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Abstract

This online appendix includes the proofs that are omitted from the submission due to space limitations.

We start with a simple lemma which gives an upper bound on the highest level hypercube that is active at any

time t.

Lemma 1: A bound on the level of active hypercubes. All the active hypercubes Adi (t) for type-d contexts at

time t have at most a level of (log2 t)/p+ 1.

Proof: Let l+1 be the level of the highest level active hypercube. We must have A
∑l
j=0 2pj < t, otherwise the

highest level active hypercube will be less than l+1. We have for t/A > 1, A 2p(l+1)−1
2p−1 < t⇒ 2pl < t

A ⇒ l < log2 t
p .

A. Proof of Lemma 1

This directly follows from the number of trainings and explorations that are required before any arm can be

exploited (see definition of SiCi(t)
(t)). If the prediction at any training or exploration step is incorrect or a high

cost arm is chosen, learner i loses at most 2 from the highest realized reward it could get at that time slot, due to

the fact an incorrect prediction will result in one unit of loss and the cost of an action can at most be one.

B. Proof of Lemma 2

Let Ω denote the space of all possible outcomes, and w be a sample path. The event that the ACAP exploits

when xi(t) ∈ C is given by Wi
C(t) := {w : SiC(t) = ∅,xi(t) ∈ C,C ∈ Ai(t)}. We will bound the probability

that ACAP chooses a suboptimal arm for learner i in an exploitation step when i’s context vector is in the set of

active hypercubes C for any C, and then use this to bound the expected number of times a suboptimal arm is

chosen by learner i in exploitation steps using ACAP. Recall that reward loss in every step in which a suboptimal

arm is chosen can be at most 2.

Let Vik,C(t) be the event that a suboptimal arm k is chosen for the set of hypercubes C by learner i at time

t. For k ∈ Ki ∩ Fi, let E ik,C(t) be the set of rewards collected by learner i from arm k in time slots when the

context vector of learner i is in the active set C by time t. For ji ∈ Ki ∩M−i, let E iji,C(t) be the set of rewards

collected from selections of learner ji in time slots t′ ∈ {1, . . . , t} for which N i
1,ji,l

(t′) > D2(t′) and the context
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vector of learner i is in the active set C by time t. Let Biji,C(t) be the event that at most tφ samples in E iji,C(t)

are collected from suboptimal arms of learner ji. For k ∈ Ki ∩ Fi let Bik,C(t) := Ω. In order to facilitate our

analysis of the regret, we generate two different artificial independent and identically distributed (i.i.d.) processes

to bound the probabilities related to deviation of sample mean reward estimates r̄i,d
k,Cd

(t), k ∈ Ki, d ∈ D from

the expected rewards, which will be used to bound the probability of choosing a suboptimal arm. The first one is

the best process in which rewards are generated according to a bounded i.i.d. process with expected reward µdk,Cd ,

the other one is the worst process in which the rewards are generated according to a bounded i.i.d. process with

expected reward µd
k,Cd

. Let r̄b,i,d
k,Cd

(t) denote the sample mean of the t samples from the best process and r̄w,i,d
k,Cd

(t)

denote the sample mean of the t samples from the worst process. We have for any k ∈ LiC,B

P
(
Vik,C(t),Wi

C(t)
)

≤ P
(

max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
+ P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ r̄w,i,d
∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

−2tφ−1,max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) < µk,C + L2−lmax(C)α

+Ht + 2tφ−1, r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t))

> µ
k∗(C),C

− L2−lmax(C)α −Ht,Wi
C(t)

)
(1)

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
+ P ((Bik,C(t))c),

where Ht > 0. In order to make the probability in (1) equal to 0, we need

4tφ−1 + 2Ht ≤ (B − 2)L2−lmax(C)α. (2)

By Lemma 1, (2) holds when

4tφ−1 + 2Ht ≤ (B − 2)L2−αt−α/p. (3)

For Ht = 4tφ−1, φ = 1− z/2, z ≥ 2α/p and B = 12/(L2−α) + 2, (3) holds by which (1) is equal to zero. Also

by using a Chernoff-Hoeffding bound we can show that

P

(
max
d∈D

r̄b,i,d
k,Cd

(N i,d
k,Cd

(t)) ≥ µk,C +Ht,Wi
C(t)

)
≤ D/t2,

and

+ P
(
r̄
w,i,d∗(C)

k∗(C),Cd∗(C)(N
i,d∗(C)

k∗(C),Cd∗(C)(t)) ≤ µk∗(C),C
−Ht

+2tφ−1,Wi
C(t)

)
≤ 1/t2.
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We also have P (Bik,C(t)c) = 0 for k ∈ Fi and P (Biji,C(t)c) ≤ E[Xi
ji,C

(t)]/tφ ≤ 2Fmaxβ2t
z/2−1. for ji ∈ M−i,

where Xi
ji,C

(t) is the number of times a suboptimal arm of learner ji is selected when learner i calls ji in

exploration and exploitation phases in time slots when the context vector of i is in the set of hypercubes C

which are active by time t. Combining all of these we get P
(
Viki,C(t),Wi

C(t)
)
≤ (1 + D)/t2, for k ∈ Fi and

P
(
Viji,C(t),Wi

C(t)
)
≤ (1 + D)/t2 + 2Fmaxβ2t

z/2−1, for ji ∈ M−i. We get the final bound by summing these

probabilities from t = 1 to T .

C. Proof of Lemma 3

Let Xi
ji,C

(T ) denote the random variable which is the number of times a suboptimal arm for learner ji ∈M−i
is chosen in exploitation steps of i when xi(t

′) is in set C ∈ Ai(t′) for t′ ∈ {1, . . . , T}. It can be shown that

E[Xi
ji,C

(T )] ≤ 2Fmaxβ2. Thus, the contribution to the regret from suboptimal arms of ji is bounded by 4Fmaxβ2.

We get the final result by considering the regret from all M − 1 other learners.

D. Proof of Lemma 4

The following lemma bounds the one-step regret to learner i from choosing near optimal arms. This lemma is

used later to bound the total regret from near optimal arms.

Lemma 2: One-step regret due to near-optimal arms for a set of hypercubes. Let LiC,B , B = 12/(L2−α)+2

denote the set of suboptimal actions for set of hypercubes C. When ACAP is run with parameters p > 0, 2α/p ≤

z < 1, D1(t) = D3(t) = tz log t and D2(t) = Fmaxt
z log t, for any set of hypercubes C, the one-step regret of

learner i from choosing one of its near optimal classifiers is bounded above by BL2−lmax(C)α, while the one-step

regret of learner i from choosing a near optimal learner which chooses one of its near optimal classifiers is bounded

above by 2BL2−lmax(C)α.

Proof: At time t if xi(t) ∈ C ∈ Ai(t), the one-step regret of any near optimal arm of any near optimal learner

ji ∈ M−i is bounded by 2BL2−lmax(C)α by the definition of LiC,B . Similarly, the one-step regret of any near

optimal arm k ∈ Fi is bounded by BL2−lmax(C)α.

At any time t for the set of active hypercubes Ci(t) that the context vector of i belongs to, lmax(Ci(t)) is at

least the level of the active hypercube xdi (t) ∈ Cdi (t) for some type-d context. Since a near optimal arm’s one-step

regret at time t is upper bounded by 2BL2−lmax(Ci(t))α, the total regret due to near optimal arms by time T is

upper bounded by

2BL

T∑
t=1

2−lmax(Ci(t))α ≤ 2BL

T∑
t=1

2−l(C
d
i (t))α.

Let lmax,u be the maximum level type-d hypercube when type-d contexts are uniformly distributed by time T . We

must have

A

lmax,u−1∑
l=1

2l2pl < T (4)

otherwise the highest level hypercube by time T will be lmax,u − 1. Solving (4) for lmax,u, we get lmax,u <

1 + log2(T )/(1 + p).
∑T
t=1 2−l(C

d
i (t))α takes its greatest value when type-d context arrivals by time T is uniformly



4

distributed in Xd. Therefore we have

T∑
t=1

2−l(C
d
i (t))α ≤

lmax,u∑
l=0

2lA2pl2−αl <
A22(1+p−α)

21+p−α − 1
T

1+p−α
1+p .

E. Proof of Theorem 1

For each hypercube of each type-d context, the regret due to trainings and explorations is bounded by Lemma

1. It can be shown that for each type-d context there can be at most 4T 1/(1+p) hypercubes that is activated by

time T . Using this we get a O(T z+1/(1+p) log T ) upper bound on the regret due to explorations and trainings for

a type-d context. Then we sum over all types of contexts d ∈ D. We show in Lemma 4 that the regret due to

near optimal arm selections in exploitation steps is O(T
1+p−α
1+p ). In order to balance the time order of regret due

to explorations, trainings and near optimal arm selections in exploitations, while at the same time minimizing the

number of explorations and trainings, we set z = 2α/p, and p = 3α+
√
9α2+8α
2 , which is the value which balances

these two terms. Notice that we do not need to balance the order of regret due to suboptimal arm selections since

its order is always less than the order of trainings and explorations. We get the final result by summing these two

terms together with the regret due to suboptimal arm selections in exploitation steps which is given in Lemma 2.


