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Abstract—Breast cancer screening policies attempt to achieve
timely diagnosis by regularly screening healthy women via
various imaging tests, and interpreting/aggregating the multime-
dia content generated by those tests. Various clinical decisions
are needed to manage the screening process: selecting initial
screening tests, interpreting test results, and deciding if further
diagnostic tests are required. Those decisions need to balance the
information extracted from the multimedia content (e.g. radiolog-
ical breast images) generated by the screening tests, and the costs
of those tests. Current screening policies are guided by clinical
practice guidelines (CPGs), which represent a “one-size-fits-all”
approach, designed to work well (on average) for a population,
and can only offer coarse expert-based patient stratification
that is not rigorously validated through data. Since the risks
and benefits of screening tests are functions of each patient’s
features, personalized screening policies tailored to the features
of individuals are desirable. To address this issue, we developed
ConfidentCare: a computer-aided clinical decision support system
that learns a personalized screening policy from electronic health
record (EHR) data. By a “personalized screening policy”, we
mean a clustering of women’s features, and a set of customized
screening guidelines for each cluster. ConfidentCare operates by
computing clusters of patients with similar features, then learning
the “best” screening procedure for each cluster using a supervised
learning algorithm. ConfidentCare utilizes an iterative algorithm
that applies risk-based clustering of the women’s feature space,
followed by learning an active classifier for every cluster. The
algorithm ensures that the learned screening policy satisfies a
predefined accuracy requirement with a high level of confidence
for every cluster. By applying ConfidentCare to real-world data,
we show that it outperforms the current CPGs in terms of cost-
efficiency and false positive rates: a reduction of 31% in the
false positive rate can be achieved, which corresponds to around
80,000 less false positive incidents in the population of women
undergoing an annual screening test in the United States.

Index Terms—Breast cancer, Clinical decision support,
Multimedia-based healthcare, Personalized medicine, Personal-
ized screening policies, Supervised learning.

I. INTRODUCTION

PERSONALIZED medicine is a healthcare paradigm that
aims to move beyond the current “one-size-fits-all” ap-

proach to medicine that takes into account the features and
traits of individual patients (e.g. their genes, micro-biomes,
environments, and lifestyles) [1]-[2]. Vast attention has been
dedicated to research in personalized medicine that builds on
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Fig. 1: Pictorial depiction for a screening policy: clinical
decisions are made after the aggregation of the multimedia
content generated from different modalities of breast cancer
screening.

data science and machine learning techniques to customize
healthcare policies. For instance, the White House has led
the “precision medicine initiative”, which is scheduled for
discussion in the American Association for the Advancement
of Science annual meeting for the year 2016 [3]. Breast cancer
screening is an important healthcare process that can benefit
from personalization. Screening is carried out in order to
diagnose a woman with no apparent symptoms in a timely
manner: women undergo one or more screening tests with dif-
ferent imaging modalities, each of which generates multimedia
content (e.g. radiological images) that conveys information
about existence of a tumor [4]-[8]. The screening process
entails both benefits and costs that can differ from one patient
to another [9]. This signals the need for personalized screening
policies that balance such benefits and costs in a customized
manner. Fig. 1 pictorially depicts typical clinical decisions the
need to be made in a screening process: clinicians need to
decide whether or not further imaging tests need to be taken
in order to reach a decisive conclusion given the multimedia
content generated by the tests already taken, and the costs of
the tests that the patient can further take.

In this paper we present ConfidentCare: a clinical de-
cision support system (CDSS) that is capable of learning
and implementing a personalized screening policy for breast
cancer. The personalized screening policy is learned from
data in the electronic health record (EHR), and is aimed to
issue recommendations for different women with different
features on which sequence of screening tests they should
take. ConfidentCare discovers subgroups of “similar” patients
from the EHR data, and learns how to construct a screening
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policy that will work well for each subgroup with a high
level of confidence. Our approach can provide significant
gains in terms of both the cost-efficiency, and the accuracy
of the screening process as compared to other “one-size-fits-
all” approaches adopted by current clinical practice guidelines
(CPGs) that only offer a coarse expert-based stratification of
patients with no rigorous validation through data [39].

A. Breast cancer screening and the need for personalization

While breast cancer screening is believed to reduce mortal-
ity rates [8], it is associated with the risks of “overscreening”,
which leads to unnecessary costs, and “overdiagnosis”, which
corresponds to false positive diagnoses that lead the patients
to receive unnecessary treatments [9]. While different patients
have different levels of risks for developing breast cancer
[10]-[12], different tests have different monetary costs, and
different levels of accuracy that depend on the features of the
patient [13], common CPGs are aimed at populations, and
are not typically tailored to specific individuals or significant
subgroups [14]-[17].

Being designed to work well on “average” for a population
of patients, following CPGs may lead to overscreening or
overdiagnosis for specific subgroups of patients, such as young
women at a high risk of developing breast cancer, or healthy
older women who may have a relatively longer expected
lifespan [18]. Moreover, some screening tests may work well
for some patients, but not for others (e.g. a mammogram
test will exhibit low accuracy for patients with high breast
density [13]), which can either lead to “overdiagnosis” or poor
tumor detection performance. Migrating from the “one-size-
fits-all” screening and diagnosis policies adopted by CPGs to
more individualized policies that recognizes and approaches
different subgroups of patients is the essence of applying the
personalized medicine paradigm to the breast cancer clinical
environment [13], [18]-[19].

B. Contributions

ConfidentCare is a computer-aided clinical decision support
system that assists clinicians in making decisions on which
(sequence of) screening tests a woman should take given her
features. ConfidentCare resorts to the realm of supervised
learning in order to learn a personalized screening policy that
is tailored to granular subgroups of patients. In particular, the
system recognizes different subgroups of patients, learns the
policy that fits each subgroup, and prompts recommendations
for screening tests and clinical decisions that if followed, will
lead to a desired accuracy requirement with a desired level
of confidence. Fig. 2 offers a system-level illustration for
ConfidentCare1. The system operates in two stages: an offline
stage in which it learns from the EHR data how to cluster
patients, and what policy to follow for every cluster, and an
execution stage in which it applies the learned policy to every
woman by first matching her with the closest cluster of patients
in the EHR, and then approach her with the policy associated
with that cluster. The main features of ConfidentCare are:

1We will revisit this figure and give a more detailed explanation for the
system components in the next Section
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Fig. 2: Schematic of ConfidentCare described in Section II illustrating
the offline policy construction and policy execution stage for new
patients.

• ConfidentCare discovers a set of patients’ subgroups.
Given accuracy requirements and confidence levels that
are set by the clinicians, ConfidentCare ensures that every
subgroup of patients experiences a diagnostic accuracy,
and a confidence level on that accuracy, that meets these
requirements. Thus, unlike CPGs that perform well only
on average, ConfidentCare ensures that the accuracy is
high for every subgroup of patients.

• ConfidentCare ensures cost-efficiency, i.e. patients are
not overscreened, and the sequence of recommended
screening tests minimizes the screening costs.

The design of ConfidentCare is grounded to a new theoretical
framework for supervised learning which entails the following
technical contributions:

• We develop a new formulation for supervised learning
problems where the learning task entails ensuring a high
confidence level on the performance of the learner for
different, disjoint partitions of the feature space, rather
than the conventional formulation of supervised learning
which focuses only on the average performance.

• We introduce a new notion of learnability that suits the
scenarios where the goal is to carry out a constrained
minimization of a cost function.

• We develop an iterative algorithm that uses breast cancer
risk assessment to partition the feature space and learns a
cost-sensitive, high-confidence screening policy for every
partition.

We show that ConfidentCare can improve the screening cost-
efficiency when compared with CPGs, and can offer perfor-
mance guarantees for individual subgroups of patients with a
desired level of confidence. Moreover, we show that Confi-
dentCare can achieve a finer granularity in its learned policy
with respect to the patients feature space when it is provided
with more training data.

C. Related works

While medical studies investigate the feasibility, potential
and impact of applying the concepts of personalized medicine
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in the breast cancer clinical environments [1]-[2], [13]-[20],
[23], none of these works provided specific tools or methods
for building a personalized healthcare environment. For in-
stance, in [13], it was shown that CPGs, which recommend
screening tests only based on the age ranges, such as the
European Society for Medical Oncology (ESMO) CPG and
the American Cancer Society (ACS) CPG, are not cost-
efficient for many subgroups of patients, where cost-efficiency
was measured in terms of “costs per quality-adjusted life-
year”, and the authors recommended that screening should be
personalized on the basis of a patient’s age, breast density,
history of breast biopsy, and the family history of breast cancer
[21][22].

The work that relates most to ours is that on Dynamic
treatment regimes (DTRs) [25]-[27]. DTRs aim to find an
“optimal treatment policy”: a sequential mapping of the pa-
tient’s information to recommended treatments that would
maximize the patient’s long term reward. Such policies are
constructed via reinforcement learning techniques, such as Q-
learning. However, these works profoundly differ from the
setting we consider in the following aspects: 1) DTRs are
only focused on recommending treatments and do not consider
screening and diagnoses; 2) DTRs does not consider cost-
efficiency in the design of policies since they only consider the
“value of information” in recommending treatments; 3) DTRs’
complexity becomes huge when the number of patient “states”
increases; 4) while confidence measures can be computed for
policies in DTRs [26], the policies themselves are not designed
in a way that guarantees to the clinician a certain level of
reliability for every subgroup of patients.

Screening and diagnostic clinical decisions typically involve
“purchasing costly information” for the patients, which relates
to the paradigm of active learning [28]-[34]. We note that in
our setting, clinicians “purchase” costly features of the pa-
tients rather than purchasing unobserved labels, which makes
our setting different from the conventional active learning
framework [28]-[29]. Classification problems in which some
features are costly are referred to as “active classification”
[30], or “active sensing” [33]. Such problems have been
addressed in the context of medical diagnosis in [30]-[34],
but all these works correspond to solving an unconstrained
optimization problem that targets the whole population, for
which no personalized accuracy or confidence guarantees can
be provided. Table I positions our paper with respect to the
existing literature by considering various aspects.

TABLE I: Comparison against existing literature

Method Personalization
Accuracy and

confidence
guarantees

Cost-
efficiency

DTRs Yes No No
Active

classification No No Yes

ConfidentCare Yes Yes Yes

II. CONFIDENTCARE: SYSTEM COMPONENTS AND
OPERATION

A. System operation

ConfidentCare is a computer-aided clinical decision support
system that learns a personalized screening policy from the
EHR data. By a “personalized screening policy” we mean:
a procedure for recommending an action for the clinician to
take based on the individual features of the patient, and the
outcomes of the screening tests taken by that patient. An action
can be: letting the patient take an additional screening test,
proceed to a diagnostic test (e.g. biopsy), or just recommend
a regular follow-up. The tasks that ConfidentCare carries out
can be summarized as follows:

• Discover the granularity of the patient’s population:
The system is provided with training data from the EHR
that summarizes previous experiences of patients in terms
of the screening tests they took, their test results, and their
diagnoses. From such data, ConfidentCare recognizes
different subgroups or clusters of patients who are similar
in their features and can be approached using the same
screening policy.

• Learn the best policy for each subgroup of patients:
Having discovered the distinct subgroups of patients from
the training data, ConfidentCare finds the best screening
policy for each of these subgroups; by a “best” policy we
mean: a policy that minimizes the screening costs while
maintaining a desired level of diagnostic accuracy, with
a high level of confidence that is set by the clinicians.
The more training data provided to ConfidentCare, the
more “granular” the learned policy leading to increased
personalized recommendations for patients.

• Identify the incoming patients’ subgroups and execute
their personalized policies: After being trained, Confi-
dentCare handles an incoming patient by observing her
features, identifying the subgroup to which she belongs,
and suggests the appropriate screening policy.

B. Idiosyncrasies of the breast cancer clinical environment

Patients’ features fall into two categories: personal features,
and screening features. Personal features are observable at no
cost, and are accessible without the need for taking any screen-
ing tests, for that they are provided by the patient herself via
a questionnaire, etc. The personal features include numerical
and categorical features such as: age, age at menarche, number
of previous biopsies, breast density, age at first child birth, and
the family history [13].

Screening tests reveal a set of costly features for the patient,
which we call: the screening features. The screening features
comprise the radiological assessment of breast images, usually
encoded in the form of BI-RADS (Breast Imaging Report and
Data System) scores [21]. The BI-RADS scores take values
from the set {1, 2, 3, 4A, 4B, 4C, 5, 6}, the interpretation of
which is given in Table II in the online appendix [40]. BI-
RADS scores of 3 or above are usually associated with
followup tests or biopsy. The descriptions of all the personal
and screening features are shown in Table III in the online
appendix [40].
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ConfidentCare considers three possible multimedia-based
screening tests in the screening stage, which represent three
different imaging modalities: mammogram (MG), ultrasound
(US), and magnetic resonance imaging (MRI). Every screening
test is associated with different costs and risks, which are func-
tions of the patients’ personal features. We consider a general
cost function that incorporates both the misclassification costs
in addition to the monetary costs (the detailed cost model is
provided in the next subsection) [20]. ConfidentCare together
with the theoretical framework developed in this section can
operate upon a general class of features and tests, including
genetic tests.

ConfidentCare recommends an action upon observing the
outcome of a specific screening test. The actions can include:
recommend a regular (1 year) followup, recommend a diag-
nostic test (biopsy), or an intermediate recommendation for an
additional (costly) screening test (short-term followup). The
final action recommended by the screening policy is either
to proceed to a diagnostic test, or to take a regular followup
(screening) test after 1 or 2 years. The accuracy measures that
we adopt in this paper are: the false positive rate (FPR) and
the false negative rate (FNR), which are defined as follows:
the FPR is the probability that a patient with a negative true
diagnosis (benign or no tumor) is recommended to proceed
to a diagnostic test, whereas the FNR is the probability that
a patient with a positive true diagnosis (malignant tumor) is
recommended to take a regular followup screening test [24].

C. System components
In the following, we describe the ConfidentCare algorithm,

which implements those tasks using supervised learning.
The algorithm requires the following inputs from the clin-

ician: 1) a training set comprising a set of patients with
their associated features, screening tests taken, and their true
diagnoses, 2) A restrictions on the maximum tolerable FNR,
and 3) a desired confidence level on the FNR in the diagnoses
issued by the system.

Provided by the inputs above, ConfidentCare operates
through two basic stages:

• Offline policy construction stage: Given the training
data and all the system inputs, ConfidentCare implements
an iterative algorithm to cluster the patients’ personal
feature space, and then learns a separate active classifier
for each cluster of patients. Each active classifier
associated with a cluster of patients is designed such
that it minimizes the overall screening costs, and meets
the FNR and confidence requirements.

• Policy execution stage: Having learned a policy based
on the training data, ConfidentCare executes the policy by
observing the personal features of an incoming patient,
associates her with a cluster (and consequently, an already
learned active classifier), and then the classifier associated
to that cluster handles the patient by recommending
screening tests and observing the test outcomes, until a
final action is recommended.

Fig. 2 illustrates the components and operation of Confident-
Care. In the offline policy construction stage, ConfidentCare

is provided with training data from the EHR, the maximum
tolerable FNR, and the desired level of confidence. Confi-
dentCare runs an iterative algorithm that clusters the patients’
personal feature space, and learns the best active classifier
(the most cost-efficient classifier that meets the FNR accuracy
and confidence requirements) for each cluster. In the policy
execution stage, ConfidentCare observes the personal features
of the incoming patient, associates her with a patients cluster,
and then recommends a sequence of screening tests to that
patient until it issues a final recommendation.

III. THE PERSONALIZED SCREENING POLICY DESIGN

ConfidentCare uses supervised learning to learn a person-
alized screening policy from the EHR. In this subsection, we
formally present the learning model under consideration.

1) Patients’ features: Let Xd, Xs, and Y be three spaces,
where Xd is the patients’ d-dimensional personal feature space,
Xs = Bs is the s-dimensional space of all screening features,
where B = {1, 2, 3, 4A, 4B, 4C, 5, 6}, and Y is the space of all
possible diagnoses, i.e. Y = {0, 1}, where 0 corresponds to a
negative diagnosis, and 1 corresponds to a positive diagnosis.
The patients’ feature space is (d+s)-dimensional and is given
by X = Xd×Xs. Each instance in the feature space is a (d+s)-
dimensional vector x = (xd,xs) ∈ X ,xd ∈ Xd,xs ∈ Xs,
the entries of which correspond to the personal and screening
features (listed in Table III in the online appendix [40]), and
are drawn from an unknown stationary distribution D on X ×
Y , i.e. (x, y) ∼ D, where y ∈ Y , and Dx is the marginal
distribution of the patients’ features, i.e. x ∼ Dx. The set of
s available tests is denoted by T , where |T | = s.

The personal features are accessible by ConfidentCare with
no cost, whereas the screening features are costly, for that the
patient needs to take screening tests to reveal their values.
Initially, the entries of xs are blocked, i.e. they are all set to
an unspecified value ⟨∗⟩, and they are observable only when
the corresponding screening tests are taken, and their costs
are paid. We denote the space of all possible screening test
observations as X ∗

s = {B, ⟨∗⟩}s. ConfidentCare issues recom-
mendations and decisions based on both the fully observed
personal features xd, and a partially observed version of xs,
which we denote as x∗

s ∈ X ∗
s . The screening feature vector

xs can indeed be fully observed, but this would be the case
only if all the screening tests were carried out for a specific
patient.

In order to clarify the different types of features and their
observability, consider the following illustrative example. As-
sume that we only have two personal features: the age and the
number of first degree relatives who developed breast cancer,
whereas we have three screening tests T = {MG,MRI,US}.
That is, we have that d = 2 and s = 3. Initially, ConfidentCare
only observes the personal features, e.g. observing a feature
vector (42, 1, ⟨∗⟩ , ⟨∗⟩ , ⟨∗⟩) means that the patient’s age is 42
years, she has one first degree relative with breast cancer,
and she took no screening tests. Based on the learned policy,
ConfidentCare then decides which test should the patient take.
For instance, if the policy decides that the patient should take a
mammogram test, then the feature vector can then be updated
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to be (42, 1, 2, ⟨∗⟩ , ⟨∗⟩), which means that the BI-RADS score
of the mammogram is 2. ConfidentCare can then decide what
action should be recommended given that the BI-RADS score
of the mammogram is 2: classify the patient as one who needs
to proceed to a diagnostic test, or classify the patient as one
who just needs to take a regular followup test in a 1 year
period, or request an additional screening test result in order
to be able to issue a confident classification for the patient.

2) Active classification: The process described in the pre-
vious subsection is a typical active classification process: a
classifier aims to issue either a positive or a negative diagnosis
(biopsy or regular followup) for patients based on their costly
features (test outcomes). Such a classifier is active in the sense
that it can query the clinician for costly feature information
rather than passively dealing with a given chunk of data [30].
This setting should not be confused with conventional active
learning, where labels (and not features) are the costly piece
of information which the classifier may need to purchase [28].
In the following, we formally define an active classifier.

Definition 1: (Active classifier) An active classifier is a
hypothesis (function)

h : X ∗
s → Y ∪ T . (1)

Thus, the active classifier either recommends a test in T ,
or issues a final recommendation y ∈ Y , where y = 1
corresponds to recommending a biopsy (positive screening
test result) and y = 0 is recommending a regular followup
(negative screening test result), given the current, partially
observed screening feature vector x∗

s ∈ X ∗
s . Whenever a test

is taken, the screening feature vector is updated, based upon
which the classifier either issues a new recommendation.

For instance, the range of the function h in our setting
can be {0, 1,MG,MRI,US}, i.e. Y = {0, 1} and T =
{MG,MRI,US}. If h(x∗

s) = 1 (or 0), then the classifier issues
-with high confidence on the accuracy- a final recommendation
for a biopsy (or a regular followup) for the patient with a
screening feature vector x∗

s ∈ X ∗
s , whereas if h(x∗

s) = MG,
then the classifier recommends the patient with a screening
feature vector x∗

s to take a mammogram test. Note that if
h((⟨∗⟩ , ⟨∗⟩ , ⟨∗⟩)) = 0, then the classifier recommends no tests
for any patient.

3) Designing active classifiers: Designing an active clas-
sifier for the breast cancer screening and diagnosis problem
under consideration cannot rely on conventional loss functions.
This is because the classification problem involves costly
decision making under uncertainty, and different types of
diagnostic errors (false negatives and false positives) have very
different consequences. Hence, our notion of learning needs to
be decision-theoretic, and new objective functions and learning
algorithms need to be defined and formulated.

We use an inductive bias approach for designing the ac-
tive classifier; we restrict our learning algorithm to pick
one hypothesis h from a specific hypothesis class H. That
is, we compensate our lack of knowledge of the stationary
distribution D by inducing a prior knowledge on the set of
possible hypothesis that the learning algorithm can output:
a common approach for designing agnostic learners [35].
Unlike the conventional supervised learning paradigm which
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Fig. 3: Framework for the active classifier construction and
operation.

picks a hypothesis that minimizes a loss function, we will
design a learning algorithm that picks a hypothesis from H,
such that the overall cost of screening is minimized, while
maintaining the FNR to be below a predefined threshold, with
a desired level of confidence; a common design objective
for breast cancer clinical systems [22]. The screening cost
involves both the monetary costs of the screening tests, as well
as the misclassification cost reflected by the FPR. The FNR
experienced by the patients when using an active classifier h
is given by

FNR(h) = P (h(x∗
s) = 0 |h(x∗

s) ∈ Y, y = 1) , (2)

whereas the FPR is given by

FPR(h) = P (h(x∗
s) = 1 |h(x∗

s) ∈ Y, y = 0) . (3)

That is, the FNR is the probability that classifier h rec-
ommends a regular followup (outputs a 0) for a screening
feature vector xs, when the patient takes all the recommended
tests, given that the true diagnosis was 1, whereas the FPR
is the probability that the classifier recommends a biopsy
(outputs a 1) when the true diagnosis is 0. Both types of
error are very different in terms of their implications, and
one can easily see that the FNR is more crucial, since it
corresponds to misdiagnosing a patient with breast cancer as
being healthy [23]. Thus, the system must impose restrictions
on the maximum tolerable FNR. On the other hand, the
FPR is considered as a misclassification cost that we aim at
minimizing given a constraint on the FNR [20].

Now we define the screening cost function. Let cT be the
monetary cost of test T ∈ T , which is the same for all patients,
and let c̄T be the normalized monetary cost of test T , given
by c̄T = cT∑

T
′∈T c

T
′
. Let c̄(h(xs)) be the total (normalized)

monetary test costs that classifier h will pay in order to reach
a final recommendation for a patient with screening feature
vector xs. The average monetary cost of a hypothesis h is
denoted as c̄(h), and is given by c̄(h) = E [c̄(h(xs))] , where
the expectation is taken over the randomness of the screening
test results. To illustrate how the cost of a hypothesis is
computed, consider the following example. Let the normalized
costs of MG, US, and MRI be 0.1, 0.2 and 0.7 respectively.
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Initially, the classifier observes x∗
s = (⟨∗⟩ , ⟨∗⟩ , ⟨∗⟩) . Assume

a hypothesis h1 and a patient with a screening features vector
xs = (3, 1, 1). The hypothesis h1 has the following functional
form: h1((⟨∗⟩ , ⟨∗⟩ , ⟨∗⟩)) = MG, i.e. it initially recommends a
mammogram for every patient, h1((3, ⟨∗⟩ , ⟨∗⟩)) = MRI, and
h1((3, 1, ⟨∗⟩)) = 0. Hence, using h1, the screening cost is 0.8.
Let h2 be another hypothesis with h2((⟨∗⟩ , ⟨∗⟩ , ⟨∗⟩)) = MG,
h2((3, ⟨∗⟩ , ⟨∗⟩)) = 0. In this case, we have that c̄(h2) = 0.1,
which is less than c̄(h1) = 0.8, yet it is clear that h2 has a
higher risk for a false negative diagnosis.

Let C(h) be the cost function for hypothesis h, which
incorporates both the average monetary costs and the aver-
age misclassification costs incurred by h. Formally, the cost
function is defined as

C(h) = γ FPR(h) + (1− γ) c̄(h), (4)

where γ ∈ [0, 1] is a parameter that balances the importance
of the misclassification costs compared to the monetary cost,
and is set by the clinicians. γ = 0 means that ConfidentCare
builds the classifiers by solely minimizing monetary costs,
whereas γ = 1 means that ConfidentCare cares only about the
misclassification costs. An optimal active classifier is denoted
by h∗, and is the one that solves the following optimization
problem

min
h∈H

C(h)

s.t. FNR(h) ≤ η.
(5)

Obtaining the optimal solution for (5) requires knowledge of
the distribution D, in order to compute the average FNR and
cost in (5). However, D is not available for the (agnostic)
learner. Instead, the learner relies on a size-m training sample
Sm = (xi, yi)i∈[m], with Sm

i.i.d∼ D⊗m, where D⊗m is
the product distribution of the m patient-diagnosis instances
(xi, yi)i∈[m]. The training sample Sm feeds a learning algo-
rithm A : Sm → H, where Sm is the space of all possible
size-m training samples. The learning algorithm A simply
tries to solve (5) by picking a hypothesis in H based only
on the observed training sample Sm, and without knowing the
underlying distribution D. Fig. 3 depicts the framework for
learning and implementing an active classifier.

4) Learnability of active classifiers: In order to evaluate
the learner, and its ability to construct a reasonable solution
for (5), we define a variant of the probably approximately
correct (PAC) criterion for learning active classifiers that
minimize the classification costs with a constraint on the FNR
(conventional definitions for PAC-learnability can be found
in [30] and [35]). Our problem setting, and our notion of
learning depart from conventional supervised learning in that
the learner is concerned with finding a feasible, and (almost)
optimal solution for a constrained optimization problem, rather
than being concerned with minimizing an unconstrained loss
function.

In the following, we define a variant for the notion of
PAC-learnability, the probably approximately optimal (PAO)
learnability, of a hypothesis set H that fits our problem setting.

Definition 2: (PAO-learning of active classifiers) We say
that active classifiers drawn from the hypothesis set H are
PAO-learnable using an algorithm A if:

• H∗ = {h : ∀h ∈ H, FNR(h) ≤ η} ̸= ∅, with h∗ =
arg infh∈H∗ C(h), and h∗ ∈ H∗.

• For every (ϵc, ϵ, δ) ∈ [0, 1]3, there exists a polynomial
function N∗

H(ϵ, ϵc, δ) = poly( 1
ϵc
, 1
ϵ ,

1
δ ), such that for

every m ≥ N∗
H(ϵ, ϵc, δ), we have that

PSm∼D⊗m (C (A (Sm)) ≥ C(h∗) + ϵc) ≤ δ, (6)

PSm∼D⊗m (FNR(A (Sm)) ≥ FNR(h∗) + ϵ) ≤ δ, (7)

where N∗
H(ϵ, ϵc, δ) is the sample complexity of the clas-

sification problem.
PAO-learnability reflects the nature of the learning task of the
active classifier; a learning algorithm is “good” if it picks the
hypothesis that, with a probability 1−δ, is within an ϵ from the
region of feasible region, and within an ϵc from the optimal
solution. In that sense, a hypothesis set is PAO-learnable if
there exists a learning algorithm that can find, with a certain
level of confidence, a probably approximately feasible and
optimal solution to (5).

The sample complexity N∗
H(ϵ, ϵc, δ) does not depend on

η, yet the feasibility of the optimization problem in (5), and
hence the learnability of the hypothesis class, depends on
both the value of η and the hypotheses in H. From a bias-
variance decomposition point of view, one can view η as a
restriction on the amount of inductive bias a hypothesis set
can have with respect to the FNR, whereas ϵ, ϵc and δ are
restrictions on the true cost and accuracy estimation errors
that the agnostic learner would encounter. The threshold η
qualifies or disqualifies the whole hypothesis set H from being
a feasible set for learning the active classifier, whereas the
tuple (ϵ, ϵc, δ) decides how many training samples do we need
in order to learn a qualified hypothesis set H. The notion
of PAO-learnability can be thought of as a decision-theoretic
variant of the conventional PAC-learnability, since the learner
is effectively solving a constrained cost-minimization problem.

5) Patients feature space partitioning: ConfidentCare
learns a different classifier separately for every subgroup of
“similar” patients, which is the essence of personalization.
However, the clustering of patients into subgroups is not an
input to the system, but rather a task that it has to carry out;
ConfidentCare has to bundle patients into M subgroups, and
to each subgroup a different active classifier that is tailored to
the features of the patients in that subgroup. The value of M
reflects the level of personalization, i.e. the larger M is, the
larger is the number of possible classifiers that are customized
for every subgroup. Partitioning the patient’s population into
subgroups is carried out on the basis of the personal features of
the patients; patients are categorized based on their personal,
fully observable features.

Let (Xd, dx) be a metric space associated with the personal
feature space Xd, where dx is a distance metric, i.e. dx :
Xd × Xd → R+. We define an M -partitioning πM (Xd, dx)
over the metric space (Xd, dx) as a set of disjoint subsets
of Xd, i.e. πM (Xd, dx) = {C1, C2, . . ., CM}, where Ci ⊆ Xd,∪M

i=1 Ci = Xd, and Cj
∩
Ci = ∅, ∀i ̸= j. We define a function

πM (Xd, dx;xd) as a map from the patient’s personal feature
vector xd to the index of the partition to which she belongs,
i.e. πM (Xd, dx;xd) = j if xd ∈ Cj .
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Each partition is simply a subgroup of patients who are
believed to be “similar”, where similarity is quantified by a
distance metric. By “similar” patients, we mean patients who
have similar risks of developing breast cancer, and experience
similar levels of accuracy for the different screening tests.

6) Personalization and ConfidentCare’s optimization
problem: A personalized screening policy is a tuple
(πM (Xd, dx), [hj ]

M
j=1), i.e. a set of partitions over the

personal feature space and the screening guidelines associated
with each partition. Given a certain partitioning πM (Xd, dx)
of the personal feature space, the task of the learner is to
learn an active classifier hj ∈ H for each partition Cj , that
provides (average) performance guarantees for the patients in
that partition if the size of the training set is large enough,
i.e. larger than the sample complexity2. This may not be
feasible if the size of the training sample is not large enough
in every partition, or if the hypothesis set has no feasible
hypothesis that have a true FNR less than η for the patients
in that partition. The following definition captures the extent
of granularity with which a screening policy can handle the
patient’s population.

Definition 3: (M -personalizable problems) We say that
the problem (H, Sm, δ, ϵ, ϵc,D) is M -personalizable if there
exists an M -partitioning πM (Xd, dx), such that for every
partition Cj ∈ πM (Xd, dx), H is PAO-learnable, and we
have that mj ≥ N∗

H(ϵ, ϵc, δ), where mj =
∣∣Sj

m

∣∣, and
Sj
m = {(xi, yi) : i ∈ [m],xi,d ∈ Cj}.

That is, a problem is M -personalizable if H has a non-empty
set of feasible hypotheses for every partition, and the number
of training samples in every partition is greater than the sample
complexity for learning H.

ConfidentCare constructs a feature space partitioning, i.e.
the system recognizes the maximum number of patient sub-
groups for which it can construct separate active classifiers
that meet the accuracy requirements. Designing a personalized
screening policy is equivalent to: partitioning the feature space
Xd, and designing an active classifier for every partition. Let
Π be the set of all possible partitioning maps for the feature
space as defined in (5). ConfidentCare aims at maximizing the
granularity of its screening policy by partitioning the feature
space into the maximum possible number of patient subgroups,
such that the active classifier associated with each subgroup of
patients ensures that the FNR of this subgroup does not exceed
η, with a confidence level of 1 − δ. Thus, ConfidentCare is
required to solve the optimization problem in (6). Once the
optimal partitioning π∗

M (Xd, dx) is found by solving (6), the
associated cost-optimal classifiers are constructed by solving
(5).

Designing a screening policy computation algorithm is
equivalent to designing a partitioning algorithm Apart : Sm →
Π, and a learning algorithm A : Sj

m → H. ConfidentCare
would operate by running the partitioning algorithm Apart to
create a set of partitions of the personal feature space, and
then running the learning algorithm A once for each partition
in order to find the appropriate hypothesis for that partition.

2Note that the training set Sm is drawn from the total population of patients,
but each active classifier associated with a certain partition is trained using
training instances that belong to that partition only.

ConfidentCare computes an optimal screening policy if the
partitioning found by Apart is a solution to (6).

IV. CONFIDENTCARE ALGORITHM: ANALYSIS AND
DESIGN

In this section we introduce the optimal screening policy
and the ConfidentCare Algorithm.

A. Optimal screening policies: analysis and technical chal-
lenges

Theorem 1 provides an upper bound on the maximum
number of clusters that can be constructed for a given dataset.
The proofs for all theorems can be found in the online
appendix [40].

Theorem 1: The maximum level of personalization that
can be achieved for the problem (H, Sm, ϵ, ϵc, δ,D) is upper-
bounded by

M∗ ≤
⌊

m

N∗
H(δ, ϵ, ϵc)

⌋
, (10)

where M∗ is the solution for (6).
Theorem 1 captures the dependencies of the level of per-
sonalization on m and (ϵ, ϵc, δ). As the training sample size
increases, a finer granularity of the screening policy can be
achieved, whereas decreasing any of (ϵ, ϵc, δ) will lead to a
coarser policy that has less level of personalization. Deter-
mining an upper-bound M∗ on the level of personalization
as a function of the accuracy and confidence parameters
(ϵ, ϵc, δ) and the size of the data-set NH is important for
several reasons. First, the clinicians can use such a result to
determine the required amount of data to feed the algorithm in
order to reach a certain level of granularity. Second, one can
evaluate the maximum granularity achieved by a certain class
of classifiers H based on their complexities. Finally, if clinical
domain knowledge about the number of patient subgroups
is available, i.e. the appropriate value of M∗, clinicians can
set M∗ to that value and evaluate the achievable levels of
confidence and accuracy of the algorithm.

While Theorem 1 gives an upper-bound on the possible
level of personalization, it does not tell whether such a bound
is indeed achievable, i.e. is there a computationally-efficient
partitioning algorithm Apart, and a learning algorithm A,
through which we can we construct an optimal personalized
screening policy given a hypothesis set H and a training
sample Sm? In fact, it can be shown that for any hypothesis
class H, the problem of finding the maximum achievable
level of personalization in (6) is NP-hard. Thus, there is no
efficient polynomial-time algorithm Apart that can find the
optimal partitioning of the personal feature space, and hence
ConfidentCare has to discover the granularity of the personal
feature space via a heuristic algorithm as we will show in the
next subsection.

Given that we have applied a heuristic partitioning algo-
rithm Apart to the training data, and obtained a (suboptimal)
partitioning πM (Xd, dx), what hypothesis set H should we
use, and what learning algorithm A should we chose in
order to learn the best active classifier for every partition?
In order to answer such a question, we need to select both
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Π =

{
πM (Xd, dx) = {C1, . . ., CM}

∣∣∣∣∣∀Ci ∩ Cj = ∅,
M∪
i=1

Ci = Xd, Ci ∀M ∈ {1, 2, . . ., |Xd|}

}
. (5)

max
πM (Xd,dx)∈Π

M

s.t. (H, Sm, ϵ, δ, ϵc,D) is M -personalizable over πM (Xd, dx).
(6)

an appropriate hypothesis set and a corresponding learning
algorithm. We start by studying the learnability of a specific
class of hypothesis sets.

Theorem 2: A finite hypothesis set H, with |H| < ∞, is
PAO-learnable over a partition Cj ∈ πM (Xd, dx) if and only
if infh∈H FNRj(h) ≤ η, where FNRj is the FNR of patients
in partition Cj .
While the finiteness of the hypothesis set H is known to the
designer, one cannot determine whether such a hypothesis set
can support an FNR that is less than η since the distribution
D is unknown to the learner. Thus, the learnability of a
hypothesis set can only be determined in the learner’s training
phase, where the learner can infer from the training FNR
estimate whether or not infh∈H FNR(h) ≤ η. Theorem 2 also
implies that solving the FNR-constrained cost minimization
problem using the empirical estimates of both the cost and
the FNR will lead to a solution that with probability 1 − δ
will be within ϵc from the optimal value, and within ϵ from
the FNR constraint.

B. ConfidentCare design rationale

Based on Theorem 2 and the fact that (6) is NP-hard, we
know that ConfidentCare will comprise a heuristic partitioning
algorithm Apart that obtains an approximate solution for
(6), and an empirical constrained cost-minimization (ECCM)
learning algorithm A that picks a hypothesis in H for every
partition. Since problem (6) is NP-hard, we use a Divide-
and-Conquer approach to partition the feature space: we use
a simple risk assessment-based 2-mean clustering algorithm
Apart to split the a given partition in the personal feature
space, and we iteratively construct a decision tree using A for
each partition of the feature space, and then split all partitions
using Apart, until the algorithm A finds no feasible solution
for (11) for any of the existing partitions if they are to be split
further.

The algorithm A can be any ECCM algorithm, i.e. A solves
the following optimization problem

A(Sj
m) = arg min

h∈H

1

mj

∑
(x,y)∈Sj

m

c̄ (h(xs))

s.t.

∑
(x,y)∈Sj

m
I{h(xs) ̸=y,y=1}∑

(x,y)∈Sj
m
I{y=1}

≤ η −

√
log (|H|) + log

(
4
δ

)
2mj

,

(11)
where the constraint in (11) follows from the sample complex-
ity of H, which is N∗

H (ϵ, ϵc, δ) =
log(4|H|/δ)
2min{ϵ2,ϵ2c}
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Fig. 4: Demonstration for the operation of ConfidentCare
iterative algorithm.

C. ConfidentCare algorithm

The inputs to ConfidentCare algorithm can be formally
given by

• the size-m training data set Sm = (xi, yi)i∈[m].
• the FNR restriction η.
• the confidence level 1− δ.

The operation of ConfidentCare relies on a clustering algo-
rithm that is a variant of Lloyd’s K-means clustering algorithm
[36]. However, our clustering algorithm will be restricted to
splitting an input space into two clusters, thus we implement a
risk assessment-based 2-means clustering algorithm, for which
we also exploit some prior information on the input space.
That is, we exploit the risk assessments computed via the
Gail model in order to initialize the clusters centroids [10]-
[12], thereby ensuring fast convergence. Let G : Xd → [0, 1]
be Gail’s risk assessment function, i.e. a mapping from a
patient’s personal feature to a risk of developing breast cancer.
Moreover, we use a distance metric that incorporates the risk
assessment as computed by the Gail model in order to measure
the distance between patients. The distance metric used by our
algorithm is

d(x, x
′
) =

d∑
i=1

βi|xi,d − x
′

i,d|+ βd+1|G(xd, τ)−G(x
′

d, τ)|,

(12)
where G(xi

d, τ) is the probability that a patient with a feature
vector xd would develop a breast cancer in the next τ years.
The parameter β quantifies how much information from the
Gail model is utilized to measure the similarity between
patients. In our algorithm, we adopt a risk-based clustering
approach, which assigns explicitly a weight of β to the ℓ1-
norm of the difference between feature values, and a weight
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of 1− β to the difference in their risk assessments. Thus, the
distance metric can be written as follows

d(x, x
′
) = β||x− x

′
||+ (1− β)|G(x, τ)−G(x

′
, τ)|. (13)

Such a formulation explicitly merges the information extracted
from the data (feature values), and the information extracted
from medical domain-knowledge (risk assessment models),
using a single parameter β. The value of the parameter β
indicates to what extent we rely on prior (domain-knowledge)
information in clustering the patients. Setting β = 0 is
equivalent to stratifying the risk space, whereas β = 1 is
equivalent to stratifying the feature space. The value of β needs
to be learned as we show later in Section V-B.

Our clustering function, which we call Split(X̄d, dx, τ,∆)
takes as inputs: a size-N subset of the personal feature space
(training set) X̄d = {x1

d,x
2
d, . . .,x

N
d } ⊂ Xd, a distance metric

dx, a Gail model parameter τ , and a precision level ∆. The
function carries out the following steps:

• Compute the risk assessments
{
G(xi

d, τ)
}N

i=1
for all

vectors in the (finite) input space using the Gail model.
The parameter τ corresponds to the time interval over
which the risk is assessed.

• Set the initial centroids to be µ1 = xi∗
d , where

i∗ = argmini G(xi
d, τ), and µ2 = xi∗

d , where i∗ =
argmaxi G(xi

d, τ).
• Create two empty sets C1 and C2, which represent the

members of each cluster.
• Until convergence (where the stopping criterion is deter-

mined by ∆), repeat the following: assign every vector
xi
d to C1 if dx(xi

d, µ1) < dx(x
i
d, µ2), and assign it to C2

otherwise. Update the clusters’ centroids as follows

µj =
1

|Cj |

N∑
i=1

Ixi
d∈Cj

xi
d, j ∈ {1, 2}. (14)

• Return the clusters’ centroids µ1 and µ2.
The rationale behind selecting the initial centroids as being the
feature vectors with maximum and minimum risk assessments
is that those two patients’ are more likely to be ”clinically
different”, and hence their feature vectors should end up
residing in different clusters. A detailed pseudocode for the
clustering function is given in Algorithm 1.

For a given feature space partitioning, ConfidentCare builds
an active classifier that emulates a “virtual CPG” for the set of
patients within the partition. Designing the active classifier is
equivalent to: following an inductive bias approach in which
a specific hypothesis class H is picked, and designing an
algorithm A that takes the training set Sm as an input and
picks the “best” hypothesis in H, i.e. A(Sm) ∈ H.

Adopting decision trees as a hypothesis set is advantageous
since such a classifier is widely used and easily interpretable
for medical applications [31]-[34]. ConfidentCare will asso-
ciate a decision tree active classifier with every partition of
the personal feature space. Such a tree represents the policy
to follow with patients who belong to that partition; what tests
to recommend and how to map the BI-RADS scores resulting
from one test to a new test recommendation or a diagnostic
decision.

Algorithm 1: Split(X̄d, dx, τ,∆).

1 Input:A set N training vectors X̄d, K > M , a distance metric
dx, a Gail model parameter τ , and a precision level ∆.

2 Output:Two centroids µ1 and µ2;
3 Initialize D−1 = 1, D0 = 0, k = 0, and

µ1 = xi∗
d , i∗ = argmini G(xi

d, τ), ;
4 µ2 = xi∗

d , i∗ = argmaxi G(xi
d, τ) ;

5 C1 = ∅, C2 = ∅ ;
6 while Dk−1−Dk

Dk
> ∆ do

7 C1 =
{
xi
d

∣∣∀xi
d ∈ Xd, dx(x

i
d, µ1) < dx(x

i
d, µ2)

}
;

8 C2 = X̄d/C1;
9 µ1 = 1

|C1|
∑N

i=1 Ixi
d
∈C1

xi
d;

10 µ2 = 1
|C2|

∑N
i=1 Ixi

d
∈C2

xi
d;

11 Set k ← k + 1;
12 Compute the 2-means objective function

Dk = 1
N

∑2
j=1

∑N
i=1 Ixi

d
∈Cj

dx(x
i
d, µj);

13 end

Learning the optimal decision tree h∗ ∈ H is known to be an
NP-hard problem [37]. Thus, we resort to a greedy algorithm
A, which we call the confidence-based Cost-sensitive decision
tree induction algorithm (ConfidentTree). The main idea
of ConfidentTree is to select tests (nodes of the tree) in
a greedy manner by using a splitting rule that operates as
follows: in each step, label the leaves that come out of each
possible test such that the pessimistic estimate for the FNR
(given the confidence level 1−δ) is less than η, and then pick
the test that maximizes the ratio between the information gain
and the test cost. After growing such a tree, we apply post-
pruning based on confidence intervals of error estimates [38].
If there is no possible labeling of the tree leaves that satisfy
the FNR requirements, the algorithm reports the infeasibility
of the FNR and confidence levels set by the clinician given
the training set provided to the program.

A detailed pseudocode for ConfidentTree is given in Al-
gorithm 2. ConfidentCare invokes this algorithm whenever the
personal feature space is partitioned, and the active classifiers
need to be constructed. The operation of ConfidentTree
is described as follows. An instantiation of the algorithm
ConfidentTree(Sm, πM (Xd, dx), j, η, 1 − δ) takes the fol-
lowing inputs:

• the size-m training set Sm,
• the personal feature space partitioning πM (Xd, dx),
• the index j of the partition for which we are designing

the active classifier,
• the FNR constraint η, and
• the confidence level 1− δ.

Given these inputs, the algorithm then executes the following
steps:

• (Line 3 in Algorithm 2) Categorize the BI-RADS scores
of all screening tests in T into 3 categories based on
the following thresholds: category B1 for BI-RADS <
3, category B2 for BI-RADS ∈ {3, 4}, and category
B3 for BI-RADS > 4. This classification is based on
domain knowledge [21]; the first category corresponds to
a probably negative diagnosis, the second corresponds to
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a suspicious outcome, whereas the third corresponds to a
probably malignant tumor.

• (Line 4 in Algorithm 2) Extract the training instances in
Sm that belong to partition Cj , and assign to the training
set Sj

m.
• (Line 5 in Algorithm 2) Grow a decision tree with the

nodes being the screening tests in T , and the edges being
the BI-RADS categories {B1, B2, B3} as follows. For
every test in T , assign binary labels {0, 1} to the leaves
{B1, B2, B3} such that the FNR constraint

P(FNR ≤ η) ≥ 1− δ

is satisfied. From [38], we know that this constraint is
satisfied if the empirical FNR is less the the solution F̂
of the following equation

η =
F̂ + Q−1(δ)

2n
+Q−1(δ)

√
F̂
n
− F̂2

n
+ Q−1(δ)2

4n2

1 + Q−1(δ)2

n

, (15)

where Q(.) is the Q-function and n is the number of
training instances covered by the leaf for which a label
1 is assigned (see [38] for a derivation for the the above
formula). The solution of the equation in (16) for F̂
correspond to the value of the FNR that is guaranteed
to be less than η with probability 1− δ. After assigning
the labels to the BI-RADS categories {B1, B2, B3}, the
empirical FPR F̂ s

p is computed for every test s ∈ T .
The output of this step is a binary label assignment for
the BI-RADS categories {B1, B2, B3} for every test, e.g.
{0, 1, 1} for MG, {0, 0, 1} for MRI and US, and the
associated empirical false positive rate for every test given
those labeling, i.e. F̂MG

p , F̂MRI
p and F̂US

p .
• (Line 6 in Algorithm 2) Split the tree attributes as follows:

select the test in T that maximizes I(s;Sj
m)

γF̂ s
p+(1−γ)c̄s

, s ∈ T ,
i.e. the node of the tree is the test that maximizes the
ratio between the information gain and the empirical cost
function given the empirical false positive rates computed
in the previous step.

• Apply post-pruning based on confidence intervals of the
error estimates as in the C4.5 algorithm [38]. This step
is carried out in order to avoid overfitting.

• Report the infeasibility of constructing a decision tree
with the given FNR and confidence requirements if the
pessimistic estimate for the FNR exceeds η.

ConfidentCare uses the modules ConfidentTree and Split
in order to iteratively partition the feature space and construct
active classifiers for each partition. ConfidentCare runs in
two stages: the offline policy computation stage, and the
policy execution stage (pseudocode given in Algorithm 3.).
In the offline policy computation stage, the following steps
are carried out:

1) Use the Split function to split all current partitions of
the personal feature space.

2) Use the ConfidentTree to create new active classifiers
for the split partitions, if constructing a decision tree for a
specific partition is infeasible, stop splitting this partition,
otherwise go to step (1).

Algorithm 2: ConfidentTree(Sm, πM (Xd, dx), j, η, 1− δ)

1 Input:A set of training instances Sm, a partitioning
πM (Xd, dx), a partition index j, maximum tolerable FNR η,
and a confidence level 1− δ ;

2 Output:A cost-sensitive decision-tree hj that can be used as
an active classifier for partition Cj ;

3 Let B1 be the event that BI-RADS < 3, B2 be that BI-RADS
∈ {3, 4}, and B3 be BI-RADS > 4;

4 Extract the training set that belong to the targeted partition
Sj
m = {(xi, yi) |∀i ∈ [m],xi,d ∈ Cj } ;

5 For each test, label the leaves attached to edges B1, B2, and
B3 such that the empirical FNR is less than the solution of
the following equation for F̂

η =
F̂ + Q−1(δ)

2n
+Q−1(δ)

√
F̂
n
− F̂2

n
+ Q−1(δ)2

4n2

1 + Q−1(δ)2

n

,

where Q(.) is the Q-function and n is the number of training
instances covered by the leaf for which the classification is 1. ;

6 Given this labeling, let F̂p be the empirical value of the false
positive rate, then pick the test s ∈ T that maximizes

I(s;Sj
m)

γF̂s
p+(1−γ)c̄s

, where I(x; y) is the mutual information

between x and y. ;
7 Apply post-pruning using confidence intervals for error

estimates: a node is pruned if the error estimate of its induced
sub-tree is lower than the error estimate of the node.

After computing the policy, ConfidentCare handles the incom-
ing patients in the policy execution stage as follows:

1) Observe the personal features of the incoming patient,
measure the distance between her feature vector and the
centroids of the learned partitions, and associate her with
the closest partition and the associated active classifier.

2) Apply active classification to the patient. After each test
outcome, ConfidentCare prompts a recommended test
(the next node in the decision tree), and an intermediate
diagnosis together with an associated confidence interval.
The clinician and the patient will then decide whether or
not to proceed and take the next test.

Fig. 4 demonstrates the operation of the iterative algorithm;
in each iteration, partitions are split as long as a decision
tree for the new partitions are feasible, and the corresponding
decision trees are learned.

V. CONFIDENTCARE IN UCLA MEDICAL CENTER

A. Real-World Dataset for Breast Cancer Patients

A de-identified dataset of 25,594 individuals who under-
went screening via mammograms (MG), magnetic resonance
imaging (MRI) and ultrasound (US) at the UCLA medical
center is utilized to gain insight into the performance of
CondfidentCare. The features associated with each individual
are: age, breast density, ethnicity, gender, family history, age
at menarche, and age at the first child birth. Each individual
has underwent at least one of three screening tests: a MG,
an MRI, an US, or a combination of those. With each test
taken, a BI-RADS score is associated. Table IV in the online
appendix in [40] shows the entries of the dataset and the
features associated with every patient. The dataset is labeled
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Algorithm 3: ConfidentCare (Sm, δ, η).
1 Input:A training set Sm, required confidence level δ, and FNR

constraint η.
2 Output:A sequence of recommendations, intermediate

diagnoses with confidence intervals, and a final diagnosis;
3 Offline policy computation stage: ;
4 Initialize M =∞, q = 0;
5 Initialize µ = ∅ (set of centroids of the personal feature space) ;
6 Hyper-parameters τ , γ, and ∆ can be tuned through a

validation set;
7 while q ̸= M do
8 M = |µ| ;
9 Create a partitioning Part(Xd, dx) based on the centroids

in µ ;
10 For j = 1 to M ;

11 µ→ Split(Xd, dx, τ,∆);

12 hj = ConfidentTree(Sm, πM (Xd, dx), j, η, 1− δ) ;

13 If hj is infeasible: q ← q + 1 ;
14 EndFor
15 end
16 Policy execution stage: ;
17 For the incoming patient i, find the partition it belongs to by

computing the distance dx(xi,d, µj) for every partition Cj ,
and associate it with the partition j∗ that gives the minimum
distance ;

18 Use classifier hj∗ to recommend tests and issue diagnoses

by 0 for patients who have a negative diagnosis, and 1 for
patients who have a positive diagnosis (malignant tumor). All
features were converted into numerical values and normalized.
The normalized monetary costs for MG, US, and MRI where
set to 0.1, 0.2 and 0.7 respectively, and γ is set to 0.5.
In the following subsection, we demonstrate the operation
of ConfidentCare. All average performance measures in this
paper were obtained via 50-fold cross validation.

B. ConfidentCare Performance Evaluation

Recall from Section IV that clustering of the patients’
personal feature space was carried out using a distance metric
that combines both the feature values and the risk assessments
as computed by the Gail risk model using the parameter β.
Setting the parameter β = 0 corresponds to risk stratifica-
tion, whereas setting β = 1 corresponds to stratifying the
personal feature space while disregarding the prior information
provided by the Gail model. Since the Gail model does not
incorporate all the patients features (e.g. family history), one
expects that the best choice of β will be between 0 and 1, for
that both the personal features and the risk assessments of the
patients contains (non-redundant) information about patients’
similarity. For an FNR constraint of η = 0.1 and confidence
parameter of δ = 0.05, we find that β = 0.75 is the best
choice of the distance metric since it maximizes the system’s
accuracy (FNR and FPR).

As we can see in Fig. 5, ConfidentCare can (on average)
discover more subgroups of patients for whom it can construct
a screening policy with the desired confidence level as the
size of the training data increases. In agreement with our

expectation that the more training examples provided to Confi-
dentCare, the higher the number of clusters can be constructed
with guaranteed performance bounds. Note that for different
settings for the constraint η, the possible levels of stratification
are different. For a fixed size of the training data, as the
FNR constraint becomes tighter, the level of personalization
decreases. For instance, we can see in Fig. 5 that the expected
number of partitions for η = 0.2 is greater than that for
η = 0.1, whereas for η = 0.02 the system can never find
any feasible partitioning of the feature space regardless of the
size of the training data.

Fig. 6 shows the average (normalized) monetary costs
endured by ConfidentCare for patients with different risk
assessments. As the risk level increases, the costs increase
consequently since ConfidentCaare would recommend more
tests (including the expensive MRI test) to patients with
high level of risk for developing breast cancer. As seen, the
personalized screening policy is different for each cluster.

In Fig. 7, we plot the FNR and FPR with respect to every
partition constructed by the algorithm in a specific realization
of ConfidentCare which was able to discover 4 partitions. It
is clear that the FNR satisfies the constraint of η = 0.1 for all
partitions. The FPR for different partitions, for instance we can
see that partition 2 has a FPR of 0, whereas other partitions
have a non-zero FPR. In Fig. 8, we show the partitions (in a
2D subspace of the original personal feature space) and the
constructed policy corresponding to each cluster. It can be seen
that patients who are young in age and have low breast density
are recommended to take no tests, whereas other subgroups are
recommended to take a MG test. We also note that the policy
is more “aggressive” for patients with high breast density, i.e.
for partition 3, a relatively low BI-RADS score from a MG can
still lead to a recommendation for an addition US or an MRI,
whereas for other subgroups the policy is more conservative
in terms of recommending additional screening tests. This
results as higher breast densities lead to more difficult tumor
detection.

Note that Fig. 7 represents just a single realization of
ConfidentCare, and thus it does not reveal the amount of
confidence we have in the algorithm satisfying the FNR
constraint with a high probability. In order to verify the
confidence level in the policy constructed by ConfidentCare,
we run the algorithm for 100 runs and compute a Monte Carlo
estimate for P(FNR ≥ η), i.e. the fraction of time where the
FNR in the testing set exceeds the threshold η. In Fig. 9, we
plot the estimates for P(FNR ≥ η) versus δ for η = 0.1, and
it can be seen that P(FNR ≥ η) is bounded by the specified
confidence level δ for every setting of δ, which means that the
algorithm succeeds in guaranteeing an FNR of at least η with
probability of at least 1− δ.

C. ConfidentCare and Standard CPGs

We compare the performance of ConfidentCare with that
of the current clinical guidelines in order to assess the value
of personalization in terms of cost-efficiency. We compare the
monetary cost of ConfidentCare with that of the American
Cancer Society (ACS) screening guidelines issued in 2015
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[39]. The reason for selecting this specific CPG is that it
already applies a coarse form of risk stratification: low, average
and high risk women are recommended to take different sets
of tests. In Fig. 10, we plot the distribution of the normalized
monetary cost of ConfidentCare together with that of the ACS
over different levels of risk. ConfidentCare is expected to
reduce screening costs since it supports a finer stratification
of the patients, and thus recommends screening tests only to
patients who need them based on thier features and previous
test results. The comparison in Fig. 10 is indeed subject to
the selection of η and δ by clinicians (or institutions). The
more we relax the FNR and confidence constraints, the more
savings we attain in terms of the monetary costs.

Finally, we compare the accuracy of ConfidentCare with
that of a single decision tree of tests that is designed in a
“one-size-fits-all” fashion. In particular, we build a tree of tests
using the well-known C4.5 algorithm [38], and then compare
its performance with that of ConfidentCare with respect to
every partition found by ConfidentCare. From Fig. 11, we can
see that for the same realization illustrated in Fig. 7 and 8,
both approaches have a comparable FNR, but ConfidentCare
outperforms a single decision tree in terms of the FPR for
all the 4 partitions. This is because ConfidentCare deals
differently with women belonging to different subgroups as
shown in Fig. 8, i.e. for instance women in partition 2 are not
recommended to take any tests. In other words, ConfidentCare
avoids recommending unnecessary tests, which reduces the
rate of false positives. The average values of the FNR and
FPR for 50 runs of ConfidentCare and a single decision tree
are reported in Table II, where a gain of 31.91% with respect
to the FPR is reported: this corresponds to around 80,000 less
false positive incidents in the population of women undergoing

TABLE II: FNR and FPR for ConfidentCare (with η = 0.1 and
δ = 0.05) and a single C4.5 decision tree

Algorithm FNR FPR
Single C4.5 decision tree 0.0501 0.0488.

ConfidentCare 0.0512 0.037.

an annual screening test in the United States [41]. The FNR of
the single decision tree is 0.0501, which is slightly lower than
that achieved by the proposed algorithm (0.0512), whereas
both values comply with the FNR threshold of η = 0.1.

VI. CONCLUSIONS

In this paper, we developed ConfidentCare: a clinical de-
cision support system that learns a personalized screening
policy from electronic health record data. Unlike classical
classification algorithms, which is designed to work well on
average, ConfidentCare operates by stratifying the space of
patients’ features into clusters, and learning cost-effective and
accurate personalized screening policies with guaranteed per-
formance bounds for every cluster of patients. ConfidentCare
algorithm iteratively stratifies the patients’ feature space into
disjoint clusters and learns active classifiers associated with
each cluster. We have shown that the proposed algorithm
improves the cost efficiency and accuracy of the screening
process compared to current clinical practice guidelines, and
state-of-the-art algorithms that do not consider personalization.
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