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ABSTRACT

In most video-based object or face recognition services on
mobile devices, each device captures and transmits video
frames over wireless to a remote computing service (a.k.a.
“cloud”) that performs the heavy-duty video feature extrac-
tion and recognition tasks for a large number of mobile
devices. The major challenges of such scenarios stem from
the highly-varying contention levels in the wireless local
area network (WLAN), as well as the variation in the task-
scheduling congestion in the cloud. In order for each de-
vice to maximize its object or face recognition rate under
such contention and congestion variability, we propose a
systematic learning framework based onmulti-armed ban-
dits. Unlike well-known reinforcement learning techniques
that exhibit very slow convergence rates when operating in
highly-dynamic environments, the proposed bandit-based
systematic learning quickly approaches the optimal transmis-
sion and processing-complexity policies based on feedback
on the experienced dynamics (contention and congestion
levels). Comparisons against state-of-the-art reinforcement
learning methods demonstrate that this makes our proposal
especially suitable for the highly-dynamic levels of wireless
contention and cloud scheduling congestion.

Index Terms— multi-armed bandits, learning, face
recognition, cloud computing, wireless contention, schedul-
ing congestion

1. INTRODUCTION

Many of the envisaged applications and services for wear-
able sensors, smartphones, tablets or portable computers in
the next ten years will involve analysis of video streams for
event, action, object or user recognition [1, 2]. In this process,
they experience time-varying channel conditions, traffic loads
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Fig. 1. Illustration of object or face recognition via adaptive
wireless video transport to a remote computing server.

and processing constraints at the remote cloud-computing
servers where the data analysis takes place. Examples of
early commercial services in this domain include Google
Goggles, Google Glass, Facebook automatic face tagging [3]
and Microsoft’s Photo Gallery face recognition.

Figure 1 presents an example of such deployments. Video
content producers include several types of sensors, mobile
phones, as well as other low-end portable devices, that cap-
ture, encode (typically via a hardware-supported MPEG/ITU-
T codec) and transmit video streams to a remote computing
server for recognition or authentication purposes. A groupof
M devices in the same wireless local area network (WLAN)
comprises awireless cluster. A server running openstack or
Hadoop (or a similar runtime environment suitable for cloud
computing) [4] is used for analyzing visual data from numer-
ous wireless clusters, as well as other computing tasks un-
related to object or face recognition. Each device can adapt
the encoding bitrate, as well as the number of frames to pro-
duce (with the ensemble ofN such settings comprising set
A = {a1, a2, . . . , aN}), in order to alleviate the impact of
contention in the WLAN. At the same time, the visual analy-



sis performed in the cloud can be adapted to scale the required
processing time to alleviate the impact of task scheduling con-
gestion in the cloud [5, 4], with the sets of contention and
congestion levels represented by the discrete setsT andG,
respectively. In return, each device receives from the cloud
a label that describes the recognized object or face (e.g. the
object or person’s name), or simply a message that the object
or person could not be recognized. In addition, each device or
wireless cluster can also receive feedback on the experienced
WLAN medium access control (MAC) layer contention and
the cloud task scheduling congestion conditions.

Thus, the “reward” for each device is the recognition re-
sult at each time step. Given that each wireless access point
and the cloud computing infrastructure serves many more re-
quests than the ones from a given cluster of devices (as illus-
trated in Figure 1), we can safely assume that for each device,
the wireless contention and cloud congestion level are bothin-
dependent of the actions taken by the devices within its clus-
ter. This makes each device independent, since the decisions
made by other devices do not affect the reward.

1.1. Relation to Prior Work

Each mobile device of Figure 1 seeks to maximize its own ex-
pected recognition rate at the minimum possible cost in terms
of utilized wireless resources (i.e., MAC superframe trans-
mission opportunities used). To this end, several approaches
have been proposed that are based on reinforcement learn-
ing [6], such as Q-learning [5]. In these, the goal is to learn
the state-value function, which provides a measure of the ex-
pected long-term performance (utility). However, they incur
large memory overheads for storing the state-value function
and they are slow to adapt to new or dynamically changing en-
vironments. A better approach is to intermittently exploreand
exploit when needed, in order to capture such changes. Index
policies for multi-armed bandit (MAB) problems, contextual
bandits [7][8], or epsilon-decreasing algorithms [9] can be
used for this task. However, all existing bandit frameworks
do not take into consideration the contention and congestion
conditions as contexts in the application under consideration.

1.2. Contribution

Due to the lack of efficient methods that fully capture the
problems related to online learning in multi-user wireless
networks and cloud computing systems with uncertain and
highly-varying resource provisioning, we propose a new on-
line systematic learning theory based on multi-user contextual
bandits, a natural extension of the basic MAB framework. We
provide analytic estimates to compare its efficiency against
the complete knowledge (or “oracle”) benchmark in which
the expected reward of every choice is known by the learner.
Unlike Q-learning [6] and other learning-based methods, we
prove that the regret bound—the loss incurred by the algo-
rithm against the best possible decision that assumes full

knowledge of contention and congestion conditions—is log-
arithmic if users do not collaborate and each would like to
maximize their own utility. Finally, the proposed contextual
bandit framework is general, and can also be used for learning
in other wireless video applications that involve offloading of
various processing tasks.

2. FORMALISM, ALGORITHM AND ANALYSIS

For each time instant,k, the mobile devices receive the con-
tention and congestion levels in the wireless MAC and cloud
scheduling,t (k) ∈ T andg (k) ∈ G, respectively, and would
like to find the best transmission setting to maximize their
expected recognition rate. Under a standard algorithm for
object or face recognition, such as the 2D PCA [10], the
recognition rate varies based on:(i) the contention and con-
gestion levels;(ii) the transmission settingsa (t (k) , g (k)),
a (t (k) , g (k)) ∈ A, selected by each devicem, m ∈ M.
Once the compressed video is received and analyzed by the
cloud, the device receives either the correctly-recognized
object or person, or a response that the system is unable to
recognize reliably based on the given content. In the latter
case, the device repeats the recognition task until the object
or person is recognized or the user cancels the task.

Let π(t (k) , g (k) , a) be the expected recognition rate of
themth device with transmission settingsa, given the con-
tention and congestion levelst (k) andg (k) at thekth time in-
stant, respectively1. The goal of each device is to explore the
transmission settings inA and learn the expected recognition
rateπ ∈ (0, 1) depending on the congestion levelg (k) and
contention levelt(k). Note that it can then anticipate the aver-
age number of recognition attempts it will require in order to
receive a recognition result with a predetermined confidence
level. We will determine the performance of each learning
algorithm in comparison to the optimal solution that selects
the transmission settinga∗ (t (k) , g (k)) yielding the highest
expected recognition rate, given by

a∗ (t (k) , g (k)) := arg max
∀a∈A

π (t (k) , g (k) , a) . (1)

The solution of (1) is defined as the oracle solution, since it
assumes that all conditions for each case are precisely known
beforehand. As a performance measure, we define the “re-
gret” of a learning algorithm below.

Definition 1 (Regret).The regret afterK iterations (time
steps) is the loss incurred due to unknown system dynamics.
For themth device, the regret of the learning algorithm that
selects the settinga (t (k) , g (k)) at each time instantk, 1 ≤
k ≤ K, with respect to the best action is given by

1All the parameters defined in this paper are different for each mobile
devicem ∈ M. For simplicity, we dropm subscript from our notation.



R(K) :=

K
∑

k=1

π (t (k) , g (k) , a∗)− E

[

K
∑

k=1

ŷ (ak)

]

(2)

with ŷ(a) ∈ {0, 1} a discrete random variable modeling the
recognition results received from the cloud under transmis-
sion settinga, andE [·] the statistical expectation. �

2.1. Device-Oriented Contextual Learning

At any time stepk, mobile device can be in one of the two
following stages:(i) exploration stage, where it selects an
arbitrary transmission setting to update the estimated recog-
nition accuracy given the contention and the congestion lev-
els; and(ii) exploitation stage, where mobile devices select
the transmission setting yielding the highest estimated recog-
nition accuracy given the WLAN contention level and the
congestion level in the cloud. In this subsection, we focus
on how learning is performed by one of the mobile devices,
thus all the parameters defined below are for the specific mo-
bile devicem. However, all other mobile devices follow the
same learning steps. LetNt,g,a(k) be the number of times
transmission settinga is selected up to thekth time instant
by the mobile device in response to the congestion and con-
tention levelg (k) andt(k) respectively. The mobile device
checks if the following set is empty:St(k),g(k) = {a ∈ A :
Nt(k),g(k),a(k) ≤ c(k)},wherec (k) is a deterministic control
function that is monotonically increasing ink. In practice,
c (k) can be interpreted as the number of exploration steps re-
quired by the algorithm such that the deviation probabilityof
the sample mean estimate of the expected reward of settinga

decays withk−b for someb ≥ 1. The control functionc(k)
controls if each transmission setting is explored sufficiently so
that the sample mean of the recognition accuracies is accurate
enough.

If St,g 6= ∅, devicem chooses an arbitrary transmission
setting from this set and keeps the obtained recognition accu-
racy. IfSt,g = ∅, this means that all the transmission settings
are explored sufficiently. Then, each mobile device chooses
transmission settings that yield the highest estimated recog-
nition accuracy. LetXt,g,a(k) be the set of recognition rates
(a.k.a. set of rewards) obtained when selecting transmission
settinga under WLAN contention levelt and cloud conges-
tion level g up to time k.. In addition, letα(k) be the opti-
mized transmission setting atkth time instant according to:

α(k) ∈ argmax
a∈A

Ŷt,g,a(k), (3)

where Ŷt,g,a(k) is the sample mean of the elements in
Xt,g,a(k), i.e.,∀r ∈ Xt,g,a(k) with 0 < r < 1 each recogni-
tion rate (or reward) obtained from the cloud:

Ŷt,g,a(k) =
∑

r∈Xt,g,a(k)

r

|Xt,g,a(k)|
(4)

where| � | denotes the cardinality of a set. If there exists more
than one setting maximizes (3), then the device simply selects
one of them. The proposed algorithm for device-oriented con-
textual learning is given below.

Algorithm: Device-OrientedContextual Learning

Input: c(k); sets:A, G, T

Initialization:

Ŷt,g,a = 0; ∀t ∈ T , ∀g ∈ G : Nt,g,a = 0; k = 1

Repeat

Get contention and congestion levelst(k) ∈ T , g(k) ∈ G

If ∃a ∈ A s.t.Nt,g,a(k) ≤ c(k)

Choose settinga

Receive recognition rate (reward)rt,g,a
Update(Nt,g,a(k),Ŷt,g,a,Yt,g,a)

Else

Findα(k) ∈ argmax
a∈A

Ŷt,g,a

Receive recognition rate (reward)Yt,g,a

Update(Nt,g,α(k)(k),Ŷt,g,α(k),Yt,g,α(k))

End If

k ← k + 1

End

Update(n,Ŷ ,Y ): Ŷ ← nŶ +Y
Y+1 ; n← n+ 1

Definition 2 (Suboptimality Gap and Minimum Sub-
optimality Gap). Let ∆t,g(a

−) , π (t, g, a∗) − π (t, g, a−)
be the suboptimality gap of any transmission settinga−, with
a− ∈ A \ a∗, and its corresponding optimal settinga∗(t, g)
given by (1). We define the minimum suboptimality gap∆min

as the minimum difference between the expected recognition
accuracy of the best transmission setting and second-best
transmission setting, i.e.,∀t ∈ T , ∀g ∈ G, ∀a− ∈ A \ a∗:
∆min , min ∆t,g(a

−). �

Lemma 1. If ∀a− ∈ A \ a∗, ∀t ∈ T , ∀g ∈ G : s.t.
∣

∣

∣
Ŷt,g,a−(k)− π(t, g, a−)

∣

∣

∣
≤

1

2
∆min, (5)

then: the optimized transmission setting given in (3) is
a∗ (t, g) given in (1).

Proof: We have|Ŷt,g,a−(k) − π(t, g, a−)| < 1
2∆min;

in the worst case,π (t, g, a∗) − Ŷk (t, g, a
∗) < 1

2∆min and,

for any suboptimala−, i.e., ∀a− ∈ A \ a∗: Ŷt,g,a−(k) −
π (t, g, a−) < 1

2∆min. Combining the last two inequalities
with the fact that∆t,g(a

−) ≤ ∆min leads to: Ŷt,g,a∗(k) −

Ŷt,g,a−(k) > 0, which leads to the desired result. �

Lemma 1 proves that, under accurate-enough estimates,
the proposed algorithm will select the optimal transmission
setting in the exploitations. We will use this to bound the
suboptimal transmission setting selection in the exploitations.



2.2. Analysis of Device-Oriented Contextual Learning

The regret can be divided into two components. The first
one isRe(K) the regret due to the explorations andRs(K)
the regret due to suboptimal action selection in the exploita-
tions. Since the rewards are bounded in[0, 1], it is sufficient
to bound the number of times that device chooses a subopti-
mal action. In the following lemmas, we will boundRe(K)
andRs(K) separately.

Lemma 2. If c(k) = 4 b lnk
(∆min)2

for someb > 1
2 , then ex-

pected regret due to suboptimal action selection in exploita-
tion step is:E[Rs(K)] ≤ 2N |G||T |H

(2b)
K , with H

(2b)
K the

Generalized Harmonic Number.
Proof: The proof is based on using the Chernoff-Hoeffding

inequality to derive (details omitted due to space limitations)

E[Rs(K)] ≤
K
∑

k=1

∑

∀t,g,a

P
(∣

∣

∣
Ŷt,g,a(k)− π (t, g, a)

∣

∣

∣

≤
1

2
∆min, Nt,g,a (k) ≥ c (k)

)

whereP (e) denotes the probability of evente. The last ex-
pression is upper bounded by2N |G||T |

∑K

k=1 k
−2b, with the

summation term beingH(2b)
K [11]. �

Lemma 3. Under the conditions of Lemma 2, the regret

due to explorations isE[Re(K)] ≤ |G||T |N
(

1 + 4 b lnK
(∆min)2

)

.

Proof. At any time k, at mostc(k) + 1 exploration

steps took place for eachg ∈ G. This leads to:E[Re(K)]≤
∑

∀t,g,a

(

1 + 4 b lnK
(∆min)2

)

= |G||T |N
(

1 + 4 b lnK
(∆min)2

)

. �

Theorem 1.Under the conditions of Lemma 2 and b = 1,

E [R (K)] ≤ |G| |T |N

(

1 + 4
b lnK

∆2
min

+ 2H
(2)
K

)

(6)

Proof. We have:E [R (K)] = E [Re (K)] + E [Rs (K)],
which, from Lemmas 2 and 3 and withb = 1, is upper
bounded by the desired result. �

We proved that this algorithm can achieve the logarith-
mic regret, which is the lowest possible regret that can be
achieved by any functionc(k) [12]. Moreover, this regret
implies that lim

K→∞

R(K)
K

= 0, i.e., the time-averaged regret

leads to zero and the total expected recognition rate will thus
converge to the value of the oracle solution.The logarithmic
regret bounds can still be achieved for dependent devices sce-
nario when the cloud learns the setting profiles for the devices
and reccomends the transmission settings for them.

3. NUMERICAL RESULTS

Our simulation environment comprises4 mobile devices
connected via a IEEE 802.11 WLAN to a cloud-computing

server. Videos of human faces are produced by random im-
ages of persons taken from the extended Yale Face Database
B (39 cropped faces of human subjects under varying illu-
mination). Each video comprises 34 images from the same
person and it is compressed to a wide range of bitrates via the
H.264/AVC codec (x264 codec, crf∈ {4, 14, 24, 34, 44, 51}).
The 2D PCA algorithm [10] is used at the cloud side for face
recognition from each decoded video (with the required train-
ing done offline as per the 2D PCA setup [10]). More than
80% of the video frames have to match to the same person in
the database to declare this video as “recognized”. There is
a time window set for recognition, which limits the number
of frames received by the cloud under varying WLAN con-
tention levels (delay is increased under contention due to the
backoff and retransmissions of IEEE 802.11 WLANs). Sim-
ilarly, because of randomly varying congestion in the cloud,
only a limited number of the received video frames is actually
used by 2D PCA, thereby affecting the recognition rate.

Table 1 presents the average number of retries performed
per recognition action by our method (with and without us-
ing the cloud congestion information as context) in order to
achieve recognition rate of 90%. We also present results ob-
tained by:(i) the optimal setting of (1) that assumes full sys-
tem knowledge (oracle bound);(ii) Q-learning [6, 13]. The
results indicate that, after 250 recognition attempts (each at-
tempt comprises the retries listed), our algorithm approaches
the oracle bound and, for the same recognition rate, incurs
less retries per attempt in comparison to Q-learning.

4. CONCLUSIONS

We propose a contextual bandit framework for learning con-
tention and congestion conditions in object or face recog-
nition via wireless mobile streaming and cloud-based pro-
cessing. Analytic results show that our framework converges
to the value of the oracle solution (i.e., the solution that as-
sumes full knowledge of congestion and contention condi-
tions). Simulations within a cloud-based face recognitionsys-
tem demonstrate it outperforms Q-learning, as it quickly ad-
justs to contention and congestion conditions.

Table 1. Average attempts (with the oracle bound given in
parentheses) to obtain recognition rate0.9 with 2D-PCA.

Iteration
T = 50 T = 100 T = 250 T = 1000

Method

Proposed 3.3 (1.7) 3.1 (1.6) 2.4 (1.5) 1.9 (1.5)
Proposed

3.1 (1.7) 2.8 (1.6) 2.6 (1.6) 2.4 (1.6)
no context

Q-learning 3.5 (1.7) 2.8 (1.6) 2.7 (1.5) 2.2 (1.5)
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