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Abstract—We study the problem of optimal incentive design
for voluntary participation of electricity customers in a Direct
Load Scheduling (DLS) program, a new form of Direct Load
Control (DLC) based on a three way communication protocol
between customers, embedded controls in flexible appliances,
and the central entity in charge of the program. Participation
decisions are made in real-time on an event-based basis, with
every customer that needs to use a flexible appliance consid-
ering whether to join the program given current incentives.
Customers have different interpretations of the level of risk
associated with committing to pass over the control over the
consumption schedule of their devices to an operator, and these
risk levels are only privately known. The operator maximizes
his expected profit of operating the DLS program by posting the
right participation incentives for different appliance types, in
a publicly available and dynamically updated table. Customers
are then faced with the dynamic decision making problem of
whether to take the incentives and participate or not. We define
an optimization framework to determine the profit-maximizing
incentives for the operator. In doing so, we also investigate the
utility that the operator expects to gain from recruiting different
types of devices. These utilities also provide an upper-bound on
the benefits that can be attained from any type of demand
response program.

I. INTRODUCTION

With the lack of utility-scale storage options in the power
grid, the need to make electricity demand active is becoming
more pressing each day. In the research community, the
most favored option to make this vision happen is real-
time pricing (RTP). Optimal real-time prices, if calculated
correctly, would maximize the social surplus. However, there
are several barriers that currently hinder the realization of this
vision: 1) End-use customers need to have certainty in prices
for a certain look-ahead horizon to plan consumption. With
a wide-spread integration of renewables, calculating reliable
clearing prices hours ahead of operation is challenging; 2)
the lack of concrete models for the consumption flexibility of
electricity consumers in today’s market, specifically with the
granularity needed to allow high penetration of renewables,
and the time-inhomogeneity of these models due to variable
appliance arrival and flexibility patterns; 3) the strict relia-
bility requirements of power grid operations, allowing small
error margins in price design. A line of iterative methods that
actively ask for the customers’ collective response to price
signals are being proposed to address these problems [1], [2].

One the opposite side of the spectrum, Direct Load Control
(DLC) has proven to be a popular type of demand control
for grid operators, mostly due to the reliable and predictable
nature of the demand’s response to control signals. Currently,
customers providing DLC services to the power grid sign
long-term contracts that allow the provider to cut off the

supply of electricity to some of their appliances (e.g., air
conditioners and pumps) during occasional contingencies.
Commonly, DLC strategies take customer participation as a
given, assuming small fixed ex-ante monetary payments for
all participants, regardless of the level of service they provide
or the discomfort they experience. However, participation
in a DLC program presents risks for the customers and a
rational intelligent customer would not provide this service
extensively without appropriate financial incentives. In this
work, we take a first step in addressing these inherent
economic problems for designing day-to-day DLC incentives.

To avoid confusion with currently employed DLC pro-
grams, in which the individual consumption of appliances
are not observable, and feedback control strategies are used
[3], we will refer to our proposed program as Direct Load
Scheduling (DLS). DLS does not merely cut off the elec-
tricity supply of appliances. Rather, a control center can
optimally plan the consumption within consumer-specified
laxity limits, e.g., scheduling the charge of an Electric Vehicle
(EV) by a deadline. Contrary to common DLC practice, cus-
tomers provide the DLS authority with an explicit expression
of the service they need in an online fashion, leaving no
uncertainty in how the demand responds to control signals.
Appliances are recruited only on an event-based basis, i.e.,
every time they have to perform a task. Previous works have
proposed various cost-minimizing scheduling algorithms for
DLS, specifically for EVs, e.g. [4]–[9]. The possibility of
using Vehicle-to-Grid (V2G) services for regulation and grid
support has also been studied, e.g. [10], [11]. However,
charge interruption and V2G could decrease EV battery life,
delay full charge and present risks to the customer, and
violate customer privacy. Thus, proper economic incentives
for participation should be studied.

We assume that the DLS program is run by the same entity
that provides electricity to customers, hereafter referred to
as the aggregator. The aggregator is essentially an energy
trader. Following current practice, we assume that the aggre-
gator buys electricity at time-varying wholesale prices from
the energy market and on sells this energy to end-use cus-
tomers at flat rates, without being able to deny any electricity
service requests. Thus, it essentially acts as intermediary
node that shields the end-use customers from wholesale price
fluctuations. With no demand flexibility, the aggregator has
no control over the profitability of his venture in the short
run. Rather, his profit is determined by 1) wholesale prices;
2) the predetermined billing tariffs, which are flat, regulated,
and change very slowly; 3) the consumption behavior of
customers, which is out of control of the aggregator. To
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overcome this issue, the aggregator runs a DLS program
and pays customers in return for directly scheduling their
appliances, i.e., it effectively buys flexibility from customers
while keeping them on flat rates. This paper focuses on the
design of a market for trading flexibility between a single
aggregator and a population of randomly arriving appliances.
We model this market as a monopoly, in the sense that each
customer has access to only one aggregator and is a price-
taker. Competition between aggregators is left to future work.

II. MODEL

We consider a community with a large population of cus-
tomers owning controllable appliances, and one aggregator.
The basic observation of this work is that directly controlling
various types of appliances has different utilities for the
aggregator. This utility is a function of how flexible and
how high the electricity consumption of the device is, and
of the dynamic state of the grid at the time the appliance
is used. Thus, it is best if the incentive that the aggregator
pays to customers to recruit their appliances can vary dy-
namically with time and appliance type1. To allow for this
,we assume that these incentive are posted by the aggregator
in dynamically updated and publicly available tables for
all customers, which can be thought of as menus listing
the different incentives customers can receive. Customers
planning to use controllable appliances would then respond
to these posted incentives by deciding whether they want to
participate or not, and how much laxity they wish to offer
the aggregator.

We would like to point out that having dynamically chang-
ing menus does not necessarily mean that the incentives have
to be re-designed every hour of every day. In fact, incentives
will exhibit similar daily or weekly cycles as market prices.

We define this market under the following assumptions:
Assumption 1: The aggregator’s revenue from recruiting
each appliance is additive and independent of other appli-
ances’ participation;
Assumption 2: A customer’s initial choice to use an appli-
ance is perfectly inelastic and not affected by incentives;
Assumption 3: The aggregator’s load does not affect the
wholesale market clearing prices;
Assumption 4: The aggregator has access to ex-ante fore-
casts of expected wholesale prices.

Assumptions 3 and 4 simplify the expression of the ag-
gregator’s utility when recruiting appliances in the DLS pro-
gram. Next, we look at how customers respond to incentives.

A. Individual Appliance DLS Commitment Problem

We model the electricity consumption of customers using
tasks that dynamically arrive, receive service, and depart
at discrete time epochs indexed by t = {1, 2, 3, . . .}. An
arrival event corresponds to the earliest time at which it is
possible for an appliance to start its job. Each task, indexed

1While, in theory, the incentive could vary across different customers
offering the same service, here we assume that we want the incentives to
be perceived as fair and not violate consumer privacy limits.

by i, has a so-called characteristic vector vi ∈ C. The
elements of vi fully describe the nature of the task, which
could simply be the charge duration and rate for an EV,
the desired temperature for a thermostatically controlled load
(TCL). We further assume that vi can only be chosen from
a finite codebook C = {c1, c2, . . . , cQ}, designed to achieve
a bounded and controllable load modeling error. This allows
us to cluster similar energy requests in a finite number of
classes, indexed by

qi ∈ Q = {1, 2, 3, . . . , Q},

which will help to highly reduce the computational effort of
our algorithm. Thus, the consumption characteristics of task
i are uniquely defined by its cluster index qi.

The strategy set is defined by the laxity limits the customer
commits to provide to the DLS program when recruited,
described by the index

mi ∈ Mqi = {0, 1, 2, . . . ,Mqi},

and referred to as the appliance’s mode. Mode m = 0
corresponds to no laxity, i.e., the customer will not participate
in the program. These laxity limits could, for example,
correspond to the slack for an EV charge, or the width
of the comfort band for a TCL. The appliance embedded
controller is queried by the customer application, which maps
the physical state of the appliance onto the set of modes that
are available for the customer to choose from and, possibly,
an indication of what is the flat rate cost with no laxity.

The customer then chooses the mode after observing the
incentive menu. We denote by Itq(m) the incentive the cus-
tomer could receive for releasing the control of an appliance
in cluster q in mode m at time t, with Itq(0) = 0. We denote
the vector containing all (non-trivial) incentives available to
appliances in cluster q under modes m ≥ 1 as

Itq = [Itq(1), I
t
q(2), . . . , I

t
q(Mq)]

T .

We expect the customers in charge of making commitment
decisions to be only boundedly rational, i.e., they are likely
to only spend a limited amount of effort in considering the
economic utility of participation in the program or updating
their home energy management system’s parameters. How-
ever, in the rest of this section, we introduce an analytical
model which is valid for rational customers. We do so with
the disclaimer that this model is not a necessary element of
our design and we present it solely to provide some intuition
into the nature of this decision making problem.

Design constraint 1 (Diminishing Payoffs): Note that if
an appliance does not join the DLS program right after its
arrival time, it will lose some laxity. However, if consumers
have reasons to believe that taking some risk and waiting
to participate in the DLS program later could increase their
expected payoff, even though the amount of laxity they can
offer decreases, they will do so. To avoid this situation,
we assume that the incentives will be designed such that
the customer’s payoff for the same level of risk (e.g., same
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deadline) will be monotonically non-increasing in time. For
example, if we assign a separate mode m every time the
laxity offered by a deferrable load is increased by one unit,
we require that

Itq(m) ≤ It−1
q (m+ 1).

A Rational Customer Model: The utility gained by the
customer from operating task i at time t in each mode is
defined as a function

V t
i (.) : Mqi → R,

which includes three terms: 1) The incentive Itqi(mi) avail-
able for mode mi; 2) The commitment risk (disutility)
Rt

i(mi) associated with agreeing to receive service under
mode mi, modeled through a privately known function

Rt
i(.) : Mqi → R+,

with Rt
i(0) = 0, i.e., there is no risk when the customer

decides not to participate in the DLS program. Without loss
of generality, we order the modes from low to high risk. This
would result in monotonically non-decreasing individual risk
functions Rt

i(mi); 3) the utility of receiving the standard
service of using electricity and finishing a job. This term is
a constant, since we assume it will eventually happen for
every request, either through the DLS program under some
mode mi ≥ 1, or through the standard service model of
the power grid (mi = 0). The disutility of not receiving
this standard service in case of an emergency departure is
captured through the risk term. Thus, we eliminate this term
from the customer’s decision making model.

Consequently, assuming that the risk function are chosen
such that they have the same unit as the monetary incentive,
the customer’s utility is quasi-linear and is given by

V t
i (mi) = Itqi(mi)−Rt

i(mi).

Upon receiving the incentive information Itqi(mi) from the
aggregator, the customer would solve the following optimiza-
tion to determine the best operating mode of appliance i:

max
mi∈Mqi

V t
i (mi). (1)

The customer will not participate in the DLS program (mi =
0) if none of the Itqi(mi)’s for mi ≥ 1 are at least marginally
higher than the risk Rt

i(mi). Otherwise, the customer would
pick the mode such that the margin between Itqi(mi) and
Rt

i(mi) is highest (highest residual worth). Ties are broken
uniformly at random.

Even if we assume that this model perfectly describes
the decision making procedure of all customers, since Rt

i(.)
is only privately known, the aggregator cannot predict the
outcome of (1) deterministically. Thus, to determine the
incentives Itq(mi), the aggregator is faced with an opti-
mization problem with incomplete information. The goal of
the aggregator would be to maximize its expected profit,
given aggregate statistics about the population’s response to
incentives.

B. The Aggregator Problem

In order to recruit directly controllable appliances, the
aggregator needs to design appropriate incentives for every
possible mode in all possible clusters, i.e., Itq(m),∀q ∈
Q,∀m ∈ Mq. The LSE participates in the electricity
wholesale market run on an hourly basis, where it buys
energy to serve its load, directly controllable or not. We will
elaborate more on the nature of this market interaction later.
For now, we take the the expected profit that the aggregator
can make, through wholesale market transactions, by directly
controlling an individual appliance from cluster q in mode
m as known. For a recruitment of cluster q in mode m
at time t, we denote this utility by U t

q(m). The utility of
not recruiting an appliance is zero, i.e., U t

q(0) = 0. As per
Assumption 1, we define this recruitment utility as additive
and independent, rendering the incentive design problem
separable for individual appliances.

Since recruiting an appliance from cluster q in mode m at
time t comes at a cost equal to Itq(m), the net revenue of the
aggregator from this recruitment, denoted by N t

q(m), is

N t
q(m) = U t

q(m)− Itq(m). (2)

However, note that the mode m is chosen by the customer
after seeing the incentives Itq(m), through (1). Since only
statistical information on the customers response strategy is
available to the aggregator, only the expected net revenue can
be maximized. Denote the event that any customer in cluster
q picks mode m as Eq,m(Itq). This event happens if:

• Individual rationality constraint (IR):

Itq(m)−Rt
i(m) ≥ 0,

• Incentive compatibility constraints (IC):

Itq(m)−Rt
i(m) ≥ Itq(m

′)−Rt
i(m

′), ∀m′ ∈ Mq.

Consequently, the expected net revenue of recruiting an
appliance of cluster q, simply denoted by N t

q , is given by

N t
q =

∑
m∈Mq

P (Eq,m(Itq))(U
t
q(m)− Itq(m)), (3)

which the aggregator would like to maximize; i.e. the aggre-
gator would want to design the incentives as follows:

max
Itq

∑
t

N t
q . (4)

The summation over time is required to find the optimal
incentives in the presence of the diminishing payoff design
constraint. The reader could envision that for a real-time
implementation, the optimization (4) could be solved over
a receding horizon.

In order to solve (4), it is essential to have an understanding
of how P (Eq,m(Itq)) changes with the incentives Itq. Next,
we propose two different views for approaching this problem.
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1) Bayesian Approach: Here we assume that the aggre-
gator has access to statistically learned prior knowledge
on the risk levels of customers in different clusters. With
this view, the incentive design problem would be similar in
nature to optimal Bayesian unit-demand pricing, given that
the customers’ risk levels (valuations) for different modes
(items) cannot be assumed to be drawn from independent
distributions. The risk levels that a customer perceives for
committing to the program with a single appliance under
different modes are correlated. For example, in the case of
EVs or any other deferrable loads, the mode corresponds to
the amount of laxity that accompanies the request. Clearly,
offering a higher consumption laxity entails an additional risk
over that of offering a lower laxity, and these variables cannot
be considered independent.

We assume that the aggregator parameterizes the risk
function of each appliance i in cluster q according to:

Rt
i(m) = γir

t
q(m), (5)

where γi is a task-specific non-negative continuous random
variable and represents the type of an individual task i,
and the variables rtq(m) are deterministic and shared by all
appliances in the same cluster q, with rtq(0) = 0, and can
model the average attitude of population towards risk. To
ensure that this is a realistic parameterization of the risk
function, the aggregator could suggest this specific structure
as default to consumers when they pick their risk functions.

We assume that the aggregator has access to statistical
priors for the type γi, and we denote by F q

γ (g) the cumulative
distribution of γi for appliances in cluster q. With this new
notation, P (Eq,m(Itq)) for all m ≥ 1 is the probability of the
following event:

IR − γi ≤
Itq(m)

rtq(m)
=

Itq(m)− Iq(0)

rtq(m)− rtq(0)
, (6)

IC1 − γi ≤
Itq(m)− Itq(m

′)

rtq(m)− rtq(m
′)
, ∀1 ≤ m′ < m (7)

IC2 − γi ≥
Itq(m

′)− Itq(m)

rtq(m
′)− rtq(m)

, ∀m′ > m, (8)

so we should have γi ∈ [lγq,m(Itq), h
γ
q,m(Itq)], with

hγ
q,m(Itq) = min

{
Itq(m)− Itq(m

′)

rtq(m)− rtq(m
′)
|0≤m′<m

}
, (9)

lγq,m(Itq) = max

{
Itq(m

′)− Itq(m)

rtq(m
′)− rtq(m)

|m′>m

}
. (10)

which gives,

P (Eq,m(Itq)) = F q
γ (h

γ
q,m(Itq))− F q

γ (l
γ
q,m(Itq)) (11)

However, due to the absence of any natural ordering, these
constraints will render the optimization problem (4) rather
complex. Thus, next, we will impose a design constaint
that ensures that local incentive compaibility is sufficient for
decision making, i.e., if the customer prefers mode m over

adjacent modes m + 1 and m − 1, he/she will also prefer
mode m over all modes m′ > m and m′ < m.

Design constraint 2 (Single-Crossing Incentive Profile):
we will design the incentive profile such that ∀m ∈ Mq, the
ratio

It
q(m+1)−It

q(m)

rtq(m+1)−rtq(m) is non-increasing, i.e., incentives grow
slower than risks for higher modes m.

Proposition 2.1: If the incentive profile is single-crossing,
customer i will pick mode m ≥ 1 simply iff

Itq(m+ 1)− Itq(m)

rtq(m+ 1)− rtq(m)
≤ γi ≤

Itq(m)− Iq(m− 1)

rtq(m)− rtq(m− 1)
, (12)

where the right hand inequality ensures (6) and (7), and
the left hand inequality ensures (8). To keep expression
(12) compact, we use a dummy mode m = Mq + 1, with
Iq(Mq + 1) = Iq(Mq), and rtq(Mq + 1) = rtq(Mq) + 1.

We acknowledge that the single-crossing condition restricts
the values that the incentive profile can take into a region
that may be suboptimal for the aggregator. However, it
considerably lowers the numerical effort to solve (4).

To illustrate the next steps required to solve the problem,
specifically required for our numerical experiments, we as-
sume that the types γi for cluster q are drawn from a uniform
distribution over [0, γq

max]. We design the incentives such that
all of the ratios

It
q(m+1)−It

q(m)

rtq(m+1)−rtq(m) fall in the probability space
of γi. This happens if the incentives are positive and non-
decreasing with m, and that the ratio Itq(1)/r

t
q(1) is not above

γq
max, i.e., someone might pick mode m = 1. Consequently,

imposing the diminishing pay-off constraints for deferrable
loads, (4) is written as,

max
Itq

∑
t

N t
q =

1

γq
max

∑
t

Mq∑
m=1

(
U t
q(m)− Itq(m)

)
×(

Itq(m)− Itq(m− 1)

rtq(m)− rtq(m− 1)
−

Itq(m+ 1)− Itq(m)

rtq(m+ 1)− rtq(m)

)
,

s.t. 0 ≤ Itq(m) ≤ It−1
q (m+ 1), 1 ≤ m ≤ Mq − 1,

Itq(m+ 1)− Itq(m)

rtq(m+ 1)− rtq(m)
≤

Itq(m)− Itq(m− 1)

rtq(m)− rtq(m− 1)
, m ≥ 1,

Itq(m) ≥ Itq(m− 1), m ≥ 1,

Itq(1)

rtq(1)
≤ γq

max, (13)

for which the objective function is quadratic in Itq, and the
constraints are all affine.

The statistics on the risk functions can be obtained by
conducting market surveys or using learning techniques. The
details are out of the scope of this work.

2) Model-free Learning Approach: If there is no single
underlying model that characterizes how costumers respond
to participation incentives, or no information is available on
the private risk functions of customers, model-free online
learning techniques can be used to directly learn the prob-
abilities P (Eq,m(Itq)). These approaches explore different
alternatives for the incentive signals Itq, observe the response
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of the population, an update their estimate of P (Eq,m(Itq))
accordingly. This requires that the event of a customer con-
sidering to join the program be observable to the aggregator,
which is not the case in our current design. This issue can
be addressed by asking the customers to make an anonymous
query every time they need to look at the incentive menus
for a specific cluster.

Next, we study the recruitment utility of different devices
for the aggregator.

III. THE RECRUITMENT UTILITY FUNCTIONS

There are several options for an aggregator to profit
from recruiting flexible appliances. Here we only study the
possibility of load shifting based on the recruitment of long-
duration non interruptible deferrable appliances (e.g., EVs,
washer/dryers ) or preheating and precooling of TCLs.

In order to solve (4), the aggregator needs to know
beforehand how much utility it could expect from recruiting
an appliance in cluster q in mode m at time t. We denoted
this value by U t

q(m). In this Section, we specifically focus
on calculating this payoff for the case of load shifting
with non-interruptible deferrable loads and Thermostatically
Controlled Loads (TCL), with the numerical results focusing
specifically on Plug-in Hybrid Electric Vehicles (PHEV). Due
to limited space, we leave the discussion of interruptible and
sheddable loads to future work.

Energy is traded on an hourly basis, and the demand is
modeled as constant in hourly intervals in the energy market.
The task of ensuring the sub-hourly balance of demand
and supply is left to ancillary service providers, which are
procured and dispatched by the grid operator to respond
quickly (in a matter of minutes or seconds) to variations of
the demand. Traditionally, ancillary services are offered by
fast ramping generators.

In order to serve its’ load, the aggregator needs to purchase
a certain amount of energy for every hour ℓ from the
wholesale energy market, which we denote by L(ℓ), and refer
to as the base load. We assume that the aggregator has access
to ex-ante forecasts of the wholesale energy market clearing
prices, and we denote the expected value of the price for hour
ℓ as πe(ℓ). We assume the aggregator’s load is small enough
to not affect the price. The aggregator can save money in the
wholesale energy market if it recruits flexible appliances and
shifts their load to hours at which energy is cheaper.

Denote the set of all feasible hourly load traces of an
individual task in cluster q under mode m recruited at time
t as Lt

q,m(ℓ) ∈ Lt
q,m. To obtain an hourly load profile for an

appliance with sub-hourly consumption variations, we simply
average out the total consumption of the device within each
hour. We denote as Lt

q,0(ℓ) the consumption profile of the
appliance if it is not recruited by the DLS program and starts
its consumption at time t. Serving this power to the consumer
through buying energy from the wholesale market presents
a cost for the aggregator. By having direct control over this
appliance, the aggregator can expect to gain the following

payoff by shifting the load away from peak hours:

U t
q(m) =

∑
ℓ

πe(ℓ)Lt
q,0(ℓ) (14)

− min
Lt

q,m(ℓ)∈Lt
q,m

∑
ℓ

πe(ℓ)Lt
q,m(ℓ).

Remark 3.1: The consumption profile of flexible appli-
ances that do not choose to join the DLS program, i.e.,
Lt
q,0(ℓ), is a function of the tariff that the customers are

billed on. On a flat tariff, the customers do not need to spend
any effort to find the best time at which they should consume
electricity, and simply plug in an appliance at the request
arrival time.

Design constraint 3: Here we assume that for all de-
ferrable loads, the mode index m ∈ Mq is directly equivalent
to the amount of laxity (slack time) that accompanies the
request.

A. Deferrable Non-interruptible Appliances

Here we look at appliances whose consumption profile can
merely be shifted in time, but cannot be modified in any way
once started. A classic example is that of a washing machine
cycle. In this case, the control variable is the activation time
of the task, denoted by α (See Fig. 1). The set of possible
values of α depends on the initial time at which the request
arrives, and the laxity that accompanies the request, i.e., m.

Once activated, the appliance consumes a predetermined
amount of power, denoted by the time-shifted pulse gq(j−α)
for appliances in cluster q, with a length of Γq epochs. This
pulse varies on a sub-hourly basis as a function of the time
epochs j. To relate this with the variables required to solve
the optimization (15), we need to map this sub-hourly varying
load to an hourly load profile, resulting in

Lt
q,m =

Lt
q,m(ℓ) =

(ℓ+1)S−1∑
j=ℓS

gq(j − α)|t ≤ α ≤ t+m

 .

Notice the summations required to calculate the average
hourly consumption of the device from the sub-hourly load.
To avoid the inconvenience of going from gq(j−α) to hourly
consumption values Lt

q,m(ℓ) when solving (15), we simply
expand the expected wholesale energy price vector πe(ℓ) to
define virtual sub-hourly wholesale prices πp(j),

πp(j) =
∑
ℓ

1

S
πe(ℓ)Π(

j − ℓS

S
),

where Π(.) denotes the unit pulse function between [0, 1).
With this new definition, we have

⌊α+Γq
S ⌋∑

ℓ=⌊α
S ⌋

πe(ℓ)Lt
q,m(ℓ) =

⌊α+Γq
S ⌋∑

ℓ=⌊α
S ⌋

πe(ℓ)

(ℓ+1)S−1∑
j=ℓS

gq(j − α)

=

α+Γq∑
j=α

πp(j)gq(j − α). (15)
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Consequently, the expected utility of recruiting an appli-
ance in cluster q under mode m at time t is

U t
q(m) =

t+Γq∑
j=t

πp(j)gq(j − t)−

min
α

α+Γq∑
j=α

πp(j)gq(j − α)


s.t. t ≤ α ≤ t+m, (16)

where the first term refers to the cost incurred by the
aggregator if no demand control is exercised, whereas the
second term mirrors the lowest possible cost with which the
appliance can be served, considering a demand laxity of m
time units.

B. Thermostatically Controlled Loads

Another category of appliances that can help the aggrega-
tor save money in the energy market are TCLs, which can use
the inherent energy storage property of building thermal mass
to shift their load to cheaper hours. A substantial potential
for intrahourly load shifting with heating and cooling devices
is through preheating and precooling of the air-conditioned
space. To preheat a space, the temperature is increased
above the comfort band of the user at off-peak hours, before
residents/employees arrive at home/work. The preheating
should be scheduled such that by the time the residents arrive,
the temperature is close to the highest acceptable temperature
in the comfort band. While some commercial building utility
managers currently exercise this option during night hours to
save on energy, with the integration of renewable resources,
the best time and amount of preheating would be variable on
a daily basis and needs coordination with the aggregator.

We assume that each TCL is equipped with a thermo-
stat that keeps the temperature in a certain comfort band
[xmin

q , xmax
q ], with xmin

q and xmax
q representing the lower

and upper thresholds chosen by the customers in cluster
q. Here, we adopt a simple first-order model proposed in
[12] to explain the state dynamics of temperature. Let xi(j)
(a representative temperature) characterize the state of the
i-th heating device; xi(j) evolves according to the linear
stochastic difference equation

xi(j)−xi(j−1) = −kq(xi(j−1)−xa(j−1))+Wqbi(j)+νi(j),
(17)

where we denote by
• kq the average loss rate for buildings in cluster q;
• xa(j) the ambient temperature;
• Wq the average rate of heat gain supplied by devices in

cluster q;
• bi(j) the operating state of the device at time j (1 for

”on” or 0 for ”off”);
• νi(j) a zero mean Wiener noise process.
We assume that, once on, the unit consumes a constant

power approximately equal to Pq for cluster q. Thus, the
only variable that needs to be chosen and can affect the

aggregator’s cost is the times at which to run the unit for
preheating. Due to the constant power of the device, the
amount of preheating is a direct consequence of this choice.
However, we would like to point out that more sophisticated
methods for determining the trajectory of the temperature for
precooling/preheating exists in the literature, both based on
optimal control theory [13]–[16], or learning and simulation
[17]. The calculations in the section could be updated to
account for any of these techniques.

In order for the temperature to be around xmax
q at the time

that the building occupants arrive, we must have previously
increased it enough in the preheating period. This preheating
process can be done over multiple disjoint time intervals,
whenever it is deemed as a cost-effective action.

For appliances recruited at time t, preheating can start
right away and can continue to the time at which building
occupants arrive, which is equal to t+m, with the mode index
m directly mirroring the time laxity offered for preheating by
the customer. Thus, the optimization that needs to be solved
to minimize the expected cost for this is

Cpreheat
q (m) = min

bi(j)

t+m∑
j=t

πp(j)bi(j)


s.t. xmax

q − δ ≤ xq(t+m) ≤ xmax
q + δ,

bi(j) ∈ [0, 1] (18)

where δ ≥ 0 should be picked such that at least one number
in the set [xmax

q − δ, xmax
q + δ] lies within the control-

lability subspace of the dynamics that govern xi(t + m).
To write these dynamics in closed form, we assume that
xi(t) = xa(t), i.e., we assume that the unit stays off long
enough when the building is vacant, and the temperature
x(t) has already reached the ambient temperature xa(t) when
preheatig starts. Then, we can write the temporal evolution
of the expected value of xi(j) as

xi(j) = ci(j) +

j−1∑
w=t

(1− kq)
j−w−1Wqbi(w) (19)

with ci(j) =
∑j−1

w=t(1 − kq)
j−w−1

(
xi(w)(1 − kq) +

kqxa(w)
)

. The bi(w)’s are the decision variables.
In order to see how much benefit direct scheduling can

provide to the aggregator, we need to compare the cost to the
case when no preheating is exercised. In that case, heating
starts at t+m, and it will take the TCL τupq units of time to
continuously work and get the temperature to xmax

q , where

τupq ≈ 1

kq
ln

( Wq

kq

xmax
q − Wq

kq
− xa(t+m)

)
. (20)

This assumes that the dynamics of the ambient temperature
is much slower than that of the TCL. The first heating cycle
right after turning on in the morning will have an expected
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cost equal to

Cnormal
q =

t+m+τup
q −1∑

j=t+m

πp(j)

for the aggaregator. Thus, the utility of recruting a TCL in
cluster q in mode m at time t is given by:

U t
q(m) = max

{
Cnormal

q − Cpreheat
q (m), 0

}
Note that providing any DLS service requires that the appli-
ance is submetered. Here this is essential since the overall
consumption of the device could be fairly increased and the
consumer should not be billed accordingly.

IV. NUMERICAL CASE STUDY USING EV DATA

We simulate the interactions of one aggregator with a
population of Plug-in Hybrid EVs arriving at random to
receive level-1 battery charge (1.1 kW instantaneous rate).
The arrival time, charge duration, and laxity data are taken
from real PHEV charge events recorded and studied in [18].
This database includes 620 charge events that happen over the
length of several months. However, we ignore the dates and
treat the plug-in events as if they happened on the same day.
The aggregator interacts with the wholesale energy market.
Hourly LMPs for the one day of operation simulated here
are taken from ISO New England’s Maine load zone on
September 1st, 2013 to noon of September 2nd.

We translate the absolute charge laxity values in [18] into
risk functions by tuning the type γi in (5) such that it would
not be individually rational for the customer to offer laxities
that exceed their real departure time, given one sample of the
daily incentive profile. For lack of any meaningful alternative,
we take rtq(m) = m. Denote the mode corresponding to
the maximum laxity that could be offered while allowing a
timely departure for the customer by md. Then we assume
that for each charging event in cluster q at time t, given
sample incentives Îtq(m), the risk type γi of the user i is
such that

(md + 1)γi ≥ Îtq(md + 1).

Next, in order to solve the optimization (13), we fit a
uniform distribution on the customer types, resulting in

γi ∼ U(0, 0.0721).

One can use the Gershgorin circle theorem to show that
the optimization problem (13) is concave (with a negative
semidefinite quadratic term). Incentives are designed for half-
hour intervals, i.e., t = 1, . . . , 48 for one full day. Remember
that the solution to this optimization is sub-optimal due to
the single-crossing condition and the uniform prior assumed
for the customer risk types γi.

Fig. 1. Comparison of aggregator payoff when offering incentives designed
through different schemes to a PHEV population

A. Comparison of Aggregator Payoff for Different Incentive
Design Schemes

The average payoff (N t
q) that the aggregator receives at

different times of the day t when interacting with the above-
described customers under the single-crossing incentives is
shown in Fig. 1 (dashed red curve). To study the level of sub-
optimality imposed by the single-crossing design constraint,
we compare the outcome of the model-based incentive design
technique to a brute-forced learning method, where several
scenarios are generated for the daily incentive profile and
tested on the population to observe the response. With more
trials, the aggregator would find better incentive profiles. Fig.
1 compares the aggregator’s profit with the single-crossing
profile with that of the brute-force learning method after 30
and 1000 days. The reader can see that the learning method is
performing better than the single-crossing profile after 1000
days, but not in 30 days.

B. Welfare Effects

We define the consumer savings through a DSM technique
as the expected change in the monetary value of maximum
utility across different alternatives for receiving electricity
service. As explained before, since the basic service that
is being received/provided through any demand manage-
ment program is always the same as the normal operation
mode of the grid today, i.e., there is no change in overall
consumption and only the timing of consumption changes,
we ignore the utility of receiving the standard service of
electricity consumption in these calculations. The consumer
savings by participating in the DLS program (under brute-
force optimized incentives after 1000 days) is equal to
Itqi(mi)−Rt

i(mi). Saving impacts are individually calculated
for each charge request, and the sum of this value over the
620 charging events is shown in Fig. 2 as a function of time
of plug-in.

Now assume that, instead of going through a intermediary
node like the aggregator, the customer could have, through a
hypothetical demand management scheme, directly interacted
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Fig. 2. Aggregate Consumer savings for the 620 Charging Events

with the electricity grid. Hence, customers could submit their
consumption flexibility as bids to the Independent System
Operator (ISO) that runs the market, and are billed based on
optimal market clearing prices. This is the ultimate goal of
dynamic pricing schemes and could realize the most efficient
outcome of the market. Alternatively, one could imagine
any scheme that uses the full potential of customers for
load shifting, and relays all the wholesale market savings
to them. For now, assume that today’s regulated flat tariffs
are designed such that customers are billed at the averaged
wholesale cost of the electricity they consume (ignoring
aggregator mark up). Then, the consumer savings through the
implementation of such dynamic pricing program would have
been equal to the recruitment utility, i.e., U t

q(md), assuming
that customers would use their maximum possible laxity with
no reservation when making individual scheduling decisions
in response to a price (no commitment risk function). The
value of this quantity is summed up across the population
and is compared to customer savings gained from the DLS
scheme in Fig. 2.

The considerable difference in consumer savings between
the DLS program and that of optimal pricing is due to
two factors: 1) the presence of an intermediary for-profit
node, i.e., the aggregator; 2) the commitment risk function
Rt

i(mi), preventing the customers from realizing all their
load shifting potentials. To observe the welfare effects of
the second phenomena, we show the sum of the aggregator
and consumer savings under DLS in Fig. 2. The reader
can observe that the overall decrease in the community’s
(aggregator + consumers) welfare is minimal. Remember that
this decrease in welfare comes with the promise of reliability
and controllability, which are the essential attributes that
drive electricity market design problems and are required for
safe grid operation.

V. CONCLUSIONS AND FUTURE WORK

Due to the popularity of direct control mechanisms in the
power grid, designing appropriate incentives for customer
participation in these programs seems like an inevitable
issue. Here we approached this issue as a market design
problem to trade flexibility with an aggregator of electricity
services. Extension of this work to look at the possibility

of providing ancillary services through collective effort of
several appliances, and to study competition between several
aggregators that can serve the same population, is left to
future work.
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