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ABSTRACT fo videi?-base(j performing object
. . . i recognition 5 L.
In most video-based object or face recognition services o \‘,’Vritfﬁcvz:;’;‘;g”'t"’”
mobile devices, each device captures and transmits vide //,/Cr\;);é'(“' ~ ! congestion level
frames over wireless to a remote computing service (a.k.: /,@;\‘e\ess Access poim\\

“cloud”) that performs the heavy-duty video feature extrac
tion and recognition tasks for a large number of mobile /
devices. The major challenges of such scenarios stem fro /
the highly-varying contention levels in the wireless local|
area network (WLAN), as well as the variation in the task-L
scheduling congestion in the cloud. In order for each de\
vice to maximize its object or face recognition rate under \
such contention and congestion variability, we propose
systematic learning framework based wnulti-armed ban-

dits. Unlike well-known reinforcement learning techniques

that exhibit very slow convergence rates when operating ity 1 jjjystration of object or face recognition via adaptive

highly-dynamic environments, the proposed bandit-baseire|ess video transport to a remote computing server.
systematic learning quickly approaches the optimal trastsm

sion and processing-complexity policies based on feedback

on the experienced dynamics (contention and congestion ) ] )
levels). Comparisons against state-of-the-art reinfoese and processing constraints at the remote cloud-computing

learning methods demonstrate that this makes our proposs§Vers where the data analysis takes place. Examples of

especially suitable for the highly-dynamic levels of wargsd early commercial services in this domain'include qugle
contention and cloud scheduling congestion. Goggles, Google Glass, Facebook automatic face tagging [3]

_ ] ) and Microsoft's Photo Gallery face recognition.
Index Terms— multi-armed bandits, learning, face

recognition, cloud computing, wireless contention, scited
ing congestion
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Figure 1 presents an example of such deployments. Video
content producers include several types of sensors, mobile
phones, as well as other low-end portable devices, that cap-
ture, encode (typically via a hardware-supported MPEG/TU
1. INTRODUCTION T codec) and transmit video streams to a remote computing

Manv of the envi d lications and servi for rserverfor recognition or authentication purposes. A groiup
any of tné envisaged applicalions and ServiCes 1or Wealy - qoicaq jn the same wireless local area network (WLAN)
able sensors, smartphones, tablets or portable compuaters

th ‘1 il invol vsis of vid A f éomprises avireless cluster. A server running openstack or
€ nextten years will INVOIve analysis ot video streams OrHadoop (or a similar runtime environment suitable for cloud
event, action, object or user recognition[1, 2]. In thisqass,

h . ) . h | di P computing) [4] is used for analyzing visual data from numer-

they experience time-varying channel conditions, traffads -, o \yjrejess clusters, as well as other computing tasks un-
The material is based upon work funded by the US Air Force &eke  related to object or face recognition. Each device can adapt

Laboratory (AFRL). Any opinions, findings, and conclusimisecommen-  the encoding bitrate, as well as the number of frames to pro-

dations expressed in this article are those of the authcdsdannot re- ; ; e
flect the views of AFRL. OA, CT and MvdS acknowledge fundingnfr duce (with the ensemble df such settings comprising set

NSF grant CNS-1016081. YA acknowledges funding from EPSRabtg -4 = {@1,a2,...,an}), in order to alleviate the impact of
EP/K033166/1. contention in the WLAN. At the same time, the visual analy-




sis performed in the cloud can be adapted to scale the requir&knowledge of contention and congestion conditions—is log-

processing time to alleviate the impact of task schedulorg ¢ arithmic if users do not collaborate and each would like to

gestion in the cloud [5, 4], with the sets of contention andmaximize their own utility. Finally, the proposed contexitu

congestion levels represented by the discrete fetexdG,  bandit frameworkis general, and can also be used for legrnin

respectively. In return, each device receives from thedlouin other wireless video applications that involve offloagof

a label that describes the recognized object or face (eqy. tlvarious processing tasks.

object or person’s name), or simply a message that the object

or person could not be recognized. In addition, each device o

wireless cluster can also receive feedback on the expedenc 2. FORMALISM, ALGORITHM AND ANALYSIS

WLAN medium access control (MAC) layer contention and

the cloud task scheduling congestion conditions. For each time instant;, the mobile devices receive the con-
Thus, the “reward” for each device is the recognition re-tention and congestion levels in the wireless MAC and cloud

sult at each time step. Given that each wireless access poisthedulingf (k) € T andg (k) € G, respectively, and would

and the cloud computing infrastructure serves many more rdike to find the best transmission setting to maximize their

guests than the ones from a given cluster of devices (as illugxpected recognition rate. Under a standard algorithm for

trated in Figure 1), we can safely assume that for each devicebject or face recognition, such as the 2D PCA [10], the

the wireless contention and cloud congestion level areibeth recognition rate varies based of) the contention and con-

dependent of the actions taken by the devices within its cluggestion levelsyii) the transmission settings(t (k) , g (k)),

ter. This makes each device independent, since the desisioa (¢t (k) , g (k)) € A, selected by each deviee, m € M.

made by other devices do not affect the reward. Once the compressed video is received and analyzed by the
cloud, the device receives either the correctly-recoghize
1.1. Relation to Prior Work object or person, or a response that the system is unable to

recognize reliably based on the given content. In the latter
pected recognition rate at the minimum possible cost insermy nerson is recognized or the user cancels the task.
of utilized wireless resources (i.e., MAC superframe trans Let (¢ (k), g (k),a) be the expected recognition rate of
mission opportunities used). To this end, several appERCN e ,.th device with transmission settings given the con-

have been proposed th_at are based on remforce_ment leatriion and congestion levelgk) andg (k) at thekth time in-
ing [6], such as Q-learning [5]. In these, the goal is 0 learmyi,nt respectively The goal of each device is to explore the
the state-value function, which provides a measure of the ex,,gmission settings i and learn the expected recognition
pected long-term performance (uyllty). However, theyunc. rater € (0,1) depending on the congestion levelk) and
large memory overheads for storing the state-value functiogqhention levet (k). Note that it can then anticipate the aver-
and they are slow to adapt to new or dynamically changing ensye nymper of recognition attempts it will require in order t
vironments. A better approachis to intermittently expianel o qjve a recognition result with a predetermined confidenc

eXP'O,“ when negded, in order. to capture such changes. lnd?é\/el. We will determine the performance of each learning
policies for multi-armed bandit (MAB) problems, contextua 5 qqrithm in comparison to the optimal solution that sedect

bandits [7][8], or epsilon-decreasing algorithms [9] ca b ¢ transmission setting (¢ (k) , g (k)) yielding the highest
used for this task. However, all existing bandit frameworks

X ) X y “expected recognition rate, given by

do not take into consideration the contention and congestio

conditions as contexts in the application under consid®rat
a* (t(k),g(k)) :=argmaxn (t (k),g(k),a). 1

1.2. Contribution (t(k).g(k)) gmaxn (t(k),g(k),a). (1)

Due to the lack of efficient methods that fully capture theThe solution of (1) is defined as the oracle solution, since it

problems related to online learning in multi-user wirelessassumes that all conditions for each case are preciselyrknow

networks and cloud computing systems with uncertain an@eforehand. As a performance measure, we define the “re-

highly-varying resource provisioning, we propose a new ongret” of a learning algorithm below.

line systematic learning theory based on multi-user canggx Definition 1 (Regret). The regret afteks iterations (time

bandits, a natural extension of the basic MAB framework. Westeps) is the loss incurred due to unknown system dynamics.

provide analytic estimates to compare its efficiency adainszor themth device, the regret of the learning algorithm that

the complete knowledge (or “oracle”) benchmark in whichgg|ects the setting (¢ (k) , g (k)) at each time instarit, 1 <

the expected reward of every choice is known by the learney, < ¢ with respect to the best action is given by

Unlike Q-learning [6] and other learning-based methods, we

prove that_ the regret boundfthe |05$ .incurred by the algo- 14 the parameters defined in this paper are different foemobile

rithm against the best possible decision that assumes fulbvicem € M. For simplicity, we dropn subscript from our notation.




where| . | denotes the cardinality of a set. If there exists more
K than one setting maximizes (3), then the device simply telec
Z 5 (ak)] ) one of them. The proposed algorithm for device-oriented con

K
R(K) = t(k),g(k),a")—FE L
(K) ZW( (k). 9 (k),a%) textual learning is given below.

k=1

k=1

with y(c.l? € {0,1} a d|sgrete random variable modeling th'.aAIgorithm: Device-OrientedContextual Learning
recognition results received from the cloud under transmis

sion setting:, andE [-] the statistical expectation. m  Input: c(k);setsiA, G, T
Initialization:
2.1. Device-Oriented Contextual Learning Viga =0Vt €T Vg€G: Niya=0k=1

At any time stepk, mobile device can be in one of the two Reépeat

following stages: (i) exploration stage, where it selects an  Get contention and congestion levels) € 7, g(k) € G
arbitrary transmission setting to update the estimatedgec  |f 35 ¢ A s t. Nig.a(k) < c(k)

nition accuracy given the contention and the congestion lev
els; and(ii) exploitation stage, where mobile devices select
the transmission setting yielding the highest estimatedge A
nition accuracy given the WLAN contention level and the ~ Update(Vi,g.q(k), Yt g.a,Yt,9.0)
congestion level in the cloud. In this subsection, we focus Else

on how learning is performed by one of the mobile devices,
thus all the parameters defined below are for the specific mo-
bile devicem. However, all other mobile devices follow the ~ Receive recognition rate (rewart) ,,,
same learning steps. Lé&f; , ,(k) be the number of times Update(V; g o) (k) Y1 g,0(k)1Yt,g,0(k))
transmission setting is selected up to théth time instant End If

by the mobile device in response to the congestion and con-
tention levelg (k) and¢(k) respectively. The mobile device
checks if the following set is emptyS; () o) = {a € A : End X X A

Ni(r),g(k),a(k) < c(k)},wherec (k) is a deterministic control  Update,Y,Y): Y « ";’jly; n<n+1
function that is monotonically increasing in In practice,
¢ (k) can be interpreted as the number of exploration steps re- Definition 2 (Suboptimality Gap and Minimum Sub-
quired by the algorithm such that the deviation probabdity optimality Gap). Let A, (a~) 2 7 (t,g,a*) — 7 (t,g,a")
the sample mean estimate of the expected reward of settingy, e suboptimality gabg of any transmission settj’ng,with
decays withk—? for someb > 1. The control functiore(k) a~ € A\ a*, and its corresponding optimal setting(z, g)
controls if each transmission setting is explored suffityeso given by (1). We define the minimum suboptimality gﬁ;;&in

that the sample mean of the recognition accuracies is A€CUre ¢ tha minimum difference between the expected recognition

enough. _ _ _ . accuracy of the best transmission setting and second-best
I_f Sty # Q),_ devicem chooses an ar_bltrary trans_m'ss'ontransmission setting, i.evt € T, Vg € G, Ya~ € A\ a*:

setting from this set and keeps the obtained recognitiom-acc n & . Agy(a). n

racy. If S; , = 0, this means that all the transmission settings " 9

are explored sufficiently. Then, each mobile device chooses Lemmal.lfva™ e A\a*,Vt€ T, Vg e G st

transmission settings that yield the highest estimatedgec . _ 1

nition accuracy. Let; , ,(k) be the set of recognition rates Yiga- (k) —7(t,g,a7)| < §Ami“’ ®)

(a.k.a. set of rewards) obtained when selecting transamssi then: the optimized transmission setting given in (3) is

settinga under WLAN contention leved and cloud conges-  ,« (¢, ¢) given in (1).

tion level g up to time k.. In addition, letv(k) be the opti- Proof: We have|V; ,, (k) — m(t,g,a7)| < Am

mized transmission setting &th time instant according t0: ;. the worst caser (tg” ;L*) — Vi (t.9.a") < A and,

for any suboptimat—, i.e.,Va= € A\ a*: Y, 4 (k) —

Choose setting
Receive recognition rate (rewar),

Find a(k Yiga
a(k) € argmaxYy

k+—k+1

k) € Viog.a(k), 3 . / iy
o (k) ABLET b9, (k) 3) w(t,g,a7) < %Amin. Combining the last two inequalities
where Yy, (k) is the sample mean of the elements inWith the fact thatA; 4(a™) < Auwin leads t0:¥; 44+ (k) -
Xiga(k), .6,V € Xy q(k) with 0 < 7 < 1 each recogni-  Yi,g.4- (k) > 0, which leads to the desired result. u
tion rate (or reward) obtained from the cloud: Lemma 1 proves that, under accurate-enough estimates,

the proposed algorithm will select the optimal transmissio
- (4)  setting in the exploitations. We will use this to bound the
r€Xey.a(k) |Xtg.0(K)| suboptimal transmission setting selection in the explioites.

?t,g,a(k) = -



2.2. Analysis of Device-Oriented Contextual Learning server. Videos of human faces are produced by random im-
ges of persons taken from the extended Yale Face Database
(39 cropped faces of human subjects under varying illu-
mination). Each video comprises 34 images from the same
person and it is compressed to a wide range of bitrates via the
H.264/AVC codec (x264 codec, o {4, 14, 24,34, 44,51}).
%he 2D PCA algorithm [10] is used at the cloud side for face
recognition from each decoded video (with the requireadhtrai
ing done offline as per the 2D PCA setup [10]). More than
(Amin) X 20 7 . 80% of the video frames have to match to the same person in
pected regret due to suboptimal actmgb selection o exXPloit he gatabase to declare this video as “recognized”. There is
tion step is: E[R,(K)] < 2N|G||T|H"”, with HZ" the 4 time window set for recognition, which limits the number
Generalized Harmonic Number. of frames received by the cloud under varying WLAN con-
Proof: The proofis based on using the Chernoff-Hoeffdingention levels (delay is increased under contention dubeo t
inequality to derive (details omitted due to space limita8)  packoff and retransmissions of IEEE 802.11 WLANS). Sim-
% ilarly, because of randomly varying congestion in the cloud
E[Ry(K)] < Z Z P ( th,g,a(k) —(t,g, a)‘ only a limited number of the rece_:ived video fram_es is acyuall
i=1viga used by 2D PCA, thereby affecting the recognition rate.
1 Table 1 presents the average number of retries performed
< §Amim Niga (k) > c (k)) per recognition action by our method (with and without us-
ing the cloud congestion information as context) in order to
where P (e) denotes the probability of eveat The last ex- achieve recognition rate of 90%. We also present results ob-
pression is upper bounded BW |G || T Ele k2 withthe tained by:(i) the optimal setting of (1) that assumes full sys-
summation term beinglgb) [11]. m tem kngwlgdge (oracle boundjj) Q-Ieg_rnlng [6, 13]. The
Lemma 3. Under the conditions of Lemma 2, the regretfesults indicate thit’ after 25|_0 rzt;ognltloln at_tehmptsréﬂeae
L bln K tempt comprises the retries listed), our algorithm appneac
due to explorations i (K)] < |G||T|N (1 + 4(Amin)2)' the oracle bound and, for the same recognition rate, incurs

Proof. At any time k, at mostc(k) + 1 exploration |ess retries per attempt in comparison to Q-learning.

The regret can be divided into two components. The firs
one isR.(K) the regret due to the explorations aRd(K)
the regret due to suboptimal action selection in the exgloit
tions. Since the rewards are boundediint], it is sufficient

mal action. In the following lemmas, we will bourfél. (K)
andR,(K) separately.
Lemma 2. If ¢(k) = 422 for someb > 1, then ex-

steps took place for eaghe G. This leads to:E[R.(K)]<

bln K _ bln K
Suiga (1H4KEE) = [GITIN (1+475205). m 4. CONCLUSIONS

Theorem 1. Under the conditionsof Lemma2andb = 1,

We propose a contextual bandit framework for learning con-

E[R(K) <|G||TIN (1 +4b1121K + ZHE)) (6) tention and congestion conditions in object or face recog-

- i nition via wireless mobile streaming and cloud-based pro-

Proof. We have: B[R (K)] = E[R. (K)] + E R, (K)], cessing. Analytic results show t_hatc_)urframeworl_< converge
which, from Lemmas 2 and 3 and with = 1, is upper to the value of the oracle solution (i.e., the solution that a

bounded by the desired result. m sumes full knowledge of congestion and contention condi-

We proved that this algorithm can achieve the logarith{ions). Simulations within a cloud-based face recognisips:
mic regret, which is the lowest possible regret that can b&M demonstrate it outperforms Q-learning, as it quickly ad
achieved by any function(k) [12]. Moreover, this regret 1UStS to contention and congestion conditions.
implies that}(liinoo% = 0, i.e., the time-averaged regret
leads to zero and the total expected recognition rate wil th

converge to the valu_e of the qracle solutidhe Iogarlthmlc Cparentheses to obtain recognition ratewith 2D-PCA.
regret bounds can still be achieved for dependent deviees s fteration
nario when the cloud learns the setting profiles for the d®vic ——— 7'=50 | T'=100 | T'=250 | T = 1000

. . Method
and reccomends the transmission settings for them.
Proposed | 3.3(1.7)| 3.1(1.6) | 2.4(1.5)| 1.9(1.5)

Proposed
no context| 31 (17| 2.8(1.6)| 2.6(1.6)| 2.4(1.6)

Table 1. Average attempts (with the oracle bound given in

3. NUMERICAL RESULTS

Our simulation environment comprises mobile devices  Q-learning| 3.5 (1.7)| 2.8 (1.6) | 2.7 (1.5)| 2.2(1.5)
connected via a IEEE 802.11 WLAN to a cloud-computing
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