned separately for
every predictor.

APPENDIX E: MODELING RATIONALE, ASSUMPTIONS AND
SOME COMMENTS

Connection to Latent Variable Models

A latent variable model with state transitions (such as the
Markov model depicted in Figure 4) is indeed a very natural
approach to model the patients’ clinical states. We note that our
model is a latent variable model; one can think of our model as
a state model with 2 latent absorbing states (this corresponds
to the model in Figure 4 but with only states 1 and N ), in
which risk scoring boils down to testing the true hypothesis
about the identity of the hidden absorbing state that generates
a patient’s physiological trajectory. Thus, our theoretical for-
mulation of the problem as a sequential hypothesis test with
an uncertain time horizon is equivalent to a limiting case of
real-time filtering of a state-space model in which we have
only two states. We note that both types of models capture
non-stationarity: in our model, the “fixed” latent states has
non-stationary “emission distribution”, whereas in state-space
models, the states have a stationary emission distribution and
non-stationarity is captured by “state-switching” over time. We
have tried both types of models as conceptual apparatuses
for risk scoring, and we decided to go with the sequential
hypothesis testing framework for the following reason. A latent
variable model with more than 2 states will entail the need
for inferring the hidden state trajectories for every patient’
physiological stream. Since the ICU data is not labeled by
clinical state at any point other than the endpoint of ICU
admission or deterioration, one would need an unsupervised
algorithm to learn these hidden clinical state representations.
This means that in addition to the patient subtype variables
which are hidden, we will also have a hidden state trajectory
for every patient. This significantly complicates the learning
problem, and the usage of the EM algorithm for learning such

a model may converge to a considerably bad local optimum.
We believe that it is much more reasonable to reduce the
number of hidden variables in the model in order to ensure
robustness and consistency of different versions of the model
that would be learned whenever the EHR data is updated.

The Conception of Subtyping

Figure 5 depicts what we believe to be the most accurate
and expressive conception of patient subtypes; such a concep-
tion has been developed under the guidance of our clinical
collaborator. To illustrate our conception of subtyping, let us
assume that we only have one static feature, say the patient’s
ICD-9 code, and there are two possible types of patients: type
A and type B. If the ICD-9 code corresponds to a blood
cancer (e.g. Leukemia), then the patient is allocated to type A,
whereas if the ICD-9 code corresponds to Pneumonia, then the
patient is allocated to type B. Both types of patients have very
different stability patterns since their different illnesses (or
even different gender and ethnicity) dictate different nominal
values for their stable physiological data. Both patients also
have different “possible” patterns of deterioration, depending
on the nature of the adverse event they may encounter. Type
A patients are more likely to experience Leukemia-related
adverse events (e.g. adverse cytogenetics outcomes), whereas
type B patients are more likely to experience respiratory-
related adverse events (e.g. respiratory arrests); and hence,
conditioned on the patients’ diagnoses, they have very different
deterioration patterns.

The model described above assumes that the patient’s
subtype is fully determined by her static admission features,
and then conditioned on her subtype, there is one nominal
stability pattern and multiple possible deterioration patters.
Following this model, we can use the same z-classifier network
to allocate patients to subtypes, and then apply anM -ary
sequential hypothesis test to test whether the patient is stable,
or experiencing 1 out of M−1 possible deterioration patterns.
Since we had no labels that designate the different adverse
events in the dataset, our model is an approximate version of
the one in Figure 5, in which we treat all deterioration pattern
as coming from one, more dispersed distribution (i.e. this
reflects in the form of a larger variance in the GP parameters),
but this “average” model sufficiently differs from the stability
model and hence a simple binary sequential test is sufficient
for risk scoring. Our usage of the same z-classifier network
for stable and deteriorating groups is motivated by the fact that
even if the patients’ deterioration patterns are more diverse and
could be clustered into more “deterioration subtypes”, those
finer “deterioration subtypes” are not logically independent of
the “stability subtypes”, but they are rather subsets of them
(as conceptualized in Figure 5). The only approximation we
do here is that we collapse all deterioration patterns within a
subtype into one representative model, and the motive behind
such an approximation is the lack of data on what adverse
event is associated with every patient, and unsupervised model
for further clustering the deteriorating cohort seems infeasible
due to the scarcity of data in that cohort. We also note that
grouping models of stability and deterioration together into
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logically related subtypes has also an advantage in terms of
medical interpretability, which would be lost if we have two
different groups of clusters that are conditioned on the patient’s
(unseen) clinical state.

We also note that our sub-typing model is not only found to
be more plausible from the clinical perspective, but it is more
statistically efficient as well. That is, since the ICU admission
rate is only (less than) 10%, if we attempt to learn a disjoint
group of sub-types (a different z-classifier network) for the
deteriorating group, we will have much less data and we will
be required to learn more sub-types than the 6 discovered from
the stable patients (since as we argued earlier, there are more
patterns of deterioration than for stability. Selecting a separate
deterioration sub-type model using Bayes factors yields only
4 clusters!). By “transferring” the knowledge gained from
the clinically stable cohort to the clinically deteriorating one
(in terms of subtype definitions), we are able to re-sample
a reasonably large dataset from the deteriorating cohort for
every sub-type and hence accurately learn the deterioration
model parameters (step 23 in Algorithm 1), without needing to
bear the burden of jointly discover the sub-typing configuration
already learned from the stable patient. Our ability to transfer
the sub-typing knowledge from stable to deteriorating patients
hinges on the logical association between the two groups; such
a logical association assumption is believed by our medical
collaborator to be clinically sound.

Multi-task Gaussian Processes

It is important to note that multi-task Gaussian processes
with an intrinsic correlation model for the co-variance structure
entails the assumption of a common temporal length-scale
for all the physiological stream. This is does not reflect the
differences in the rate of fluctuations of the different streams;
for instance, heart rate changes much faster than a signal like
creatinine level. We have initially tried to construct a kernel
function that captures heterogeneous length-scales by using
a linear corregionalization model that adds multiple kernels
with diverse length scale, but this led to an unnecessarily
much more complicated model with many more parameters
and a less tractable likelihood function. Our choice for a
multitask Gaussian process is justified by the fact that we are
not interested in finding a good fit for the physiological data,
but we are rather interested in capturing the aspects of the
physiological streams that distinguish stable and deteriorating
patients. The correlation structure significantly differ between
stable and deterioration patients (for instance, respiratory rate
and heart rate are much less correlated for deteriorating
patients at different epochs as compared to stable patients.),
whereas the length-scale parameter does not differ much for
the two models. To demonstrate the difference between the
correlation structures of the stable and deteriorating patients,
see below the correlation matrices for the stable patient’s
model, and the deteriorating patients’ model for the Kth epoch
for the physiological streams (diastolic blood pressure, heart
rate, respiratory rate, SpO2, Glucose, urea nitrogen):

Σo =


138 20 2 1 7 0
20 237 4 −1 12 −12
2 4 6 0 1 0
1 −1 0 4 −1 −1
7 12 1 −1 315 −1
0 −12 0 −1 −1 20

 ,

Σ1,K =


259 43 −3 9 −58 −42
43 185 3 −2 −28 −18
−3 3 12 −1 7 7
9 −2 −1 61 −11 39

−58 −28 7 −11 958 175
−42 −18 7 39 175 885

 ,

where the correlation coefficients are rounded to the nearest
integer. As can be seen in Σo and Σ1,K , not only that
the extent of correlation between the different physiological
variables differ under the two hypothesis, but the nature of cor-
relations differ as well (i.e. some physiological measurements
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are positively correlated for stable patients and negatively
correlated for deteriorating ones). Hence, in terms of the
accuracy of the sequential hypothesis test, we much better
off by considering the distinguishing inter-stream correlation
structures than when ignoring correlations and consider the
non-distinguishing stream specific length-scales.

The Graphical Model

The conditional independence assumptions in eq. (13) can
be interpreted as follows: conditioned on the patient’s static
features, the clinical state is independent of the subtype, and
conditioned on the subtype, the clinical state is independent
on the static features. This means that one can generate
samples from our model by drawing a clinical state from the
prior distribution, and then drawing a static feature instance
(independent of the clinical state), and then drawing a sub-type
indicator variable conditioned on that instance. The reason
that we assumed that the clinical state is independent on the
patient’s subtype (and static feature) is that the ICU admission
rate is very balanced across all the patient groups in Table IV
(and consequently the ICU admission rate is balanced across
all the 6 discovered subtypes). This encourages adopting the
simplifying assumption of the clinical state being independent
of the sub-type, which further simplifies the real-time compu-
tation of the Bayesian posterior probability.

Length of Stay Exceeding K T1

Most patients in the data set have hospitalization times that
do not exceed the length K T1. If the patient’s length of stay
exceeds K T1, the model corresponding to hypothesis H1 is
assumed to be trapped in the last epoch, i.e. the physiological
streams become stationary after this point. Patients who have
very long stays in the ward and never admitted to the ICU
are overwhelmingly more likely to be stable and undergoing a
routine hospitalization procedure; for these patients one can
safely assume a stationary model for deterioration without
losing predictive power.

Impact of Temporal Alignment and Length of Stay on Training
Data

The temporal alignment via the clinical endpoints is indeed
a source of imbalance in the number of data points available
for training every epoch. Fortunately, as shown in Figure 6
the consequences of this imbalance affects the earlier epochs
but does not affect the latest epochs, which are much more
crucial since they are closer to the clinical deterioration onset.
The impact of the availability of few data points for earlier
epochs is that it leads to higher false alarm rates, but it does
not affect the detection probability in any way. We also note
that even for the earlier epochs for which less data points
are available, there is enough temporal data within the same
patient’s temporal stream to obtain a decent estimate for the
GP hyper-parameters. We truncated the physiological stream
lengths to exclude epoch numbers that would have fewer than
5 patients (every epoch for a single patient still have hundreds
of temporal data points, which allows for a decent estimate
for the length scale and mean parameters).

The Usage of Fixed Epoch Lengths

One can think of our model as a semi-Markov model
with restricted left-to-right transitions among two groups of
disconnected states as shown in Figure 7, and with the epoch
intervals being the states’ sojourn times. In this case, T1 (and
To) are random and drawn from a pre-defined distribution.
We have initially modeled T1 as a random variable drawn
from an epoch-specific Gamma distribution, and we used the
non-parametric E-divisive change-point detection algorithm to
estimate the epoch length distributions. This turned out not be
useful for the following reasons:

• This distributions for the different epochs’ lengths were
quite similar.

• The estimated Gamma distributions had a significantly
large shape parameter, which implies a small value for
the variance.

Updating the posterior probabilities while considering random
epoch lengths did not provide us with statistically significant
AUC gains. For this reason, we adopted a simpler model in
which the epoch lengths are modeled as a degenerate random
variable that only differs between stable and deteriorating
patients.
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