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Abstract—Interruptible Load (IL) programs have long been
an accepted measure to intelligently and reliably shed demand in
case of contingencies in the power grid. However, the emerging
market for Electric Vehicles (EV) and the notion of providing
non-emergency ancillary services through the demand side have
sparked new interest in designing direct load scheduling programs
that manage the consumption of appliances on a day-to-day basis.
In this paper, we define a mechanism for a Load Serving Entity
(LSE) to strategically compensate customers that allow the LSE
to directly schedule their consumption, every time they want to
use an eligible appliance. We study how the LSE can compute
such incentives by forecasting its profits from shifting the load of
recruited appliances to hours when electricity is cheap, or by pro-
viding ancillary services, such as regulation and load following. To
make the problem scalable and tractable we use a novel clustering
approach to describe appliance load and laxity. In our model,
customers choose to participate in this program strategically, in
response to incentives posted by the LSE in publicly available
menus. Since 1) appliances have different levels of demand flex-
ibility; and 2) demand flexibility has a time-varying value to the
LSE due to changing wholesale prices, we allow the incentives
to vary dynamically with time and appliance cluster. We study
the economic effects of the implementation of such program on a
population of EVs, using real-world data for vehicle arrival and
charge patterns.

Index Terms—Smart grids, energy, load management, retail
market, economics.

I. INTRODUCTION

U NDER pre-determined flat pricing tariffs, end-use
customers are sheltered from the fluctuations of the

wholesale price of electricity through a Load Serving Entity
(LSE), leading to market inefficiencies [1]. The research on
how to make electricity demand sensitive to the wholesale
price of its supply can be divided into four major trends: 1)
one option explored is to derive smart locational marginal
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pricing (LMP) strategies (see e.g., [2]–[4]) that capture the
price-elasticity of a population of customers in the social wel-
fare maximization solved by the system operator; 2) another
line of research considers cooperating customers in a neighbor-
hood that minimize their overall costs through decentralized
iterative methods aimed at finding socially-optimal schedules,
e.g., [5]–[7]; 3) a different direction is based on game-theory
where the authors design billing mechanisms that allow for
an incentive-compatible scheduling of the collective demand
of a population of selfish customers, e.g., [8]–[12]; 4) last
but not least, there is renewed interest in direct scheduling
of the load of certain appliances by the LSE, to decrease
market costs or to provide ancillary services. Interruptible
Load (IL) programs started as a last-resort measure that allow
for selective load shedding during contingencies, but recent
papers have suggested more sophisticated schemes where the
energy consumption of appliances is scheduled on a day-to-day
basis to follow the variations of supply, e.g., [13]–[19]. These
techniques could ease the transition towards day-to-day use of
high levels of renewables in the grid. We refer to these schemes
as Direct Load Scheduling (DLS).
Dynamic retail pricing methods are considered to be the most

efficient and the least communication intensive option. How-
ever, there are certain factors that hinder the implementation of
these programs: 1) the lack of reliable information on the price
sensitivity of customers, especially since this sensitivity has a
time and space in-homogeneous nature; 2) the lack of under-
standing of how, given the lack of perfect retail competition, a
for-profit (and possibly regulated) LSE can be trusted to set fair
dynamic prices, without exploiting the customers’ lack of flex-
ibility for certain tasks; 3) the strict reliability requirements of
the grid, allowing only for small margins of operational error; 4)
the public opinion considering electricity a basic need, requiring
a price that is seemly and predictable well ahead of time. This
expectation could prove to be problematic as renewable outputs
are highly unpredictable.
DLS programs obtain a tight and reliable control the demand.

This is considered a valuable trait in grid operations, especially
when demand is used for non-emergency ancillary service pro-
vision, which requires a high-precision response with certain
performances guarantees. DLS services can be coupled with
any other Demand Response (DR) scheme to provide a smooth
and reliable transition to active demandmanagement in the grid.
One important and well-studied aspect of this problem is how
a certain authority can schedule the energy consumption of a
large population of devices with a certain objective (module
highlighted in grey in Fig. 1). While this part of the problem
is of great importance, what is often neglected is why should a
rational end-use customer voluntarily participate in such pro-
grams on a daily basis, as it could harm his/her privacy and
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Fig. 1. Modules involved in Direct Load Scheduling programs.

comfort levels. Currently, IL programs provide small fixed one-
time payments to customers, with the guarantee that load shed-
ding will only happen infrequently and only during emergen-
cies, and the notion that customers are working towards so-
cial good. However, for day-to-day direct scheduling, the mere
promise of a “green future” may prove to be inadequate to in-
centivize high levels of customer participation.

A. Contribution

With this motivation, here we define a market that allows
the LSE to strategically provide incentive payments to appli-
ance owners that provide DLS services (module highlighted in
pink in Fig. 1). Incentives change dynamically with grid con-
ditions, and are provided every time an eligible appliance is
plugged-in and needs to consume energy. To ensure fairness,
we assume that incentives are posted in dynamically-updated
publicly-available tables, and customers providing the same ser-
vice receive the same payment. Recruited appliances release the
control over their demand to the LSE, with the promise that they
will receive the service they expect within their proposed laxity
limits, but with the exact timing of energy delivery at the discre-
tion of the LSE. After observing available incentives, owners of
potential participating appliances strategically make contribu-
tion choices, i.e., they decide whether to participate in the DLS
program and how much laxity they wish to offer to the LSE.
Individual appliances have different flexibility, and customers
can make different choices in how much laxity to offer. Thus,
incentive payments vary accordingly to encourage higher con-
tributions and maximize the profits of the LSE, soliciting the
optimal levels of flexibility from appliances.

B. Related Works

Most works on DLS takes customers participation as a given.
In [13], the customer response to price is modeled as a sigmoid
function while the paper focuses on competitive pricing by a
set of LSEs. A somewhat more related study is in [20], which
proposed an online mechanism to incentivize Electric Vehicle
(EV) owners to reveal their true flexibility to a scheduler by pun-
ishing misrepresentation under a soft Quality of Service (QoS)
model and burning the extra units of power if necessary. Our
model is different since it captures various types of appliances,
provides hard QoS, and uses detailed costs based on electricity
market structure. More recently, the authors in [21], [22] de-
signed mechanisms to incentivize end-users to reveal their true
laxities to an LSE. The load model used in both works assumes
that each customer provides the LSE with the amount of energy
that he/she needs by different deadlines, while abstracting out
specific consumption profiles and constraints of different appli-
ances inside each residence. This is different from our approach,

which captures the specific characteristics of different appli-
ances and their intrinsic flexibilities through a reduced-order
load model defined in Section II. The authors in [23] provide
different prices to each appliance that arrives based on the cur-
rent system state and assuming that a welfare minimizing agent
is in charge of load scheduling (payment of each user is mini-
mized given the current load). This is different from our model,
since the LSE is a profit maximizing entity here.
Building on the basic concepts proposed in our previous con-

ference paper [24], here we expand the framework to study how
an LSE can use recruited appliances to offer ancillary services
on top of minimizing its energy market costs.

C. Synopsis

In Section II-A, we present our load clustering approach
for recruiting heterogeneous flexible appliance in the DLS
program. Section II-B discusses our assumptions. Section II-C
describes the consumer choice model, with the LSE profit
maximization problem to determine the optimal incentives
following in Section II-D. We propose two approaches to solve
the incentive design problem in Section II-D1 (Bayesian ap-
proach), and Section II-D2 (frequentist approach). Solving for
the optimal incentives requires the LSE to know the utility of
recruiting appliances in the DLS program, which we calculate
for the case of deferrable loads in Section III. Finally, our
numerical test cases are described in Section V.

II. MODEL

To make participation incentives commensurate with the ser-
vice that is provided by the recruited appliances to the direct
load scheduler, the first question that needs to be answered is
how can the incentive designer sift through the value offered
by large heterogeneous populations of appliances with variable
load flexibilities in a scalable fashion.

A. Discretizing Flexibility

To put a value on the heterogeneous load flexibility offered
by recruited appliances, the first step is to capture this flexibility
mathematically. To give a simple example of how we approach
this problem, let us look at an ideal battery load that is recruited
at time and is characterized by 4 parameters: a charge capacity,
, a rate constraint , a slack time to fully charge, , and the

initial state of charge, . We define slack time as the amount
of time left between the end of an electric job and its deadline if
the request is served immediately after arrival at the highest rate.
Denote the state of charge of the battery at time by . Then,
if the battery is recruited at time , the possible load shapes
of this appliance in time is given by the set:

(1)

Thus, the battery load’s consumption characteristics are fully
described by the parameters . We divide
these parameters into two vectors, such that:

(2)

The first vector captures the inherent and unmodifiable prop-
erties of the request, and the second vector describes the level
of flexibility that the customer voluntarily commits to provide



ALIZADEH et al.: DYNAMIC INCENTIVE DESIGN FOR PARTICIPATION IN DIRECT LOAD SCHEDULING PROGRAMS 1113

along with this request. We assume that this division is possible
for any type of flexible energy request. The vector could de-
scribe the load shape of a dishwasher once on, or the charge
duration and rate constraints for an Electric Vehicle (EV). On
the other hand, describes how lax the energy request is. For
example, can describe the slack time that accompanies a de-
ferrable load such as dishwasher cycle, or the comfort band
that dictates how far the temperature controlled by a Thermo-
statically Controlled Load (TCL) can swing around the desired
value. It is useful to highlight the difference between these de-
pendencies as changing produces an entirely
different set, while changing has the effect of enlarging the
set. In particular, for the battery load in (1), if , then

.
Note that the parameters , e.g., for the

battery load, can take infinitely many values when dealing with
a population of heterogeneous appliances. Thus, evaluating this
set and the utility associated with having such flexibility at hand
for every single appliance is impossible for the LSE.
To lower computational and communication requirements of

the DLS program, we choose to quantize the vectors and ,
a strategy most common in real-time and multimedia applica-
tions. This idea was first introduced in [25] to control large pop-
ulations of appliances, which generalized the idea of quantizing
the temperature range in bins proposed by Chong in [26] to an-
alyze populations of interruptible TCLs. Consequently, we as-
sume that eligible appliances can only choose the characteristic
vector from a finite codebook . De-
pending on the choice of , we assign appliances to clusters,
indexed by

(3)

As an example, we can quantize the initial state of charge as
well as the amount of charge required by EVs that receive home
charging (1.1 kW rate) to 0.55 kWh intervals. Then, separate
clusters are assigned to EVs that arrive with an empty battery
and require 0.55 kWh, 1.1 kWh, 1.65 kWh, and so on.
We also quantize the level of flexibility that accompanies a

request, i.e., the vector . We assume that flexibility offered by
appliances can be characterized by a discrete set of options, e.g.,
deadlines rounded to the hour. For appliances in cluster , this
choice is fully described by an index

(4)

and is referred to as the appliance’s mode. Mode cor-
responds to the default selection for an appliance that does not
participate in the DLS program.
We can now write the load flexibility of any ideal battery in

cluster operated under mode at time as,

(5)

Note that , and that the set
is a singleton, .
Given that and are finite sets, the incentive design

problem will now simply depend on the size of these quantiza-
tion sets and not on the population size that the LSE is dealing
with, allowing our DLS incentive design problem to be scalable
in terms of communication and computation.

B. Basic Assumptions

The LSE wants to maximize its profit and the customer wants
the service mode with the economic value. The functions that
reflect their trade offs will be introduced in detail later in (9)
and (11) respectively. In general, we assume that, given no in-
centives, the customers prefer to iff ,
i.e., the customer chooses mode if no incentives are
available. Posting the incentives modifies the economic value
of each mode, and introduces a new partial ordering across the
sets for the customer. On the other hand, the LSE chooses
the incentives for each based on the total order introduced
by market prices on the members of the set , leading to
a unique load profile for each that is most ad-
vantageous to the LSE. Here we assume a tariff structure im-
posed by the LSE that is backwards compatible with current
practices. Specifically, customers are by default on a flat tariff.
Thus, without DLS, the mode customers pick by default is mode

, which is a singleton . For instance, for the ideal
battery, the customer will choose for a time du-
ration . We call the recruitment utility
under mode for the LSE (cf. Section II-D) the wholesale
market savings or payments realized through serving a request
through any of the profiles in other than

. Specifically, , the th entry of the vector:

(6)

denotes the maximum savings/payment that the LSE can accrue
in the wholesale market from choosing a load profile in .
Clearly, for all . If for , then the
LSE can offer discounts to the customers picking mode ,
as long as the revenue from more than compensates for
the paid incentives1.
We denote the incentives available for cluster at time as

(7)

where denotes the incentive available to an appliance in
cluster that picks mode and is recruited at time .
To solve for , there are two fundamental aspects that

need to modeled. First, how reluctant customers are in commit-
ting to provide DLS services, i.e., what is the minimum payment
they need to receive to commit. Second, what is , which
in turn determines how much is the LSE willing to discount the
customer for offering the flexibility of appliances in cluster to
be operated under mode , i.e., . We start by answering
the first question in Section II-C and follow with addressing the
second in Section II-D.
We now state the assumptions under which our proposed par-

adigm is defined (1, 3, 5, 6) and is analyzed (2, 4, 7):
Assumption 1: Appliances that decide not to participate in

the DLS program are provided with the standard service of elec-
tricity and are billed on a flat rate. These customers do not need
to spend any effort to find the best time at which they should
consume electricity, and simply plug in an appliance at the re-
quest arrival time;
Assumption 2: Each customer can only interact with one

LSE, i.e., the market for obtaining DLS services is a monopoly

1Note that Time of Use (TOU) tariffs can be interpreted as a regularly occur-
ring discounts that appears at off peak hours for all appliances in all clusters.
Hence, the retail pricing model is sufficiently general to capture current prac-
tices that go beyond flat tariffs.
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Fig. 2. Visual representation of the interactions between an EV that needs 2
hours of charge at 1.1 kWs and the DLS program. The order in which interac-
tions happen are displayed on the arrows. Displayed incentive values are not
optimized.

(extension to cover competition between LSEs to recruit appli-
ances left to future work);
Assumption 3: The LSE’s revenue from recruiting each ap-

pliance is additive and independent of other appliances;
Assumption 4: A customer’s initial choice to use an appliance

is perfectly inelastic and not affected by incentives;
Assumption 5: The LSE’s load or ancillary service capacity

offers do not affect the wholesale market clearing prices;
Assumption 6: The LSE has access to ex-ante forecasts of

expected wholesale prices;
Assumption 7: Customers do not have any private informa-

tion regarding wholesale market prices and are consequently
myopic in deciding whether to participate in the DLS program2.
We use the first four assumptions in the next Section, while

Assumptions 5 and 6 simplify derivations of the expression of
the LSE’s utility when recruiting appliances in the DLS program
in Section III.

C. Individual Appliance DLS Commitment Problem

A customer that needs to use an appliance belonging to cluster
would have two choices: 1) run the appliance under mode

, and pay for the consumption at flat prices; 2) partic-
ipate in the DLS program and make a commitment that the re-
quest will provide a certain level of slack time described by the
mode . To make this decision, the customer looks at the
current incentives posted by the LSE (see Fig. 2). If the cus-
tomer chooses to take any incentive, he/she is bound to execute
the consumption decisions dictated by the LSE, with deviations
subject to penalties3.
As previously mentioned, the first important effect that needs

to be quantified by ourmodel is the amount of incentive required
for a customer to join the DLS program, and further, commit to
a certain mode. For deferrable loads, which are the main focus
of Section III, this commitment means that the appliance con-
sumption request has to remain active until a certain deadline
(the appliance should remain plugged in and available to be con-
trolled). To capture this, one could think that committing to stay

2Assumption 7 can be replaced with a guarantee that payoffs will diminish as
the customer holds back service that he/she could have provided. For deferrable
loads with corresponding to one time unit of slack time, this means

, i.e., highest incentive is offered when the deadline is farthest away
from the commitment time. Consequently, the customer will either participate
in the DLS program at the time of request arrival, or not at all.
3In this paper, we ignore the problem of designing the penalties and assume

they are high enough that violations are negligible.

in the system presents a certain amount of risk for the customer,
mainly due to an emergency/unplanned event that may require
an earlier departure, and the penalties charged for not sticking
to his/her commitment.
As commonly observed in many real world scenarios that in-

volve human factors, the customer’s participation decision, and
consequently his/her choice of mode , is most likely mediated
by bounded rationality, and may not be correctly captured by a
rational agent model. However, we provide such a model next,
with the caveat that, even if the customer is not fully rational, our
framework for incentive design can rely on model-free learning
approaches (discussed in Section II-D2).
1) Rational Agent Decision Making Model: We model the

customer as a utility-maximizing rational agent, and assume that
the utility gained by the customer from operating appliance in
cluster at time under mode is denoted by , which
includes three terms:
1) the incentive available for mode ;
2) the commitment risk (disutility) associated with
committing to receive service under mode at time ,
and relinquishing control over the consumption of the
appliance to the LSE. This is modeled through a privately
known non-negative vector

(8)

with , i.e., there is no risk when the customer
decides not to participate and picks mode . Without
loss of generality, we order the modes from low to high
risk, having monotonically non-decreasing risks with
modes. The risk functions are also scaled to have the same
unit as the monetary incentives ;

3) the utility of receiving the standard service of using elec-
tricity and finishing a job.

The last term is a constant, since we assume consumption will
eventually happen for every request, either through the DLS
program under some mode , or through the standard ser-
vice model of the power grid ( ). The disutility of not
receiving this standard service, in case of an emergency depar-
ture, is captured through the risk term. Thus, we eliminate this
term from the customer’s decision making model and consider
the following additive utility:

(9)

Upon observing the incentives posted by the LSE, the
customer solves the following utility maximization problem to
determine the best mode for operating appliance :

(10)

If no mode offers an incentive that is marginally higher
than the commitment risk for that mode, the customer
will not participate in the program (mode ). In case of a
tie, the customer picks the lowest risk mode.
The commitment risk captures the smallest price at which the

customer is willing to sell DLS service under mode and it is
similar to reservation prices commonly used inmicroeconomics
theory. Reservation prices vary between individuals according
to their disposable income and how much they value the good
they are offering. Here, this value could be a function of the task
deadlines and of the penalties expected if they accept discounts
for more slack time than they can provide and cannot honor their
commitment.
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Note that the values of are only privately-known to
the customer. Thus, the LSE cannot deterministically model the
outcome of (10) in response to different incentive vectors, and
needs to design the incentives and maximize its profit with in-
complete information. We address this problem next.

D. The LSE Problem

The LSE updates the incentives dynamically to max-
imize the expected profits of running the DLS program. We
consider only profits obtained by using the demand flexibility
of recruited appliances. They can be accrued in two possible
ways. One is tominimize the costs of interacting with the whole-
sale electricity market, from which the LSE buys bulk energy to
serve the load. The second one is by selling ancillary service ca-
pacity to the wholesale reserve market. We will elaborate more
on the nature of these markets later in Section III. For now, we
take theDLS market utility as the economic benefit that the LSE
expects to gain in the wholesale market from recruiting an appli-
ance in cluster under mode at time as known, and denote
it by , with . Due to the seasonal nature of
wholesale market prices, these expected utilities, as well as the
incentives designed based on them, could exhibit a cyclic be-
havior and may only be periodically updated. As mentioned in
Assumption 3, we define the appliance recruitment utility as ad-
ditive and independent. Thus, we can focus on the profits gained
from interacting with each individual appliance when designing
the incentives. Since recruiting an appliance from cluster in
mode at time presents a cost equal to , the profit of
the LSE from this recruitment is .
Let , if customer in cluster picks mode
at time and else. Also, let be

the population of DLS subscribers at time in cluster , with
a size . We assume is known to the LSE as the
customers that subscribe have to refresh the incentive table and
can, therefore, be counted. The LSE ex-post profit is:

(11)
Remember that after observing the available incentives

posted by the LSE, each participating appliance en-
dogenously chooses their mode , through (10). Specifically,

happens if the following conditions are met:
• Individual rationality constraint (IR):

(12)

• Incentive compatibility constraints (IC):

(13)

Thus, ideally, the LSE would like to solve the following opti-
mization problem to maximize his profits from interacting with
all cluster appliances:

(14)

However, note that the LSE can at best have access to statis-
tical information on the customers’ preferences, i.e., , and
can only maximize the expected profit. Let the de-
note the probability of this , i.e.,:

(15)

The expected profit per appliance is:

(16)

We define the mode selection average probability and mode se-
lection average probability vector as:

(17)

(18)

The LSE only needs information about these average quantities
to maximize the expected profit. In fact:

(19)

(20)

where he definition of and are in (6) and (7). Thus,
the LSE designs the incentives at time by solving

(21)

Note that solving (21) requires the LSE to model how
changes with the incentive profile . It is also

a non-linear problem, given that is a non-linear
vector function of the incentive vector . We propose two
different approaches next.
Remark II.1: Clearly, the profit maximizing incentives de-

signed through solving (21) are only optimal is the LSE is oper-
ating in a monopolistic retail market, where the only options
available to the customer are to either accept the flat regu-
lated tariffs or opt into the direct load scheduling program for a
time-varying discount on the regulated tariffs. Naturally, as we
will see in the numerical experiment, the retail market will not
operate at its most efficient point with the lack of competition.
However, an extension of this problem to capture retail compe-
tition is not trivial and it is one that we plan to address in future
work.
1) Bayesian Approach: Given statistically learned prior in-

formation on the risk levels, the LSE can view the incentive de-
sign problem as being close to that of optimal Bayesian unit-de-
mand pricing. However, what makes the problem difficult is
that the customers’ risk levels for different modes cannot be as-
sumed to be independent values, given that increasing flexibility
amounts to expanding the set . That means that risk levels
that a customer perceives for committing to the program with a
single appliance under different modes are correlated. Clearly,
offering a higher slack time entails an additional risk over that
of offering a lower slack time, and these variables cannot be
considered independent.
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The first step to model the correlation between the risk values
for different modes is to define how the LSE parametrizes the
risk functions . For appliance cluster , we choose

(22)

where is a task-specific, non-negative continuous random
variable representing the so-called type of an individual task ,
and the deterministic variables quantify the general atti-
tude of customers using appliances in cluster towards com-
mitting to mode at time , with . The interpretation
could be that the probability of an emergency event happening is
homogeneous across the population. However, how customers
feel about this emergency event (value of lost load) varies and
is mirrored in their type. To ensure that this parameterization of
the risk function is not unrealistic, the LSE could suggest this
specific structure as default to consumers when they pick their
risk functions. We assume that the LSE has access to statistical
priors of the ’s, with denoting the cumulative distribu-
tion function of for cluster .
Remark II.2: The reader can note the incentive design

problem (21) can be solved separately for different values of
and . Consequently, for brevity of notation in this Section,
hereafter we drop the indices and and write (21) as:

(23)

From (12) and (13), the customer picks mode iff:

(24)

(25)

(26)

so we should have , with

(27)

(28)

which gives,

(29)

However, due to the absence of any natural ordering, these
constraints will render the optimization problem (21) rather
complex. Thus, next, we will impose a design constraint that
ensures that local incentive compatibility is sufficient for deci-
sion making, i.e., if the customer prefers mode over adjacent
modes and , he/she will also prefer mode over
all modes and .
2) Design Constraint 1: (Single-Crossing Incentive Profile):

we will design the incentive profile such that , the ratio
is non-increasing, i.e., incentives

grow slower than risks for higher modes .
We acknowledge that the single-crossing condition restricts

the values that the incentive profile can take into a region that
may be suboptimal for the LSE. However, it considerably
lowers the numerical effort required to solve (21). To see a
numerical study of the level of sub-optimality introduced by

this constraint, see [24]. The main advantage of this design
constraint is that it leads to a significant simplification for the
case of uniform distribution for the , discussed in the fol-
lowing lemma, which we use later for a more general numerical
approach to solve (23).
Let denote the first difference operator, i.e.,

(30)

with .
Lemma II.3: Under design constraint 1, if is a uniform

distribution over , with ,

(31)

where

. . .

(32)

with .
Proof: If the incentive profile is single-crossing, it is easy

to verify that customer will pick mode simply iff

(33)

where the right hand inequality ensures (24) and (25), and the
left hand inequality ensures (26). To keep expression (33) com-
pact, we use a dummy mode , with ,
and .
Consequently, the probability that a customer picks mode

is response to the incentives is,

(34)

as long as all of the ratios fall in the support of .
Writing this equation in matrix form gives (31).
Given this, the expected profit we want to maximize in (23)

can be written as:

(35)

This allows us to state the following result:
Proposition II.4: Under Design constraint 1, if introduced

to define the random customer risk in (22) is a Uniform dis-
tribution, then (23) has the following standard quadratic pro-
gramming (QP) form:

(36)

where we have where

(37)
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(38)

The first constraint ensures that the optimized incentives are
single-crossing and the second ensures that the incentives are
non-increasing with modes.
Corollary II.5: the optimization problem in (36) convex.
Proof: The constraints are all linear. We only need to

check whether the objective function is concave, or equiva-
lently, whether is a negative semidefinite matrix.
Denoting the elements of the matrix as , the Gershgorin

circle theorem tells us that every eigenvalue of lies within at
least one of the Gershgorin discs , where

is a closed disc on the real axis that centers
at and has a radius . Hence, since all the Gersh-
gorin discs of lie on the non-positive half of the real axis, we
have that all the eigenvalues are non-positive, and is negative
semidefinite.
For a general choice of , the Bayesian incentive design

optimization (21) may not necessarily be convex. Next, we pro-
vide an approximate solution for sufficiently smooth choices of

, without any convergence guarantees. We choose to use
a first-order Taylor approximation of , which is inexpen-
sive to evaluate. We can use such approximation to sequentially
solve for through a sequence of approximate subproblems.
Assume that we have an estimate of at iteration , denoted

. Then, at iteration , we can approximately write the
probability of a customer picking mode , i.e., the probability
that satisfies (33), as

(39)

where denotes the probability density function (PDF) cor-
responding to , and

(40)

which can be calculated after iteration and be taken as a con-
stant in iteration . Introducing (cf. (32)):

(41)

Equation (35) becomes:

(42)

and the quadratic subproblem at iteration is:

(43)

In our numerical experiments, we look at the Gaussian distri-
bution as an example of general risk type PDFs.
A question that naturally comes to mind at this point is how

good these Bayesian solutions are, given the assumptions in-
volved about the customers and the limitations imposed by the

design constraints. Given the lack of access to the optimal so-
lution, to answer this question, we look at the performance of
a model-free learning approach that can get arbitrarily close to
the optimal solution given a long enough learning phase.
3) The Black-Box Approach: Here we take a frequentist

view, taking the mode selection probability vector to
be a deterministic but unknown function of . Given no single
underlying model that characterizes , the LSE sees
this function as a black-box and can use learning techniques
to directly learn the profit-maximizing incentive profile. Since
learning happens over time, we bring back the superscript to
denote variables associated with time index . We still omit .
The LSE’s expected total profit at time is given by4:

(44)

where is the total appliance population interacting with
the LSE at time , and is the expected profit per ap-
pliance as given by (21).
At every , the LSE knows 5 and . However, given

the unknown nature of , the LSE cannot find the global
maximum of (44) directly. Rather, he will have to try posting
different incentives in order to learn and mini-
mize the regret with respect to the optimal but unknown incen-
tive :

(45)

In doing so, the LSE is faced with a fundamental trade-off: he
will have to pick whether to exploit his current knowledge of

and post the incentive that maximizes his profit from
the set of previously tested incentives; or to explore by posting a
new and learning more about through sampling
the customer response. Next, we address how we approach this
learning problem.
Here we assume that due to large aggregation levels, an ac-

curate estimate of of any posted is available to
the LSE, i.e., if customers selected mode in response
to incentive ,

(46)

(47)

where clearly, .
Consequently, the LSE is faced with a sequential maxi-

mization problem of an expensive time-varying black-box
function multiplied by a time-varying context6, i.e.,

. Generally, the problem of how to optimally
maximize the profit when learning a time-varying yet structured
reward function remains open [27]. However, here we continue
by imposing a very reasonable constraint on (45): we assume

4Note that this profit is associated with a specific cluster . However, we con-
tinue to refrain from burdening the notation with the cluster index, since the
learning problem is independent across different clusters.
5Asmentioned before, we take to be known before posting , which

can be realized if customers make an anonymous query every time they need to
see the incentives.
6The term context is commonly used in the bandit literature to refer to the

time-varying exogenous effect of the environment on the reward associated with
each arm’s selection at time . The environment here is the energy market and
the customer population size.
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that the mode selection probability , the expected
recruitment utility , and the population size are daily
periodic functions, i.e., :

(48)
If we treat as unrelated

black box functions, this allows us to divide the hard sequential
learning problem (45) into parallel sequential learning sub-
problems that are more benign since the reward function does
not change dynamically. The objective of the sub-problem
on day is:

(49)

There is a large body of literature on global optimization with
expensive black-box functions. Most algorithms for black-box
optimization are derivative-free and fall into the category of ran-
domized search methods. The brute-force way to approach this
random search is to have a pure exploration phase with ran-
domly drawn ’s, following with a pure exploitation phase.
However, one could clearly use the (mostly) continuous struc-
ture of the reward to sample the function more smartly, and have
a shorter exploration phase. The important observation is that
gathering overall knowledge about the black-box is irrelevant,
especially in the suboptimal areas of the search space. Works
following this observation are referred to as response surface
methods and contain 2 steps:
1) Based on the data collected thus far, a surrogate model of
the reward at previously untried points is built. This model
is used to provide an estimate of the reward, possibly with
the error level associated with the estimate;

2) A design method chooses the best next search point based
on the constructed model. This method is commonly
heuristic and belongs to one of two categories: either the
point where the surrogate function is maximized is picked,
or with one more layer of sophistication, the point where
it is most likely that a high reward can be observed, see
[28]–[30].

Here we use the popular kriging interpolator, which can be
thought of as a way of modeling a deterministic black-box func-
tion as a realization of a stochastic process [31]. Assume that
we have observed the value of at incentive values

. Given these observations, we model the value of
for a new incentive as

(50)

where is a vector of chosen re-
gression functions, and the coefficient in the matrix

are regression parameters trained based on the observed
points. The vector contains zero mean independent
random processes with a covariance between
and . This random process models the prediction error
of the regression model given the errors at previously
observed sites. Consequently, if we assume a Gaussian noise
model, we can write

(51)

where for . See [32] for details on the
kriging interpolator.
The availability of a standard error in kriging allows to calcu-

late a ‘statistical’ measure for selecting the best new sampling

point . Here, we use one of the most popular approaches for
selecting an iterate, which is to find the point where the proba-
bility of improving the function beyond its current best value
is highest, i.e.,

(52)

where and
denotes the Gaussian Q function. We refer the reader to [33] for
a rigorous analysis of the performance of this method.
Remark II.6: Note that in reality the expected utility at hour
, , and the population size, , are not a determin-
istic functions and are random. Although the general global op-
timization of stochastic functions is fairly well studied, there is
far less literature on the problem when function evaluations are
expensive, and there are no rigorous extensions of sample se-
lection techniques to account for stochasticity [34]. In prac-
tice most algorithms ignore this stochasticity when designing
the sampling method, which is what we do here. However, ob-
serving that these variables commonly vary within a small set,
we simulated this stochasticity in the numerical experiment and
observed encouraging empirical performance, clearly without
discussing any guarantees.
Next, we study the recruitment utility of different devices for

the LSE.

III. THE RECRUITMENT UTILITIES FOR THE LSE

In this section we derive different possible expressions for
the DLS market utility function that quantifies the profit
the LSE can accrue in its wholesale market interactions, from
recruiting an appliance in a certain cluster and mode at
a certain time . We consider two ways in which the LSE can
benefit from a recruitment transaction, and provide examples of
flexible loads that would allow to realize the correspondingDLS
market utility in Section III-B and in Section III-C respectively.
Here we only look at one energy market settlement plus the

reserve market. Under multiple economic settlements, the pres-
ence of a forward purchase would make the recruitment utilities
on different appliances to be not additive, and could stimulate
competition between customer. These are complications in the
problem that will be considered in future work.

A. Multi-Stage Decisions of the Electricity Market

To understand how the LSE can benefit from having flexible
loads in the wholesale energy market, it is useful to capture how
generation dispatch decisions are typically handled, and mirror
these control nobs in the decision model available to the LSE.
Let be the continuous time index. Wholesale market dispatch
decisions prescribe the power output of participating generators
in multiple settlements. However, these prescriptions cannot be
chosen arbitrarily. Denoting by the duration of an hour, dis-
patch decisions can be interpreted as assigning the coefficients
of a basis expansion of the generation profile as follows:

(53)



ALIZADEH et al.: DYNAMIC INCENTIVE DESIGN FOR PARTICIPATION IN DIRECT LOAD SCHEDULING PROGRAMS 1119

where the dispatched shape for the generation profile is
decomposed in three components: the first term whose coeffi-
cients are settled in the day-ahead market for hour , the
second term whose coefficients are hourly adjustments to
the day-ahead settlements, and the third representing sub-hourly
adjustments controlled by the coefficient . This last
term fine-tunes the balance of power in the grid.
Therefore, market operator dispatch decisions on are

limited to a certain signal space (53), defined by the indepen-
dent waveforms and

to determine 7. The decision is to determine
the most economic generation units to operate and how much
should each one generate depending on the further physical lim-
itations of each unit. In fact, capacity and ramping constraints
bound the set of available shapes and cost curves in-
troduce a partial ordering of that ultimately leads to the
choice of certain vectors of coefficients

, and
for each generator (possibly 0).

The situation of a retailer that buys power from themarket can
mirror that of a generator, as far as the structure of the market
purchase is concerned, i.e.,

(54)

The basic difference from the generation side is that demand
retailers with inflexible demand approach the early market set-
tlements passively with a forecasted load profile they have to
procure, i.e., they request to themarket to meet a base load equal
to . During the day, the other two
terms and go to random variations around this
base load due to forecast error and the retailer is bound to pay
for them. However, with flexible demand, the retailer can start
to actively manage its own , , . Following DR
initiatives, in today’s markets, industrial loads with mostly con-
stant base loads can offer to alter their real-time load around
the base load and act like a generator in the hour-ahead and
subhourly dispatch decisions8. This allows them to accrue ben-
efits from having dispatched values for

and . This is also an op-
tion available to the LSE (see Section III-C). In addition, an
LSE with flexible load can actively decide the vector in-
stead of providing passive load forecasts. Thus, it can procure
an which would increase its profit margins (see Section III-B).
Clearly, if the LSE were to control a sizable amount of demand,
it could potentially choose to affect market prices in its favor,
as discussed in [35]. However, in the following, we will implic-
itly assume that the LSE is sufficiently small so that it can be
treated as a price-taker and cannot affect market prices.

7The waveforms shapes are pretty elementary: is rectangular, is
trapezoidal and is a straight line.
8The current practice is that the base load is actually an average of over

many days where the flexibility is not exercised.

Fig. 3. Deferrable Non-interruptible Appliances.

B. Utility Gained From Inter-Hourly Load Shifting

Typically electricity markets in the US trade energy on an
hourly basis. Denote by the expected market clearing
price of the energy market at a future hour .
Remember that we denote the set of all possible shapes for

the electricity consumption profile of an appliance in cluster
that is recruited in mode at time as the set . On the
other hand, if the appliance is not recruited, its mode is .
Thus, the load of an unrecruited appliance starting at time is

, which we refer to as the intrinsic base load,
since it is the ideal base-load currentmarket standards for DR try
to capture. By recruiting an appliance in cluster under mode
at time , and shifting its load to the best (cost minimizing)

time period, the LSE can save:

(55)

To provide the reader with practical examples of recruit-
ment utilities, here we look at deferrable loads (long-duration
loads with flexible consumption schedules) such as EVs,
washer/dryers, etc. Once these types of appliance are turned
on, their load profile can be easily predicted by the customer,
either from factory provided documentation, or by metering
previous consumption profiles. We divide these appliances in 3
major categories, which we look at separately.
First, we discuss the category that is well-suited to accrue

utility from inter-hourly load shifting.
1) Design Constraint 2: Here we assume that for all de-

ferrable loads, the mode index is directly equivalent
to the amount of slack time that accompanies the request.
2) Deferrable Non-Interruptible Appliances: This category

best models appliances such as washer/dryers, and noninterrupt-
ible EV battery chargers. For these types of loads, the only de-
gree of freedom to manage demand is through scheduling the
time at which the appliance starts its job. Once scheduled, the
appliance cannot be interrupted. These loads are characterized
by a certain load phasor , where is the arrival time of
the request and are the phasor parameters (rate, duration, sam-
ples, etc). Denoting the time at which the appliance is scheduled
to start its job as , the phasor is shifted to be where

and is the slack time. Following the discussion
in Section II-A, we quantize so that: 1) to meet the dead-
line constraint imposed by the customer, the set of acceptable
values for is where is the quantized value
of ; 2) once the appliance starts its job, the energy consump-
tion is characterized by a pulse , which is the quantized
version of . The total length of the task is denoted by
(see Fig. 3). To relate this with the variables required to solve

(55), note that in case the appliance is not recruited ( ),
the load is:

(56)
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and the set of possible load shapes under mode is:

(57)

Thus, the DLS market utility for the LSE of non-interruptible
appliances in cluster under mode for load shifting at time
is:

(58)

Denoting the optimum shift by , i.e.,

the load profiled to be scheduled to accrue this utility is

(59)

C. Utility Gained From Selling Ancillary Services

Since electricity demand and supply vary within the hour, a
combination of ancillary services are used to compensate for
any intra-hour deviation between supply and demand, to main-
tain the stability of the grid. Ancillary services are procured
in a reserve market, which is run in parallel with the energy
market everyday. Traditionally, fast-ramping generators like gas
and hydro provide these services, due to the reliable, clean, and
highly controllable nature of their outputs. However, with high
levels of wind and solar integration being considered for the
grid, the possibility of using the demand side for ancillary ser-
vices provision is being considered [36]–[38]. Here we study
the possibility of using direct load scheduling for ancillary ser-
vices that maintain the daily balance of supply and demand in
the grid, i.e., regulation and load following.
When using flexible loads to provide ancillary services, we

assume that the LSE is able to manage its load on an intra-
hourly bases, and expects to be paid at an hourly-variable rate of

and per unit capacity of regulation and load fol-
lowing services respectively. In expressing the utility, the LSE
needs to map the structure of the flexibility specified in the sets

onto an expression for the capacity offered for that par-
ticular service. These services are defined next9.
Definition III.1. Load Following Services on anHourly Basis:

These services are used to balance the grid supply and demand
on an hourly basis. The LSE will need to adjust its hourly de-
mand to deviate from the expected base load by a value
dispatched by the system operator. If a capacity of load
following services were offered for hour , we have

(60)

Definition III.2. Regulation Services at Sub-Hourly Epochs:
In order to have dispatched variations on the sub-hourly load,

9For brevity of notation, some aspects of the service are not completely re-
alistic. Load following services are commonly offered on a 20–30 minute basis
rather than hourly. However, more realistic definitions are compatible with our
design framework.

Fig. 4. Interruptible EV Charging with a Non-controllable Rate.

we assume that each hour consist of sub-hourly epochs at
which regulation signals are sent out by the grid operator. We
index these epochs by

and denote the regulation capacity offered for hour
as . The LSE is required to deviate from its hourly base
load , at the grid operator’s request, by a value at each
epoch , with

(61)

Since the ancillary services capacity that can be offered
at hour is tied with the optimized base load purchased
in the energy market, the utility of load shifting in the hourly
market is not independent of the utility of selling ancillary ser-
vices, and the two should be considered concurrently. This point
will be further elaborated in the following examples on specific
types of appliances.
1) Interruptible EV Charging With a Non-Controllable Rate:

Here we look at the specific case of electric vehicles that charge
at a constant and non-controllable rate, specified in , but have
the capability for multiple automated interruptions in power
consumption during the charging process. Instead of consid-
ering all possible arbitrary profile of interruption, given by ,
once again we quantize the possible ways in which the charge
can be stopped and resumed. More specifically, for an EV in
cluster , with battery capacity , non-controllable rate kWs
and a slack time (mode) of time units, the degrees of freedom
for the LSE would be to pick disjoint time intervals with a total
length of to charge the vehicle in the interval

. They can be thought of a box with a length of
and height , that need to be disassembled in hour long por-

tions, which are re-distributed between slots, leaving some slots
full and some slots empty (see Fig. 4). The choice of the LSE is
mirrored by a decision variable , describing the fraction of
hour for which the EV should be charged (at the constant rate
). Clearly,

(62)

Given this, the set of possible hourly load shapes for an inter-
ruptible EV recruited at time is:

(63)
On the other hand, if , the charge is never interrupted
(intrinsic base load):

(64)

where denotes the unit pulse between .
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Thus, if no ancillary services are provided, the utility gained
by recruiting an appliance of cluster in mode at time is

Denoting the optimal in (65) as , the optimal load
profile the LSE will pick for recruits under mode is:

(65)

Notice that, unlike the previous category, here the LSE has the
flexibility to pause and restart the charge which, in large scales,
could allow the LSE to offer ancillary services. To avoid an
unreasonable number of interruptions, we refrain from offering
regulation services. Instead, we decide to offer load following
services, described in Definition III.1.
The questions is: how much load following capacity can the

LSE offer with a single interruptible EV? An interruptible EV
with a charge time of assigned to hour can at most de-
crease its demand by , or increase it by . Thus,
any ancillary service dispatch signal within hour that is out-
side this range cannot be honored by this EV. Consequently, the
capacity for load following offered by the specific EV
in cluster is smaller than both and .
Since the total charging load of the EV is constant, any in-

crease in the load at a certain hour has to happen concurrently
with a decrease in the load at another hour. Thus, following a
dispatch signal is plausible if and only if,

However, since the load following signals are exogenous to
the operation of the LSE, this constraint might not always hold.
However, given a certain constant capacity , it is common
to assume that load following signals are energy neutral. So we
refrain from providing a time-varying load following capacity

using a single appliance.
Assumption 7: The energy neutrality requirement holds for

load following dispatch signals10, i.e.,

(66)

Consequently, we have

10This is usually not the case for load following services on shorter time
scales. However, a large-scale aggregation of DR resources could allow for ex-
tensive load defferal to resolve this issue.

(67)

Using the optimal value of in (67), we can again write the
load that the LSE will pick for mode recruits, this time using
them to provide ancillary services, as (65).
2) EVs With a Controllable Rate of Charge: Finally, with a

fully controllable charging rate , a vehicle of cluster in
mode requires to receive a total charge of energy units
anytime between at the discretion of the LSE,
with denoting the minimum charge length for appliances
in cluster . If charging can happen at a maximum rate of
per hour, . Thus, we can write set of possible
load shapes as,

(68)

and the intrinsic base load as,

(69)

where we have assumed that if the EV is not recruited by the
DLS program, it will charge at the highest possible rate.
Given this, the recruitment utility for load shifting is:

Same as the previous category, the next step here is to study
the potential for these EVs to provide ancillary services. Due
to increased degrees of demand flexibility available through a
controllable rate of charge, we choose to provide regulation ser-
vices using these appliances, a scenario considered before in the
literature [39]–[42].
At an epoch within hour , these EVs have the potential to

increase their load from to any amount up to , or de-
crease it down to 0. However, like the previous case, the re-
sources to perform this load modification are limited, and to en-
sure that the load modification is feasible, we assume again that
we offer a homogeneous regulation capacity based on one
EV, and that regulation signals are independent random vari-
ables and energy neutral in time.
Assumption 8: The energy neutrality requirement holds for

regulation dispatch signals, i.e.,

(70)
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Then, we can calculate the recruitment utility of EVs with a
controllable rate of charge in cluster arriving at time as:

(71)

Denoting the optimal value of maximizes (71) as ,
the load profile that the LSE will pick for mode recruits in
this case is given by:

(72)

IV. ADDRESSING PRIVACY CONCERNS REGARDING
DIRECT LOAD SCHEDULING

A major concern commonly associated with direct load
scheduling programs is that customers do not like to reveal
their detailed consumption characteristics to a for-profit load
serving entity. Even though retail dynamic pricing is also not
immune from this problem, because smart meters convey a lot
of information about the electric appliance in use, the infor-
mation for direct load scheduling is disaggregated at appliance
level already. However, as shown in [25], [43], the clustering
approach we take in this paper can help alleviate this issue
by allowing the LSE to run the direct load scheduling pro-
gram without knowing the identity of the owners of recruited
appliances. Here we briefly explain how this is possible by
presenting the gist of our results in [43]. We focus on the case
of non-interruptible deferrable loads, and we refer the reader to
our previous work for other load types. A reader not interested
in privacy issues can simply skip this Section.

A. Cluster-Based Load Management

Since all appliances that share the same cluster and mode
(laxity) have the same quantized load characteristics and flex-
ibility, the LSE can bundle all of them in a single service queue,
indexed by . Appliances that are recruited under queue

can be dispatched following a First-In-First-Out (FIFO)
discipline and their ownership is irrelevant for the sake of the
control. Also, our incentive design in Section II-D is based on
the aggregate behavior (cf. (17)) and, thus, individual prefer-
ences are not exploited or accounted for in the price design.
This means that in principle control and pricing design could
be anonymous. The question is how to convey the control deci-
sion to the appliances when you do not know who specifically
is available. We explain next how to do that.
Mathematically, we define:
• the arrival process , denoting the aggregate number
of appliances (irrespective of who owns them) that are re-
cruited in cluster under mode at or before ;

• the activation process , denoting the aggregate
number of appliances in cluster under mode that are
scheduled to start their job at or before .

Hence, following the load model described in Section III-B1 for
deferrable non-interruptible appliances, the aggregate system
load due to this type of appliances at time is given in terms
of , as:

(73)

The choice of to manage load is clearly restricted by the
appliance arrival process :
1) Causality: only appliances that have already arrived in the
system can be scheduled, i.e., :

(74)

2) Deadline constraint: appliances that arrive with delay
laxity need to be scheduled within epochs of their
arrival. Under a FIFO discipline, this means that:

(75)

Since past activations are irreversible, .

B. Uplink

As we saw, for scheduling appliances, the LSE will only need
the values of ’s. So the aggregate arrival numbers in dif-
ferent queues need to be gathered from the appliance popula-
tion, and no individual identifiers are required for load man-
agement. Each appliance (or a respective Home Energy Man-
agement System) possesses a gateway assumed to be part of a
larger wireless AMI. At the neighborhood level, the appliances
communicate their request identifiers to collector nodes
through a network operated by a third non-interested party, and
get recruited. The values of ’s for each neighborhood is
then calculated by the respective collector node and communi-
cated to the LSE at pre-determined intervals, through a secure
out-of-band channel (e.g., over the Internet). The third-party en-
tity that owns the collector nodes is also in charge of billing and
verification that recruited appliances follow the LSE dispatch
signals.
Note that in the uplink it is not possible to preserve anonymity

if the AMI is owned and operated by the LSE itself. Also, it is
clear that anonymity is not an exact synonym of privacy and that
information leakage can lead the LSE to infer private informa-
tion about customers from the aggregate queries. Studying this
aspect is beyond the scope of our work, and we invite the reader
to see [44], [45].
The remaining question is how to design a functional down-

link channel so that the LSE can notify the specific appliances
it needs to activate. We explain this next.

C. Downlink

When real-time decisions are made, the FIFO rule has
to be implemented to directly address the appliances that
arrived earlier than the appliances waiting in cluster under
mode , and activate them. But how can the LSE address in
the downlink these specific appliances when their identity is un-
known? The idea is simple: at time , the LSE needs to find the
time epoch at which the number of appliances that ar-
rived in queue since the origin of time, i.e., , was
marginally less than the number of appliances the LSE plans to
have activated since time epoch 0 until time , i.e., :

(76)
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If this time index is broadcast to all appliances, then the
appliances belonging to queue that submitted requests
before time can start their jobs. The rest wait until they
are authorized later.

V. NUMERICAL EXPERIMENT

A. Setting and Data

The numerical experiment we conduct is based on real
Plug-in Hybrid EV (PHEV) charge data we studied in [46].
The database includes 620 charge events spread across a
few months. However, for the purposes of this experiment,
we aggregate all these events in one single day, taken to be
September 1st 2013. Each entry of this database includes the
time of plug-in (arrival), charge amount between 0 to 5 kWhs,
and departure time (taken as an approximate deadline). We
divide these requests in 10 clusters, each representing different
charge amounts with 0.5 kWh quantization steps. To demon-
strate the possibility of providing ancillary services through
DLS, we take the PHEVs to be rate-flexible with a maximum
rate of , even though in reality all charge events
used a constant rate of 1.1 kWs (home charging). Wholesale
energy and regulation capacity prices are taken to be equal to
the ISO New England’s day-ahead market clearing prices in the
Maine load zone on September 1st.
A parameter needed to conduct this experiment is the user

risk function (i.e., type), which cannot be directly extracted from
the data. So we try to generate estimates of the customers types
based on the data, with the steps taken described next. For sim-
plicity, and due to lack of any meaningful alternatives, we take
the commitment risk function in (22) to be linearly increasing
with the type (i.e., ). We then assume that

, and solve for a noisy estimate of the incentives, de-
noted by , through (36). From these sample incentives, we
reiterate back and find the for each customer such that for the
mode corresponding to the deadline in the database, denoted by
, we have

which provides us with a preliminary estimate of the ’s. The
uniform distribution that best fits these type values is then de-
termined to be .

B. Experiments With Bayesian Incentive Design Under
Uniform Risk Parameters

Here we determine the incentives using (36) and simulate
the customer response. Fig. 5 shows the number of PHEVs that
joined the program at different hours of the day, andwhichmode
they picked. The reader can observe that the number of arrivals,
along with the number of recruitments with high slack times, is
considerably higher during evening and early night hours.
Next, we study the economic effects of the implementation

of the DLS program. To do so, we compare the customer sav-
ings from upgrading to DLS from the normal flat pricing ser-
vice paradigm of the grid. This saving is captured by the cus-
tomer maximized utility in (10). We sum the value of this utility
for all the plug-in events that happened at a certain hour, and
show this aggregate savings as a function of time in Fig. 6. Note
that higher savings at evening hours are due to a combination of
three effects, that are intuitive by looking at Fig. 5: higher arrival
numbers, higher incentives, and customers having more laxity
to offer (lower risk types). To provide insight into the magnitude

Fig. 5. The arrival time of the 620 PHEVs, along with the mode under which
they were recruited.

Fig. 6. Welfare effects of DLS compared with a fictitious optimal pricing
scheme.

of these savings, we compare this scenario to one that provides
the highest possible savings that could be achieved by the cus-
tomer through any demand management scheme. The savings
could be realized if customers were engaged in a ideal demand
management scheme where they can directly talk to the main
operator that runs the energy and ancillary services markets,
communicate their quantized consumption flexibility to the op-
erator, find the least cost solution to serve their demand, and get
dispatched to provide ancillary services. To provide an absolute
highest bound on the savings, we assume that, since there are no
commitments to a DLS unit in this ideal scheme, the customer
feels no commitment risk, and the market profit gained is equiv-
alent to that gained by the LSE through recruiting the appliances
with their maximum laxity, i.e., their individual given
the . The value of this utility is summed up across the pop-
ulation and is shown as a function of time in Fig. 6. Note that
part of this difference in customer surplus between the hypo-
thetical optimal demand management scheme (which is equiv-
alent to optimal pricing with perfect retail competition) and the
DLS scheme is due to the presence of a monopolist that facili-
tates the interactions between the customers and the wholesale
market, i.e., the LSE. To showcase this effect, we show the total
increase in the community’s welfare (customers+LSE) with the
implementation of DLS in Fig. 6. The difference between this
value and that of optimal pricing is due to the presence of the
commitment risk in our model.
Remark V.1: We would like to point out that the welfare ef-

fects studied here are purely on the retail side, assuming that our
LSE will not affect energy market prices. Clearly, with a large
integration of active demand resources, this will not be the case
and energy market prices will start to be affected, most likely
decreasing the generators’ welfare.
Next, we demonstrate the ability of the LSE to follow the reg-

ulation dispatch signals sent by the system operator in real-time.
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Fig. 7. The energy market purchase of the LSE, with and without DLS.

Fig. 8. The performance of 620 PHEVs in following regulation dispatch sig-
nals sent to the LSE.

To do so, we fist show the hourly bulk purchase that the LSE
makes from the wholesale market, with and without the DLS
program, in Fig. 7, along with the regulation capacity offered
by the LSE to the ancillary services market by recruiting the
PHEVs. Real regulation signals are scaled down in magnitude
to be below the hourly capacity offered. The scaled down signal
is then added on top of the LSE’s optimal hourly bulk purchase
with DLS to provide the profile that the LSE should follow in
real-time, shown in the red line in Fig. 8. We assume that the
LSE uses a Least Laxity First (LLF) policy (similar to [19], [47])
to follow this profile in real-time by charging the PHEVs with
the least amount of slack time first. The reader can observe oc-
casional deviations from the dispatch, which is mainly due to
the violations of the energy neutrality assumption for real regu-
lation signals.
In our last figure, we numerically study the welfare effects of

the introduction of the following concepts when designing DLS
program incentives: 1) classification of requests of different ca-
pability in different clusters; 2) allowing the incentives to vary
with the laxity offered, i.e., modes; and 3) allowing the incen-
tives to dynamically change with time (See Fig. 9). This study
is done by respectively constraining the incentive profiles to
be equal for all EVs offering the same laxity, be equal for all
EVs recruited at the same time, and be a constant that does not
change with cluster, mode, or time. The reader can observe that
clustering, even though effective in increasing the community’s
welfare, does not play as important of a role as the two other con-
cepts, i.e., allowing the incentives to change dynamically with
time and laxity offered. We think this is mainly because of the

Fig. 9. Comparison of the increase in community (LSE+customers) welfare
with DLS, when several parameters of the model are gradually eliminated.

uneven distribution of charge lengths for events studied in [46],
with a large proportion of the PHEV requiring full charge when
plugged in.

C. Performance Comparison

While the previous experiments were all carried out by
posting incentives from (36), the reader should remember that
we have not claimed that these incentives are optimal, due to
two effects: 1) the Bayesian modeling of customer using the
uniform distribution could be erroneous; 2) the single-crossing
design constraint limits the search space. Here, we attempt
to assess the performance of multiple proposed solutions
for the incentive design problem. Since the incentives are
cluster-specific, to have a meaningful comparison, we focus on
a specific cluster (Rate-flexible EVs with 3 hours of charge),
and a specific hour (arrivals between 6–7 pm). Due to the small
size of the EV data set, we increase the population of arriving
customers in this cluster at this time following the statistical
model in [46]. Thus, we generate requests from a Poisson
distribution with an average arrival rate of 1000 EVs, and laxity
values from the following mixed log-normal and exponential
distribution:

Individual risk parameters are then found using the procedure
described in Section V-A.
Fig. 10 and Table I compare the profit of the LSE in 74 con-

secutive days (Sep 1st to Nov 13th 2013) when the incentives
are derived from the following methods: 1) A Bayesian setting
with a uniform prior, i.e., (36); 2) A Bayesian setting with a
Gaussian prior, i.e., (43); 3) A black-box setting with a learning
phase of 100 days and the sample selection rule in (52), and
a first order polynomial regressor; and 4) A black-box setting
with a learning phase of 100 days and purely randomized sample
selection. The results show that almost consistently, method 3
has the best performance, followed by method 4, method 1, and
method 2. What we would like to point out is that even though
none of these techniques are optimal, we claim that the margin
of error of method 4 from the optimal (but unknown) incentive
is rather small. To illustrate this point, we derive an upper-bound
for the LSE profit given any incentive design scheme: we calcu-
late the highest possible profit the LSE can extract if it knew the
risk parameter of every participating customer, and was allowed
to discriminate between customers, i.e., pay each customer at
their reservation price (risk value) for the all recruitment modes,
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Fig. 10. Comparison of the LSE’s profit under various incentive design
schemes.

TABLE I
COMPARISON OF THE 4 STUDIED INCENTIVE DESIGN SCHEMES.

and in an arbitrarily small ( ) higher amount for the most prof-
itable mode:

(77)

This value of this upper bound is shown in Fig. 10. The reader
should note that this upper-bound cannot be achieved under any
publicly posted incentive design scheme like ours.

VI. CONCLUSIONS

Direct load scheduling, mainly due to its reliable nature, can
pave the way towards more active management of demand in
the power grid, particularly with the granularity required to offer
ancillary services through the demand side. Here we provided
a framework to quantify the costs and benefits of implementing
such a program by a for-profit entity in the short run. However,
the viability of such ventures in the long run will depend on
the level of retail market competition, the initial infrastructure
investment to build communication networks (or upgrade ex-
isting networks to comply with the requirements) and to retrofit
eligible appliances with sub-metering equipments, and the oper-
ational and maintenance costs associated with the direct sched-
uling scheme.
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