
1

Blind Network Interdiction Strategies -
A Learning Approach

SaiDhiraj Amuru, R. Michael Buehrer, and Mihaela van der Schaar

Abstract—Network interdiction refers to disrupting a network
in an attempt to either analyze the network’s vulnerabilities or
to undermine a network’s communication capabilities. A vast
majority of the works that have studied network interdiction
assume a priori knowledge of the network topology. However,
such knowledge may not be available in real-time settings. For
instance, in practical electronic warfare-type settings, an attacker
that intends to disrupt communication in the network may not
know the topology a priori. Hence, it is necessary to develop
online learning strategies that enable the attacker to interdict
communication in the underlying network in real-time. In this
paper, we develop several learning techniques that enable the
attacker to learn the best network interdiction strategies (in terms
of the best nodes to attack to maximally disrupt communication
in the network) and also discuss the potential limitations that
the attacker faces in such blind scenarios. We consider settings
where a) only one node can be attacked and b) where multiple
nodes can be attacked in the network. In addition to the single-
attacker setting, we also discuss learning strategies when multiple
attackers attack the network and discuss the limitations they
face in real-time settings. Several different network topologies
are considered in this study using which we show that under the
blind settings considered in this paper, except for some simple
network topologies, the attacker cannot optimally (measured in
terms of the number of flows stopped) attack the network.

Keywords—Networks, graph, interdiction, attack, betweenness,
centrality, blind, learning, bandits.

I. INTRODUCTION

Network-centric architectures are increasingly gaining
prominence, be it social networks or wireless networks, as
they allow for decentralized operation among various nodes
without the need for a central entity to control their communi-
cation. With the widespread deployment of such architectures,
the security aspects of the underlying networks is now a
major concern. Security-related studies not only enable us
to understand the vulnerabilities of the underlying network
architecture, but also shed light on how to best attack that
network. The ability to undermine a malicious network’s
communication capabilities is crucial for ensuring security in
sensitive environments. In this paper, we particularly focus on
attacks against networks when their topology is unknown a
priori.

Most studies that are related to attacking communicating
nodes only consider the presence of a single node (source-
destination pair) and develop optimal strategies, either at the

SA and RMB are affiliated with Wireless@VT, Department of Elec-
trical and Computer Engineering, Virginia Tech. MvdS is affiliated with
the Department of Electrical and Computer Engineering, UCLA. Email:
{adhiraj,rbuehrer}@vt.edu, mihaela@ee.ucla.edu.

physical layer [1]-[3] or the MAC layer [4] or the network layer
(denial of service, or spoofing) [5], [6] in order to disrupt the
communication capabilities of this node. Various formulations,
ranging from optimization, game theory, information theory
and machine learning, see [1]-[6], have been used to attack this
node depending on the amount of knowledge that is available
to the attacker. However, as mentioned earlier, with the rapid
deployment of network centric architectures, it is now crucial
to understand attacks against networks.

Network interdiction, as it is popularly known, has predom-
inantly been studied by assuming that the network topology
is known a priori [7]-[18]. Optimization-based network in-
terdiction formulations were presented in [7]-[10] and game
theoretic formulations were considered in [11], [12]. In the
context of wireless networks, a flow-based formulation for
jamming (the popular term used for attacks in the wireless
communications literature) was discussed in [13] where an
optimization problem was formulated to identify the best
jammer-to-flow association that will maximally disrupt the
network. In [14]-[18] and references therein, the behavior
and robustness of various network topologies were studied
by attacking different nodes or edges-based on several graph-
theoretic metrics (i.e., the network is modeled as a graph). For
instance, some of the commonly used graph-theoretic metrics
are degree centrality, betweenness centrality, min-cut etc. [14]-
[22]. However, these metrics can only be exploited when the
attacker has a priori knowledge of the network topology.
Further, attack strategies that are developed for one type of
a network topology such as random Erdös-Rényi networks
[21] may not always be capable of efficiently attacking other
network topologies such as scale-free networks [22]. Hence, in
order to blindly attack networks, online learning strategies that
determine the best nodes to attack and disrupt communication
in these networks are necessary.

Learning techniques have been explored for communication
networks in the past. However, most of these works are
concerned with learning the influential node in the network, see
[23]-[27] and references therein. In contrast, in this paper, we
are interested in learning the node(s) that is most important to
attack in a network to minimize the number of messages being
successfully exchanged. While reinforcement learning-based
algorithms such as Q-learning are one strong possibility for
such a problem, they do not provide any finite-time guarantees
on the learning performance of the attacker [3]. Hence, in
this paper, we develop several multi-armed bandit (MAB)
algorithms that provide finite-time guarantees for the attackers
performance when attacking a network blindly.

We assume that a) the attacker is aware of the total number
of nodes in the network and b) is capable of identifying

2

the total number of successful and unsuccessful flows in this
network by observing the network traffic. By flow, we refer
to a message that is exchanged between different nodes in the
network. For instance, in the case of communication networks,
acknowledgement (ACK) and no-acknowledgement (NACK)
packets that are exchanged between the various nodes in
this network [4] indicate the total number of successful and
unsuccessful message exchanges. Using such information, we
present MAB algorithms with provable regret1 guarantees that
indicate the learning performance of the attacker in comparison
with the omniscient (optimal) attacker (i.e., one that has
complete knowledge about the flows and topology of the
network).

The following are the main contributions of this paper—
1) We establish the connection between the metrics ob-

servable to the attacker and the well-known between-
ness centrality metric [19] that is popularly used to
attack networks when their topology is known a priori
[14]-[18];

2) We develop MAB-based learning strategies applicable
when (a) a single attacker attacks a single node, (b) a
single attacker attacks multiple nodes and (c) multiple
attackers attack multiple nodes in a network;

3) We provide insight into various network topologies
ranging from those where the attacker can easily learn
the optimal nodes to attack, such as star networks to
those where the attacker has great difficulty in learning
the optimal node to attack in a blind scenario, such as
random networks;

4) We uncover and discuss the various limitations, in terms
of the learning performance, that the attacker(s) will
face when attacking networks blindly.

Note that such blind network attack strategies have not been
studied before in the literature. We also do not claim optimal
performance for the attacker (optimality in terms of the total
number of flows stopped in the network), because, as we will
discuss in detail in this paper, it is not possible for the attacker
to guarantee optimality when the topology is unknown and
especially when the attacker has only limited observables to
provide feedback about its attack performance.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the system model which is comprised of
the victim network, the parameters of the attacker and the
various observable metrics that are available to the attacker.
Here, we also formally describe the network interdiction
problem. In Section III, we present existing attack strategies
for benchmarking and metrics that can be used to compare
and analyze the performance of the attacker in blind settings
(i.e., when the network topology is unknown). In Section IV,
we discuss learning strategies and limitations when a single
attacker intends to attack the single best node (in terms of
flow minimization) in this network. The associated numerical
results are presented in Section V for the cases where the

1Regret is defined as the difference between the cumulative reward of the
optimal (for example, a strategy that minimizes the total throughput of the
network) attack strategy when there is complete network topology knowledge,
and the cumulative reward achieved by the proposed learning algorithm.

flows are fixed for a certain period of time and when they
change randomly. This is extended to consider cases where
multiple nodes can be attacked, either by a single attacker or
by multiple attackers, in Section VI. Finally, conclusions are
presented in Section VII. Due to space limitations, the proofs
of the Theorems, discussion on related work and some special
network settings are relegated to the Appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Victim Network Model
An undirected network is modeled as a connected graph

G = (V,E), where V is the set of nodes and E is the set of
edges. The network topology is represented by the |V | × |V |
adjacency matrix A, where |V | indicates the total number of
nodes in the network G. The ijth entry i.e., Aij = 1 if nodes
i and j are connected (i.e., an edge exists between nodes i
and j) and is 0 otherwise. It is assumed that the network is
undirected i.e., Aij = 1 implies that Aji = 1 (nodes i and j
can communicate with each other). The analysis in this paper
can be easily extended to directed networks and to networks
with edge weights (say that correspond to data rate supported
on an edge).

Any generic network topology can be analyzed using the
framework in this paper. For ease of exposition, we focus on
three different network topologies that are commonly used to
depict networks and also indicate different levels of difficulty
faced by the attacker in terms of learning the best nodes to
attack— a) Erdös-Rényi (ER) random network [21] with the
connection probability denoted by p, b) a Barabási-Albert (BA)
network with a given degree parameter d [22] and c) a star
network, with one root node and |V | − 1 leaf nodes. We
also show the attacker performance against practical wireless
networks that are increasingly being modeled according to a
Poisson point process with a given number of nearest neighbor
connections [31].

In the ER network, a node i connects to node j with
probability p. Such a random network provides various insights
about the attacker’s learning performance as it poses a strict
challenge to the attacker as opposed to most practical networks
where an inherent structure exists. The BA model generates a
scale-free network using the preferential-attachment model and
is a widely used network model to describe social networks.
In such networks, the number of connections depend on the
popularity of the node and there is commonly one most popular
node to which a large fraction of nodes are connected. Based
on this description, it is clear that there is a preferred node
that the attacker must attack in order to stop the flows in
this network model. The star network is the simplest network
model that can be attacked as there is clearly only one optimal
choice i.e., the root node which disconnects the network when
it is attacked and thereby stops all the flows. The attackers
learning performance matches that of the optimal attacker in
the star network once it identifies the root node. A PPP-
based network model is one where the nodes are distributed
according to a Poisson point process and each node connects
to a given number of its nearest neighbors. Such a model is
increasingly being used in present day wireless networks [31].

3

In addition to these networks, we give examples using some
simple network topologies such as path, cycle etc wherever
necessary. Further, in all these network models it is ensured
that the network is connected. In other words, a path exists
between every node i and any other node j 6= i.

B. Flow model
At an epoch t, any node can be a source node, i.e., it has

information to send to some other node i.e., a destination node.
Let St and Dt indicate the sets of source and destination
nodes at epoch t where |St| = |Dt| ≤ |V |/2. This assumption
indicates the fact that a node in the network can act either only
as a source or only as a destination at any time instant.2 It is
also assumed that the nodes in G are aware of the shortest path
between any pair of nodes i and j over which messages are
exchanged. For convenience, it is assumed that the source and
destination nodes communicate only along the shortest path
between them (cases where nodes use paths other than the
shortest path can be considered by using the analysis in this
paper in a straightforward manner by changing the description
of the metrics considered). A flow fs,dt ∈ {0, 1} constitutes a
source s ∈ St, a destination d ∈ Dt and the set of nodes that lie
along the shortest path between s and d. Let F tG =

∑
s6=d f

s,d
t

indicate the total number of flows in the network G at time t.
Note that |St| = |Dt| = F tG.

The epoch t constitutes several time slots and is taken to be
much greater than the length of the time required to traverse
the maximum shortest path between the source nodes St and
their corresponding destination nodes Dt. If more than one
flow passes through a common node in the network (i.e.,
the shortest paths between two different source-destination
node pairs pass through a common node), it is assumed that
this common node delivers information for these destination
nodes one after the other, i.e., scheduling takes care of such
issues (which is commonly the case). For ease of exposition,
these fine temporal aspects are not considered in this analysis.
Hence, in this paper it is assumed that every flow (starting
from the source node and ending at the destination node) in
the network is completed within one time epoch and we are not
concerned about the time slots required to finish these flows.
This does not take away any merits of the proposed algorithm,
as we do this only for simplifying the analysis in this paper.
For an example on how temporal aspects of the network can
be included, please see [4].

C. Attack Model
By attack, we refer to the following– in the case of

communication networks, an attack refers to corrupting the
information that is received at a node which thereby cannot
be decoded into any valid information; in the case of social

2With the advent of full-duplex technology, nodes can act both as a source
and a destination simultaneously. Under such cases, both the incoming and
outgoing flows can both be stopped when a node is attacked. Irrespective of
whether the nodes are full-duplex or half-duplex, the learning algorithms (for
the attacker) proposed in this paper can still be used as they only need to
know the total number of flows stopped when a node is attacked and not the
exact number of flows it transmits or receives.

or economic networks, an attack either refers to physically
removing a network connection or a node or passing wrong
information to an individual that is part of these networks and
thereby causing mis-communication and a breach of privacy.
For more details regarding types of attacks on social networks,
please see [29] and references therein.

The attacker can attack k nodes in the network during any
epoch to stop flows in G. When a node is attacked, all the
edges incident (both incoming and outgoing) upon this node
are blocked indicating that all flows that need this node are
stopped. Let F tG\Ak

indicate the total number of remaining
flows in the network after k nodes of G (denoted by the set
Ak) are attacked. Therefore the attacker wishes to solve the
following optimization problem for epoch t

max
Ak

F tG − F tG\Ak

s.t. cxt ≤ k and {xi}|V |i=1 ∈ {0, 1}, (1)
where c is a 1 × |V | vector of all 1’s and xt is a |V | ×
1 vector which has entries equal to either 0 or 1 depending
on whether a node is attacked or not at time t. Notice that
maxAk

F tG−F tG\Ak
is equivalent to minAk

F tG\Ak
, but we use

the formulation (1) to explicitly denote the fact that the attacker
is aware of F tG i.e., the total number of flows in the network.
The set Atk is dependent on the set of non-zero elements in xt.
The first constraint in (1) indicates that the attacker can attack
a maximum of k nodes. By varying the definition of c, this
constraint can also be used to represent the cost ci incurred
by attacking the ith node and that the attacker is limited by a
total cost constraint/budget B where the condition changes to
cxt ≤ B. In this paper, we assume that the cost of attacking
any node in the network is 1 and the budget for the attacker
only indicates the total number of nodes that it can attack at
any given time.

Remark 1. The binary integer linear optimization problem
in (1) is NP-complete [7]. However, the network topology is
necessary in order to solve (1) i.e., to optimally attack the
network.

Remark 2. The degree of a node i (i.e.,
∑
j 6=iAij) that can

be attacked must be at least 2 in order to disrupt more than
one flow in the network. Otherwise, the node is a leaf node
and attacking it can only stop one flow in the network at a
maximum.

Remark 3. The optimal nodes to attack in a network are more
dependent on the network structure and the flows occurring in
the network than the size of the network.

For example, in the case of a star network and a cycle
network, both with the same number of nodes, the optimal node
to attack is different. In the case of the star network, attacking
the root node stops all the flows in the network, where as in
the cycle network the optimal choice depends on the flows in
the network at a given time t.

As another example, consider a tree network (tree is a
network without cycles). For the ease of analysis assume |V |
to be odd. Then (|V |−1)/2 nodes are on either side of the root
node of the tree. When there are (|V |−1)/2 total flows in the

4

network, then with probability 1−

(|V |−1
2

|V |−1
4

)
(|V | − 1
|V |−1

2

) attacking the root

node is the optimal strategy when a tree network is attacked.
Here,

(
a
b

)
indicates the binomial coefficient a!

b!(a−b)! .
Hence, when the network topology and the flows in the

network are known, optimal attacks are possible and also
enable us to bound the attacker’s performance.

Remark 4. The worst case complexity of finding a node
that stops the maximum number of flows in the network is
O(|V |3). This is also the computational complexity involved
in estimating the various network centrality metrics [19].
More details about the attack complexity will be discussed in
Sections III, IV.

In the analysis that follows, we use the solution for the
optimization problem (1) as a bound with which we compare
the various network attack strategies. We first discuss the
benchmark attack strategies (that are not blind) that are com-
monly used to address network interdiction and then discuss
the learning strategies that can be used under blind scenarios.

III. SINGLE-NODE ATTACK – BENCHMARK STRATEGIES
AND PERFORMANCE ANALYSIS

We first intend to find the single best node that can be
attacked in order to disrupt the flows in the network. In this
paper, we only focus on finding the node that enables the
attacker to stop the maximum number of flows and the specific
details regarding the attack procedures (either at the physical
layer or MAC layer) can be found for example in [3], [4].
Similar details about attacks in social networks can be found
in [29]. We first focus on the case where flows (the number
as well as the source-destination pairs) are fixed over the time
period of interest T and later we will consider cases where the
flows change randomly.

In this section, we discuss a) existing attack strategies
(which are not blind) that are used for benchmarking the at-
tacker performance and b) performance metrics that enable for
network interdiction performance comparison and to compare
the gap in the learning performance of the attacker under blind
scenarios.

A. Omniscient attacker
This is a know-all attack strategy where the attacker is

exactly aware of the network topology and the flows in the
network at any time t. Based on this knowledge, the attacker
attacks a single node through which the maximum number of
these flows are passing. In other words, the omniscient attacker
solves the optimization problem in (1). This strategy therefore
acts as the upper bound for comparison of the various network
interdiction strategies proposed in this paper.

B. Node Betweenness-based attack
Betweenness centrality is a popularly used network cen-

trality metric to develop network attack strategies [14]-[18].

Formally, betweenness centrality measures the fraction of the
shortest paths passing through a node relative to the total
number of shortest paths in the network. In other words,
betweenness centrality is a measure to quantify the number of
times a node acts as a bridge between two different nodes when
they communicate along their shortest path. Mathematically,
the metric for the node v is given by

CB(v) =
1

(|V | − 1)(|V | − 2)

∑
s 6=v 6=d∈V

σsd(v)

σsd
, (2)

where σsd indicates the total number of shortest paths between
source node s and destination node d and σsd(v) indicates
the number of these shortest paths between s and d that pass
through v. By s 6= v 6= d we refer to the following s 6= v,
s 6= d, and v 6= d. The scaling factor indicates the total number
of possible shortest paths that can include v [19]. Notice that,
with high probability, the node with the highest betweenness
centrality metric supports a large number of flows that may
arise in the network. The relation between this metric and the
attacker performance is studied in detail in Section III-C.

When the attacker is aware of the network topology, it
can pre-evaluate this metric for all nodes in the network and
thereby attack the node with the maximum value. In other
words, the node attacked in this strategy is given by

At1 = arg max
v∈V

CB(v) ∀t, (3)

where At1 indicates the single best node attacked by using this
strategy at epoch t. For example, in the case of a star network,
CB(v) = 1 for the root node and is 0 for all other nodes and
hence the root node is attacked by using this strategy, which is
the optimal strategy for the star network. This is not always the
case for other networks as will be discussed in detail shortly.

The betweenness metric-based attacks have been shown to
be more effective than attacks-based on other centrality metrics
that can be evaluated for any given network [14]-[18]. To
consider networks with edge weights and/or different costs for
attacking each node, weighted betweenness centrality metrics
can be used [30]. However, to keep the analysis simple we
consider un-weighted networks in this paper. The complexity
in estimating the betweenness centrality metric is O(|V ||E|)
which is approximately O(|V |3) [19]. Next, we will use this
to compare the learning performance of the attacker.

C. Notes on attacker performance
Define C̄B(G) as the average betweenness metric for the

network G given by

C̄B(G) =
1

|V |
∑
v∈V

CB(v). (4)

This indicates the average number of shortest paths through
each node in the network. C̄B(G) can be related to the average
shortest path length in the network (l̄(G)) as [42]

C̄B(G) = (|V | − 1)(l̄(G)− 1) (5)

where l̄(G) =
∑

u,v∈V d(u,v)

|V |(|V |−1) and d(u, v) indicates the length
of the shortest path between nodes u and v.

At every time epoch, a new subgraph G′ can be formed
by only using the shortest paths corresponding to the flows

5

{fs,dt }s6=d∈V i.e., G′ has |V | nodes, but only has the edges of
G that are necessary for the flows {fs,dt }s 6=d∈V . Notice that
the average shortest path length of this new subgraph G′ i.e.,
l̄(G′) ≥ l̄(G), because the inactive edges (edges that are not
used in the communication of {fs,dt }s 6=d∈V) are removed from
G. More specifically, when edges are removed from G, some
nodes in G′ may be disconnected from the rest of the network
and hence the shortest path length between these disconnected
nodes is∞. Notice that not all networks get disconnected when
some edges are removed and hence l̄(G′) ∈ [l̄(G),∞]. This is
explained below with an example.

Example: In a fully-connected network G, every node is
connected to every other node. Hence, the shortest path length
is 1 between any pair of nodes and therefore l̄(G) = 1. If one
edge is removed in G to form G′, then the shortest path length
between the pair of nodes connected to this edge now increases
to 2 while the remaining shortest path lengths continue to be
1. Therefore l̄(G′) is given by

l̄(G′) =
1

|V |(|V | − 1)

({
|V |(|V | − 1)− 1

}
× 1 + 1× 2

)
= 1 +

1

|V |(|V | − 1)
, (6)

which indicates that l̄(G′) increases by a factor of 1
|V |(|V |−1)

when compared to l̄(G).
Since the average betweenness metric of a graph is related

to the shortest path length as shown in (5), we now have
that C̄B(G′) ≥ C̄B(G), because l̄(G′) ≥ l̄(G). Recall, that
the average number of flows stopped by attacking node v
is proportional to CB(v). Therefore, the total number of
flows that will be stopped on average in G is proportional to
C̄B(G)F tG and to C̄B(G′)F tG in the subgraph G′. Therefore,
it is clear that the total number of flows that can be stopped by
the attacker in G′ is higher than the ones that can be stopped
in G when using the betweenness-based attack strategy. This
is exactly the procedure followed by the omniscient attacker in
(1) because it is completely aware of the network topology and
hence can attack the best node in G′ (which is not necessarily
the best node to attack when G is considered because of
different CB(v)) such that the maximum number of flows
are stopped. Lemma 1, which will be presented shortly, will
formalize this argument and discuss the connection between
the optimal attack strategy and the betweenness metric of the
nodes in the network.

Remark 5. In a fully connected network C̄B(G) = 0 because
the shortest path between any two nodes is the edge connecting
them. Hence, when the attacker attacks node v, except for the
flow that is intended for node v, none of the other flows are
stopped in the network.

Example: For the case of ER-networks, it is shown in
[43], [44] that l̄(G) ≈ log |V |

log(p|V |) , where p is the connection
probability of the ER network. When p = 1, this value is
equal to 1 as expected. Similarly, it can be shown that when
εf fraction of the edges are removed in a ER network G to
form G′ (where εf is a function of the total number of flows
F tG and G), then we have l̄(G′) ≈

(
log |V |

log(p(1−εf)|V |)

)
which

indicates that the average number of flows stopped by using the
knowledge of G′ is greater than the ones that can be stopped
by just knowing G.

We mentioned earlier that the number of flows stopped
when a node is attacked is approximately proportional to the
betweenness metric of that node in G. More specifically, it can
be shown that the probability that a flow is stopped when node
v is attacked is given by

pv =

∑
s6=d 6=v σsd(v) + 2(|V | − 1)

|V |(|V | − 1)
, (7)

where
∑
s 6=d6=v σsd(v) indicates the total number of shortest

paths (that originate at source s and end at destination node d)
that pass through node v. The second term in the numerator
accounts for all those flows that are stopped when node v is
the source or destination. The denominator indicates that the
total number of paths (from any node i to any other node
j) in the network is |V |(|V | − 1). See that the betweenness
measure defined in (2) is also dependent on

∑
s6=d6=v σsd(v).

When σsd = 1 for any s, d ∈ V i.e., there is only one shortest
path between s and d nodes, then the betweenness measure of
the node is directly proportional to pv . For example, any tree
network satisfies this relationship.

Furthermore, via simulations we observed that pv and
CB(v) are very similar and this is what we referred to as
the reward of the attacker being proportional to the between-
ness metric. To obtain an exact relationship, we can rewrite
(2) as CB(v) =

∑
s 6=v 6=d∈V σsd(v)

(|V |−1)(|V |−2) in which case we have

pv = (|V−2|)CB(v)+2
|V | .

Remark 6. Based on the discussion above, it is clear that
the attack performance against any network will be lower-
bounded by the performance against a fully connected network
where only one flow can be stopped by attacking a single node.
Furthermore, the attack performance will be upper-bounded by
the performance against a star network where all the flows will
be stopped by attacking the root node.

Lemma 1. Given a network G with flows {fs,dt }s 6=d∈V , the
optimal node to attack i.e., the solution to (1) is the node with
the maximum betweenness metric in G′.

Proof: The proof follows by using the definitions of the
optimal attack strategy in (1), the betweenness metric defined
in (2) and the definition of the network G′. Specifically, since
G′ only consists of the nodes and edges that are necessary for
{fs,dt }s6=d∈V , the optimal node to attack is the node through
which maximum number of flows pass; which is nothing but
the node with the maximum betweenness metric over this sub-
network G′.

This lemma will later be used to discuss the performance of
the attacker under blind settings. Furthermore, the attack strate-
gies and the metrics presented in this section will enable us to
understand the differences (gap) in the attacker performance
and the limitations faced in blind settings when compared to
its performance with a priori network topology knowledge.

6

IV. SINGLE-NODE ATTACK – BLIND STRATEGIES AND
PERFORMANCE ANALYSIS

In this section we discuss network interdiction strategies that
the attacker can use under blind settings i.e., when the network
topology is unknown a priori. These attack strategies will
be compared with the benchmark non-blind attack strategies
discussed in the previous section.

A. Random attacks

In this strategy, the attacker randomly attacks a node during
every epoch. As expected this strategy performs worse than
the other strategies discussed in this paper. This is the best it
can do in completely blind settings when there is no feedback
regarding its attack performance and serves as a lower bound
to compare the various network attack strategies.

B. Learning strategies against fixed flow scenarios

We present multi-armed-bandit-based learning strategies
where the attacker can learn the best node to attack in a
real-time manner without knowledge of the network topology.
For reasons that will be explained soon, except for some
specific network topologies (such as tree, star), these learning
algorithms cannot achieve performance close to the omniscient
attack. It turns out that this is an inherent limitation in blind
settings i.e., when the network topology is unknown.

All learning algorithms are presented for the case when the
network flows remain fixed for T epochs. Later, we discuss
the performance of these algorithms when the flows change
randomly at every epoch. For all these learning algorithms, the
feedback for the attacker is the fraction of the total number of
flows stopped at any time instant i.e.,

F t
G−F

t
G\Ak

F t
G

, where the
set Atk indicates the nodes attacked at epoch t.

1) Notes on feedback used by the attacker for learning:
Remember that the attacker is a) aware of the total number of
nodes (|V |) in the network, and b) can infer the total number of
successful and unsuccessful flows in the network. For instance,
in the case of communication networks (such as the ones based
on the TCP protocol [32]), each destination node sends an
acknowledgement (ACK) or a no-acknowledgement (NACK)
packet directly to the source node. Since the ACK/NACK
packets are not encrypted, they can be easily identified in
any open protocol such as WiFi [4].3 These packets enable
the attacker to identify the throughput allowed in the network
[3], [4]. In the case of economic networks, the total number
of successful and failed transactions can be used to evaluate
the performance of the attack strategy. In the case of social
networks, the number of lost connections can be used as feed-
back by the attacker. Specifically, in the case of communication
networks, when a flow is attacked no ACK/NACK packet is
sent from the destination node because the flow never reached
the destination node (the same is assumed to be the case even
when the destination node is attacked). Hence, the number of

3Alternate metrics such as power levels, number of re-transmissions etc.
could also be used by the attacker as feedback for its actions.

flows attacked can be identified by counting the total number of
flows and the ACK/NACK packets exchanged in the network.

Remark 7. The assumption that the number of nodes is known
is realistic because nodes can be easily detected whenever
they transmit data (assuming they are within the range of the
attacker) [33], [34]. However, if the attacker doesn’t know
the correct number of nodes, that means that either (a) the
attacker assumes that there are nodes that don’t actually exist
(unlikely) or (b) the attacker is unaware of certain nodes that
actually exist in the network (more likely). In the latter case,
the attacker would not attack the unknown nodes since their
existence (for example, say due to the location of the attacker
in the network) is not known. When this unknown node is not
the optimal node to attack, the attacker learns faster since the
attacker does not spend resources by attacking a non-optimal
node. However, if the missing node is in fact the optimal one
to attack, then the attacker will never learn the optimal attack
choice and the loss in performance will depend on how much
difference there is between the optimal node and the best node
that the attacker is aware of.

Furthermore, when a single attacker is unable to listen to
the feedback from all nodes in the network/ unable to attack all
nodes in the network, then multiple attackers, that coordinate
and share information to attack the network, will be necessary.
The case of multiple attackers attacking a network is studied
in Section VI.

2) Notation: Let At1=vt indicate the
node attacked during epoch t and
r(vt) =

max(min(F t
G−F

t
G\vt

+ε,F t
G),0)

F t
G

indicate the reward
(fraction of flows stopped) obtained by the attacker when
this node is attacked. ε is a uniform random variable in the
set

{⌊
−F t

G

2

⌋
, . . . ,

⌊
F t

G

2

⌋}
that indicates the uncertainty in

the feedback received (for instance errors in the estimation
of the ACK/ NACK packets in a communication setting).4
Along similar lines, r(v∗) indicates the reward obtained by
node v∗ which is the best node in hindsight that should have
been attacked to maximize the reward. Then we define the
cumulative regret incurred by the attacker as

R(T) = E

[
T∑
t=1

[r (v∗)− r (vt)]

]
= Tr(v∗)−E

[
T∑
t=1

r(vt)

]
,

(8)
which indicates the expected difference in the total reward
between the strategies chosen by the proposed algorithm and
the optimal choice in hindsight. In the above equation, the
expectation is over all the possible nodes that may be attacked
when the attacker uses a learning algorithm. The goal of the
attacker is to minimize this regret so as to learn the best single
node to attack.

4In cases where the attacker is unable to listen to the ACKs/NACKs from
all nodes in the network (for example, due to its location in the network),
then different distributions such as impulsive/ non-Gaussian can be used to
model ε and capture this unknown feedback. This is because non-Gaussian
distributions can be used to capture rare events. Also see that the max and
min constraints in the reward definitions will ensure that the reward/feedback
used by the attacker in its learning algorithm is still meaningful.

7

Let ∆min indicate the minimum gap in the reward obtained
when v∗ is attacked and when the second best node is attacked.
Because the topology is unknown a priori, the attacker can
only obtain bounds on ∆min. For instance, we have that

∆min ≥
1

F tG
≥ 1
|V |
2

, (9)

which indicates the fact that by attacking the second best node,
the attacker can potentially stop at most F tG−1 flows, whereas
F tG flows could potentially be stopped by attacking the optimal
node v∗. The second inequality is obtained by noting the fact
the maximum number of possible flows in this network is |V |2 .
Along similar lines let ∆max indicate the maximum gap in the
reward obtained by the attacker. It is easy to see that ∆max ≤
1. ∆min and ∆max will be used to provide regret guarantees
for the attacker’s performance.

Different algorithms have been proposed in the literature
to address the regret minimization problem [35]-[39]. Below,
we first present two popular bandit-based learning algorithms,
namely upper confidence bound (UCB) learning [35] and
contextual zooming, a version of the contextual bandit al-
gorithm [39]. Later, we present a novel slotted exploration
exploitation-based MAB algorithm which performs better than
these existing learning algorithms. As will be discussed in
Section VI, this algorithm can also be extended to consider
time-varying and multiple-attacker settings.

1) UCB-based Learning [35]: This is the most common
MAB algorithm used in online learning settings. It maintains
mean average reward values obtained by attacking a particular
node v at each epoch and thereafter evaluates indices known as
ucb-indices in order decide the node to attack in the next epoch
[35]. The regret of this algorithm grows as O

(
|V | log(T)

∆2
min

)
which is linear in |V | and is inversely proportional to ∆min.
If ∆min is large, then it is easy to identify the best node to
attack.

Furthermore, as will be explained shortly in Theorem 2,
when the network topology is unknown, it is not possible
to achieve a learning rate better than O(|V |) (computational
complexity as a function of the network parameters) indicating
the fact that all the nodes in the network must be attacked at
least once in order to learn the best node to attack in a real-time
setting.

2) Contextual Bandit-based learning [39]: A context refers
to side information that is available to the learning agent
(attacker in this case) [39]. More often than not, assigning
a context to the learned information enables the agent to
achieve better results than acting blindly and ignoring the
side information. This side information can be exploited using
contextual bandit algorithms [39], where the best action given
the context can be learned online. These methods utilize a
context-dependent history of past observations in order to
estimate its context-dependent performance [39].

For this algorithm, we assume that the attacker is also aware
of the source node and the destination node for all the flows in
the network at epoch t, in addition to all the variables that can
be accessed by the UCB algorithm (note that a flow is defined
not only by the source and the destination nodes, but also all

the nodes that lie on the shortest path between them, hence
in this learning algorithm, we only assume partial information
is available to the attacker). Therefore, the source-destination
pairs are taken to be the context information. The regret in this
case is defined as

R(T) = E

[
T∑
t=1

[r(s(t),d(t), v∗)− r(s(t),d(t), vt)]

]
, (10)

where s(t),d(t) indicate the |V | × 1 vectors of 1’s and 0’s
that indicate the active sources and destinations at every time
instant. Since, the dimension of the context space is 2|V |
(as any node can be a source and any other node can be a
destination), the overall regret for this learning algorithm grows
sub-linearly in time as O(T

2|V |+1
2|V |+2) [39].

3) Slotted Exploration-Exploitation Algorithm: Here,
we propose a novel algorithm which performs exploration
and exploitation in a slotted manner. The proposed slotted
exploration-exploitation MAB algorithm is shown in Alg. 1.
In this algorithm, during the exploration phases, each node
in the network is attacked once every epoch and during the
exploitation phase, it chooses to attack the node with the
best average reward obtained during the exploration phases.
The average reward values are only estimated during the
exploration phases and the attacker sticks to the node with
the best average reward during the exploitation phase. While
the length of the exploration phase remains constant (here it
is equal to the number of nodes in the network), the length
of the exploitation phase increases exponentially after every
exploration phase. Here, γ(t) and E(t) are two counters
that keep track of these exploration and exploitation phases.
The counter γ(t) indicates the total number of exploration
phases until time t. The transition between the exploration
and exploitation phases will be determined by the condition
γ(t) < A log(t) which also controls the exponential increase
in the length of the exploitation phases. Specifically, when the
counter E(t) = 0, the current slot will be an exploration slot if
γ(t) < A log(t), else it will be an exploitation slot. However
when E(t) > 0, the current slot is an exploration slot and the
value of E(t) indicates the arm (or the node) being explored
(attacked in the current context) in the current exploration slot.

Theorem 1. The regret bound for Alg. 1 is

R(T) ≤ A|V |∆max log(T) + |V |∆max +

∞∑
t

2|V |∆maxt
−A

2 ∆2
min ,

(11)
where A > 2

∆2
min

.

Proof: See Appendix I in the extended version of this paper
[28].5

Remark 8. In an online setting, the exact values of the ∆max

and ∆min may not be known perfectly. By using bounds on
these values (presented earlier), the attacker can evaluate
the regret bounds incurred during this learning process. By

5A generic slotted exploration-exploitation algorithm with adjustable
exploration-exploitation schedule and the proof for its associated regret bound
is in Appendix I in the extended version of this paper [28].

8

Algorithm 1 Slotted Explore-Exploit
Initialization: t← 1, E(t) = 0, γ(t) = 0

1: while t ≤ T do
2: if E(t) > 0 then Explore
3: else if γ(t) < A log(t) then Explore
4: else Exploit
5: end if
6: end while

Explore
7: E(t+ 1) = mod (E(t) + 1, |V |+ 1)
8: if E(t+ 1) = 0 then γ(t+ 1) = γ(t) + 1
9: else t = t+ 1 and choose arm vt = E(t+ 1)

10: Get the feedback and update average reward r(vt) of the
chosen arm

11: end if

Exploit
12: Choose the arm v∗t with maximum average reward v∗t =

arg maxvt r(vt)
13: t = t+ 1

setting A = 4
∆2

min
, the second and third terms in (11)

i.e., |V |∆max +
∑∞
t 2|V |∆maxt

−A
2 ∆2

min are just constants
proportional to |V |. This explicitly shows that the regret is
logarithmically dependent on T and linearly dependent on |V |.
This linear dependency on |V | will be revisited in Theorem 2.

Remark 9. When the network is skewed, i.e., there is a small
set of popular nodes which are part of several flows, then it is
easy to identify the best node that the must be attacked because
∆min is larger. Thereby, in these cases the regret is smaller.
For example, this behavior will be shown in the case of BA
networks and star networks in Section V.

C. Random flow scenarios
All the bandit algorithms proposed above are valid only

when the flows are fixed over a given period of time during
which the attacker learns the best node to attack. These
algorithms cannot accommodate for the time varying nature of
the “arms” (which in the current case are the nodes attacked)
involved in the learning process [35], [40]. Here we consider
cases where the number of flows, as well as the source-
destination pairs randomly change at every time instant. When
the flows are changing, using the rewards from earlier epochs
in order to estimate the expected rewards in future epochs
will be inaccurate. Hence, sliding window-type techniques [3]
need to be used where the attacker only uses the recently
learned reward estimates to attack a node. For time-varying
regret bounds using the UCB algorithm see [41] and for the
case of the contextual bandit algorithm see [40]. Below, we
present a time-varying regret bound for Alg. 1. For generic
regret bounds for any learning algorithm, please see [28].

1) Time varying regret bound for the slotted explore-exploit
algorithm: See that in the regret bound of the slotted explore-
exploit algorithm in (11), we have assumed that the number of
flows is fixed over a given time and that the attacker learns the

best node to attack in this network. However, the analysis of
the logarithmic regret presented earlier is no longer valid for
the case when the flows change at every time instant. Hence,
we need to consider the notion of time-averaged regret denoted
by

Rave(T) =
1

T

(
T∑
t=1

r(v∗t)−E(r(vt))

)
, (12)

which indicates the difference in the rewards obtained by
attacking v∗t (optimal node to attack at time t) and the node
vt that is attacked at time t. Moreover, ∆max and ∆min will
also be time varying and can be denoted by ∆max(t) and
∆min(t) respectively. Let ∆̄max and ∆min be the upper and
lower bounds on these values respectively.

The slotted explore-exploit algorithm in Alg. 1 can be used
in such time varying scenarios by making one modification–
the exploitation time duration is no longer exponential. It is
now a constant which is independent of time i.e., instead of
checking for the condition A log(t) in Alg. 1, the Alg. 1
now performs alternate exploration and exploitation schedules
where the exploration schedule is of length |V | and the
exploitation schedule is also a constant A. This constant A is
chosen based on the knowledge of the time window W over
which the number of flows remain constant. For instance, an
obvious choice is that A < W . Because of these changes,
notice that the regret bound is O(|V |T) (linear in time), as the
attacker must track the changes in the reward by continuously
attacking various nodes at a constant rate.

Remark 10. If additionally, the time varying reward satisfies
|r(v∗w) − r(v∗w−1)| ≤ ε, where r(v∗w) indicates the optimal
reward obtained during the wth time window and r(v∗w−1)
indicates the optimal reward during the w−1th window, each
of duration W time slots with ε > 0 being a positive constant
that is known to the attacker, then regret bounds that are still
linear in time, but with a smaller leading constant can be
achieved. For more details on this see [40].

D. Learning rates in blind scenarios
The time aspect of the attacker’s learning performance is

captured by the regret bounds of the various learning algo-
rithms discussed earlier. Here, we are interested in the scaling
factor for the regret bound which depends on the network
under consideration i.e., we are specifically interested in the
dependency of the learning rates on |V |.
Theorem 2. When the network topology is unknown, it is not
possible for the attacker to achieve a learning rate better than
O(|V |).

Proof: Since it is now known from Lemma 1 that the
optimal attack choice depends on the betweenness metric of
the network and that the reward obtained by attacking a node is
proportional to its betweenness metric, we use the betweenness
metric to prove Theorem 1.

We first prove that the attacker cannot learn in better than
O(|V |) even when the flows are fixed over a given time. We
prove this by contradiction. Assume that it is indeed possible
to learn the best node to attack by only attacking |V | − 1

9

Fig. 1. Betweenness metrics for nodes in network (a) 1
12

[0, 6, 8, 0, 0] and
network (b) 1

12
[0, 6, 0, 0, 0].

nodes. If the learning procedure can be achieved in better than
O(|V |), for example say O(|V | − 1), then it suggests that the
betweenness metric of the |V | − 1 nodes should tell us about
the betweenness metric of the |V |th node. We show below that
this is not true.

Consider a network of 5 nodes where the attacker has esti-
mated the betweenness metric of four nodes as 1

12 [0, 6, 0, 0].
Now if the attacker were capable of inferring the network
topology by only using these four nodes, then it should be
able to identify the betweenness metric of the remaining node.
However, this is not the case. To see this, consider the two
connected networks (each has 5 nodes) shown in Fig. 1. In
both these networks, the betweenness metric for nodes 1, 2, 4, 5
is 1

12 [0, 6, 0, 0]. However, the betweenness metric for node 3
is 8 in the case of the first network and 0 in the case of the
second network. Thus in the case of the first network, if the
attacker did not wait to learn the metric of node 3, then it
would have attacked a sub-optimal node whereas in the case
of the second network the attacker could have ignored learning
the metric for node 3 as its value is less than the metric for
the 2nd node which was already learned to be 6/12. However,
since by assumption the network topology is not known, the
attacker requires all the betweenness metrics to determine the
optimal node to attack.

For the case where flows change rapidly, then this result is
straightforward. Specifically, in this case, the learning rate is
O(|V |3), which is the computational complexity of solving (1)
by using the knowledge of the network topology [19].

Thus, it is clear that it is not possible to learn the best node
to attack in a blind scenario without attacking all |V | nodes.
In other words, when the network topology is unknown, it is
not possible to achieve a learning rate better than O(|V |). This
completes the proof.

V. RESULTS - SINGLE NODE ATTACK SCENARIO

The performance of various attack strategies is discussed
under two cases below - a) when the flows are fixed over T
epochs and b) when the flows randomly change every epoch.
These are the two extreme cases that the attacker faces when
attacking a network. When only a fraction of the flows change
over time, then the behavior of the attacker is expected to
be between the performance of these two cases. Due to space
limitations, we consider only these extreme cases in this paper.
In both cases, we average the performance of the proposed
algorithms over 100 network instantiations each with 50 nodes
and present the network interdiction performance over T =

5000 epochs by plotting the cumulative proportion of the flows

blocked at every epoch i.e.,
∑
t

F t
G−F

t
G\At

1

F t
G

, where At1 indicates
the node attacked during epoch t. Note that F tG is a random
value between 1 and |V |/2. The parameter A in Alg. 1 is taken
to be 1.

A. Fixed flow scenarios

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

UCB learning
based Attacker

Slotted explore-exploit
based Attacker

Contextual bandit
based Attacker

Random Attacker

Omniscient and
Node-betweenness-based attackers

Fig. 2. Network attack performance against fixed flows in a star network,
number of nodes=50.

Epochs
0 200 400 600 800 1000

A
ve

ra
ge

 n
um

be
r

of
 s

to
pp

ed
 fl

ow
s

0

0.5

1

1.5

2

2.5

3

Omniscient attacker
Slotted explore-exploit based learning
Contextual bandit-based learning
Node-betweenness based attack
UCB-based Learning
Random attacks

Fig. 3. Network attack performance against an Erdös-Rényi random network,
connection probability (p) = 0.8, number of nodes = 50. The average number
of flows stopped in one network instantiation of the ER network is shown.

Fig. 2 shows the performance of the various attack strategies
against a star network. Since the root node has the maximum
betweenness metric and is also the optimal attack choice (for
all the network instantiations) for the omniscient attacker in
this network, the performance of both these strategies is the
same. Since all flows are stopped by attacking the root node,
the slope of the omniscient attacker performance is 1. Notice

10

that after the initial learning period, the slope of the rewards
attained by the slotted explore-exploit learning algorithm is
also 1 during the exploitation phases. This indicates the fact
that the slotted explore-exploit algorithm has learned the
optimal node to attack i.e., the root node. Further, the steps
(flat regions) seen in the performance of this algorithm are due
to the exploration phases that are performed at exponentially
increasing intervals. Since there are 50 nodes, the length of
each exploration phase is also 50 epochs. While the slope
of the rewards achieved by the UCB algorithm is also 1, the
learning performance is slower in comparison with the slotted
explore-exploit algorithm due to the continuous exploration-
exploitation performed by the UCB algorithm.

The contextual bandit algorithm performs significantly
worse than the slotted explore-exploit algorithm because the
context provided to the contextual bandit algorithm is not
sufficient to have any advantages over the other algorithms.
Specifically, this is due to the high dimensional context vector
and also the fact that just relying on the source-destination
node pair (and not the entire flow path) does not reveal any
information about the shortest path between them (which is
necessary to attack the network). Therefore, in this case, the
context provided confuses the attacker and thereby degrades
its attack performance. As expected the random attacker’s
performance is worse than all the other approaches as it does
not use any feedback and only serves as a lower bound for the
attacker’s performance.

Fig. 3 shows the average number of flows stopped[
1
t

∑
t

[
F tG − F tG\At

1

]]
in an ER network by the attacker.

Specifically, it shows the performance of the various attack al-
gorithms against one network instance. The poor performance
of the node-betweenness-based attack strategy (relative to the
omniscient attacker) is due to the fact that when a fixed number
of random flows is considered, there may or may not be any
of these flows that pass through the node with the maximum
betweenness metric value of the network G. Therefore, just
relying on the overall network metric and not utilizing any
information from the flows in the network is not beneficial to
the attacker. As we will show shortly, the node betweenness
metric of G should be used for network attacks only when the
flows are randomly changing in the network. This is because
the betweenness metric indicates the average number of flows
that pass through a node and hence it may or may not work in
instantaneous cases where a fixed number of flows are present
in the network. This behavior indicates that even in this simple
case i.e., when the flows are fixed, the popularly used attack
strategies fail to perform well. This emphasizes the need for
online learning techniques to be employed when networks are
attacked blindly.

In Fig. 3, it is seen that the slotted explore-exploit algorithm
performs very well in comparison to the other algorithms and
also converges to the performance of the omniscient attack
strategy. This indicates that it has learned the optimal node
to attack which is the node with the maximum betweenness
in G′ as shown in Lemma 1. The UCB algorithm is seen to
perform poorly in the case of the ER network as it continuously
explores and exploits and therefore is not able to learn the

best node to attack. This behavior is especially seen when
there is not much difference between the rewards obtained by
attacking various nodes. Under such cases, the UCB indices
force the UCB algorithm to explore continuously [35]. This
issue does not arise in the case of a star network because
there is a significant difference in the rewards obtained by
attacking the root node (the optimal node to attack) and any
other node. In Fig. 3, the contextual-bandit and the random
attack algorithms are seen to perform worse than the other
algorithms due to the same reasons that were mentioned earlier
in the context of a star network.

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

200

400

600

800

1000

1200

Omniscient attacker

Slotted explore-exploit based attacker

Node betweenness-based attacker

Contextual bandit-based attacker

UCB learning
based attacker

Random Attacker

Fig. 4. Network attack performance against fixed flows in an ER network,
p = 0.8, number of nodes = 50.

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Omniscient attacker

Slotted explore-exploit-based Attacker

Node betweenness-based attacker

Contextual bandit-based attacker

UCB learning
based attacker

Random attacker

Fig. 5. Network attack performance against fixed flows in a BA network,
connection degree = 5, number of nodes = 50.

Figs. 4 and 5 show the attacker’s performance, averaged
over 100 network instances, against ER and BA networks
respectively, when the flows are fixed. As compared to the
star network, the node-betweenness-based attack strategy fails
to perform well in both these networks. This is because the

11

betweenness metric is useful on average and not in instanta-
neous scenarios where the flows are fixed. Also notice that in
both these networks, the slotted explore-exploit algorithm can
perform better than the node-betweenness-based attack strategy
and that the slope of the attacker’s performance matches that of
the omniscient attacker. This indicates that the slotted explore-
exploit algorithm has learned the best node to attack. The
jumps in the performance of the slotted explore-exploit algo-
rithm again indicate the epochs where the exploration phases of
the algorithm are finished and the exploitation starts. The UCB,
contextual bandits and the random attack algorithm perform
poorly against both the ER and BA networks due to continuous
exploration-exploitation, no useful context information and a
lack of feedback respectively.

Fig. 6. PPP-based network model, with nearest neighbor connections. The
red dots indicate the various network nodes and the blue lines indicate the
network connections.

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

500

1000

1500

2000

2500

Omniscient attacker

Slotted explore-exploit
based attacker

Node betweenness-based attacker

UCB learning
based attacker

Contextual bandit-based attacker

Random attacker

Fig. 7. Network attack performance against fixed flows in a PPP-based
network, number of nearest neighbor connections = 5, number of nodes = 50.

In Fig. 6, we simulate a network with 50 nodes that are
distributed in a plane according to a Poisson point process
(PPP) model [31] and each node connects to its 5 nearest
neighbors. Fig. 7, shows the network attack performance

against this PPP network and even in this case it is seen that
when the flows are fixed the slotted explore-exploit learning
algorithm can match the omniscient attacker’s performance
after its exploration phases. The performance trends of the
other attack strategies is similar as seen in other network
topologies.

The main takeaways from the attackers performance against
a network with fixed flows are-

1) The optimal node to attack in fixed flow scenarios is
the node with the maximum betweenness metric over
G′ (see Lemma 1).

2) The slope of the rewards achieved by the slotted
explore-exploit algorithm matches that of the omni-
scient attacker after the exploration phases i.e., it learns
the optimal node to attack.

3) While the slope of the rewards achieved by the UCB
algorithm matches the omniscient attacker in a star
network, the learning procedure is slow in comparison
with the slotted explore-exploit algorithm. However,
due to its continuous exploration-exploitation, the UCB
algorithm is seen to not perform well against ER and
BA networks.

4) The source-destination node pair which is the context
for the contextual bandit algorithm is not sufficient to
learn the best nodes to attack and thereby degrades the
attackers performance.

5) The betweenness-based attack is not ideal in fixed-flow
scenarios as it only indicates the average number of
flows that pass through a node and hence cannot be
used to address such instantaneous scenarios.

6) The performance trends of the various algorithms in
a fixed flow scenario is seen to be similar in all the
networks considered.

7) The performance results show that information about
flows in the network is more important to attack a
network than the network topology itself in a fixed flow
scenario. But notice that the network topology does
provide some information as the performance of the
various attack strategies is better than that of the random
attacker.

8) Overall, it is important to realize that network topology
and flows play a more crucial role in determining the
attacker performance rather than just the number of
nodes of the network. For example, even within the
class of ER networks that have the same number of
nodes, ∆min varies based on the connection probability
p. This affects the learning rates of the algorithms
proposed in this paper.

B. Random flow scenarios

Figs. 8-10 show the performance of the attack strategies
when the flows randomly change (both the number of flows
and also the source-destination node pairs) at every epoch.
Since the flows change every epoch, W is taken to be 1.6

6If the attacker is aware of the time period over which flows remain fixed
before changing, then W can be chosen appropriately.

12

The difficulty in learning over various networks is clearly seen
in the results shown. The star network is the easiest to learn
and hence even in this case, the performance of the slotted
explore-exploit algorithm matches that of the optimal attacker
after the initial learning phase. In fact it is the only network
where it is possible to learn the optimal node since the optimal
node does not change regardless of the flows. However, this
is not the case in Figs. 9 and 10 (ER and BA networks)
where there is significant difference in the performance of the
optimal attacker and the slotted explore-exploit algorithm. This
behavior is expected because the learning algorithms cannot
learn the optimal node choice in such a random flow scenario,
which is why the regret (gap between the learning performance
and the optimal performance) incurred in these cases is linear
in time (as mentioned in Section IV-C). In Figs. 9, 10 notice
that the attacker’s performance is better, in terms of the rewards
achieved, in the case of BA networks as compared to the ER
networks. This is because there exists a popular node through
which several flows pass in the BA networks as mentioned
earlier.

It is interesting to notice that in the random-flow scenario,
the slope of the rewards achieved by the slotted explore-
exploit algorithm matches that of the betweenness-based attack
strategy after the learning phase. This indicates that the slotted
explore-exploit algorithm learns to attack the node with the
maximum betweenness metric in G. Since the flows are chang-
ing randomly, the betweenness metric indeed represents the
average number of flows stopped by attacking a node. Hence,
on average a large fraction of the flows indeed pass through
the node that has the maximum betweenness metric. The
performance of the slotted explore-exploit algorithm indicates
that it does not learn about the flows in the network at any
given epoch because it cannot match the performance of
the omniscient attacker. But instead, it implicitly learns the
network topology by learning the node-betweenness metric.

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Slotted explore-exploit
based Attacker

UCB learning
based Attacker

Contextual bandit
based Attacker

Random Attacker

Omniscient and
Node-betweenness-based attackers

Fig. 8. Network attack performance against random flows in a Star network,
number of nodes = 50.

The UCB algorithm learns to attack the optimal node only
in the case of a star network albeit more slowly than the

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

200

400

600

800

1000

1200

Omniscient attacker

Node betweenness-based attacker

Slotted explore-exploit-based attacker

UCB learning
based attacker

Contextual bandit
based attacker

Random attacker

Fig. 9. Network attack performance against random flows in an ER random
network, p = 0.8, number of nodes = 50.

Epochs
0 1000 2000 3000 4000 5000

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

0

200

400

600

800

1000

1200

1400

1600

1800

Omniscient attacker

Node betweenness-based attacker

Slotted explore-exploit-based attacker

UCB learning-based attacker

Contextual bandit-based attacker
Random attacker

Fig. 10. Network attack performance against random flows in a BA network,
number of nodes = 50, connection degree = 5.

slotted explore-exploit algorithm. However, due to its constant
exploration-exploitation schedule and the fact that the optimal
attack choice changes every time instant, its performance
is worse in the cases of ER and BA networks as seen in
Figs. 9 and 10. Therefore it cannot keep up with the randomly
changing flows. As mentioned in the fixed flow case, just
having the source-destination node pair information as context
is not helpful for the contextual bandit algorithm. This can
be seen from Figs. 8-10 where its performance is close to
that of a random attacker. This behavior of the contextual
bandit algorithm suggests that in order to harness the power
of these algorithms, it is appropriate for the attacker to be able
to observe more parameters about the victim and not just the
source-destination node pair.

The main takeaways from the attackers performance against
a network with random flows are-

1) The star network is the easiest to learn irrespective of

13

whether the flows are fixed or not.
2) When the flows change randomly, the attacker can only

learn about the average behavior of the flows. Specif-
ically, the attacker learns the node with the maximum
betweenness metric which indicates the average number
of flows that pass through a node in the network.

3) Although the learning algorithms cannot learn the opti-
mal attack strategies, the performance results show that
learning is still important as it enables the attacker to
implicitly learn the network topology by learning the
node with the maximum betweenness centrality metric.

VI. MULTIPLE NODE ATTACK STRATEGIES

Here, we discuss scenarios where the attacker(s) can attack
multiple nodes in the network at the same time. For instance,
such scenarios occur in wireless networks where the attacker’s
transmit power is high enough to attack several nodes in its
vicinity or can use beam forming to selectively attack different
nodes in the network. The max-flow min-cut theorem states
that the maximum amount of flows in a network pass through
the set of edges that form the min-cut of G′ (recall that G′ is
the sub network formed from G with only the set of nodes and
edges that are needed for the flows {f ts,d}s 6=d∈V). Therefore,
when multiple nodes can be attacked, the attacker must attack
the nodes that form this min-cut to stop a maximum number
of flows. However, this min-cut can be evaluated only when
the network topology is known a priori. However, this is not
the case for the blind (topology unknown) scenarios studied
in this paper, and hence the attacker faces the same dilemma
as discussed previously. Therefore, we present learning algo-
rithms that can be used to disrupt a network by attacking
multiple nodes. Specifically, we study two scenarios– a) a
single attacker can attack multiple nodes and b) multiple
attackers can together attack multiple nodes, with each attacker
capable of attacking only one node.

A. Single attacker

When any k < |V | nodes can be attacked simultaneously,
then there are

(|V |
k

)
possibilities that must be tried by the

attacker in order to identify the best set of nodes that should
be attacked. The total number of actions in such cases can be
exponential depending on the network size and the number of
nodes k that can be attacked. Thus, classical MAB algorithms
(such as UCB) will need an exponential number of time steps
to learn the best set of nodes that should be attacked. However,
the attacker may not have sufficient time and such flexibility in
real-time settings. Combinatorial bandit approaches [45], [46]
have been used to address learning in such scenarios. In these
algorithms, a set of arms (nodes in the current context) are
played (attacked in the current context) together at any given
time instant in an attempt to learn the best set of arms that
minimizes the regret (or maximizes the reward). For example,
these algorithms have been used to address social influence
maximization over a directed graph in [47], to learn which
popular files to be cached in a wireless network in [46] and
several others.

In this paper, we employ the CUCB1 algorithm in [45] to
learn the best set of k nodes to attack in order disrupt a maxi-
mum number of flows in the network under consideration. Due
to space limitations, the implementation aspects of CUCB1
modified for the network interdiction setting can be found in
Appendix IV in the extended version of this paper [28]. The
attacker performance is shown in Fig. 11 and will be discussed
shortly by comparing it with the cases where multiple attackers
can simultaneously attack the network.

B. Multiple attackers

We next consider scenarios where multiple attackers can
simultaneously attack the network by attacking one node
each. In such scenarios, we show that it is not possible for
the attackers to learn (their respective best nodes to attack)
independently of each other and that they have to collaborate
at every time instant to attack the network effectively.

Let J = {1, 2, . . . , J} indicate the set of attackers. Each
attacker’s decisions correspond to attacking one node in the
network: the decision variable for each attacker is denoted by
xtj for the jth attacker and xt−j indicates the decision made by
the other attackers. xtj and xt−j are |V |×1 vectors with either
a 0 or a 1 in each element indicating the node attacked. The
attackers are all indirectly interacting with each other because
the decisions taken by each attacker impacts the total number
of flows stopped in the network. In addition, each attacker
may also face a budget constraint denoted by cj that limits the
attack resources. In this paper, the budget constraint indicates
the number of nodes that can be attacked by each attacker.

For the network interdiction problem considered in this
paper, the jth attacker intends to solve the following problem

max
xt
j

F tG − FG\{xt
j ,x

t
−j}

s.t. cjxtj ≤ k and {xji}
|V |
i=1 ∈ {0, 1}, (13)

where xji is the ith element in the vector xj . Similar problems
are solved by each attacker to find the best node they can
attack. However, notice that each of these problems depends
on the nodes attacked by the other attackers. When such
knowledge is not available i.e., the attackers cannot cooperate
with each other, then (13) is shown to be equivalent to a max-
max decentralized game [12]. However, if there is a centralized
controller that coordinates the actions of all the attackers, then
the network interdiction problem can be jointly written as

max
xt

F tG − FG\{xt}

s.t. cjxtj ≤ k, and {xji}
|V |
i=1 ∈ {0, 1} ∀j = 1, 2, . . . , J,

(14)
where xt = {xtj ,xt−j}.

The decentralized optimization in (13) is inefficient when
compared to the centralized optimization in (14). This arises
due to the fact that each attacker must optimize its decision
without knowledge of the decisions (nodes attacked) taken by
the other attackers. This inefficiency was also characterized by
using a metric known as the price of anarchy in [12], where
it is shown that the inefficiency increases as the size of the

14

network increases. Therefore, the attackers must collaborate
with each other to optimally attack a network.

Theorem 3. Multiple attackers cannot learn the optimal
network interdiction strategy independently.

Proof : See the extended version of this paper [28].
In order for the attackers to learn the optimal attack choice

in a real time setting, the slotted explore-exploit algorithm in
Alg. 1 can be modified easily. Specifically, during the explo-
ration phases in Alg. 1 all possible joint actions (Cartesian
product of the individual attackers’ action spaces) must be tried
by the attackers together. Therefore, during the exploration
phase, instead of |V | time instants in Alg. 1, the attackers now
spend

∏NJ

i=1 |Vi| time instants where NJ is the total number of
attackers and Vi indicates the set of nodes that can be attacked
by the ith attacker. The exploitation phase and the transition
between the exploration and exploitation phases remains the
same as in Alg. 1. For this setup, the regret bound can be
shown to be

R(T) ≤ A
NJ∏
i=1

|Vi|∆max log(T) +

NJ∏
i=1

|Vi|∆max

+

∞∑
t

2

NJ∏
i=1

|Vi|∆maxt
−A

2 ∆2
min , (15)

The proof is straightforward using the proof of Theorem 1 and
is hence skipped.

Epochs
×104

0 1 2 3 4 5

C
um

ul
at

iv
e

A
ve

ra
ge

 F
ra

ct
io

n
of

 S
to

pp
ed

 F
lo

w
s

×104

0

0.5

1

1.5

2

2.5

3
Independent UCB Learning
Independent Slotted Explore-Exploit Learning
Joint Slotted Explore-Exploit Learning
Single attacker, Combinatorial bandit algorithm
Omniscient Attackers

Fig. 11. Network attack performance against fixed flows in a ER network,
with 25 nodes and p = 0.8, when two nodes can be attacked simultaneously
by the attackers.

Fig. 11 shows the performance of the proposed (joint-
learning) algorithm in comparison to independent learning by
the attackers and the omniscient attack strategy that disrupts
multiple nodes (as many as the number of attackers). Also
seen is the performance of a single attacker that can attack
multiple nodes. Firstly, notice that the slope of the rewards
achieved by the single attacker and the multiple attackers
with coordination matches that of the omniscient attacker
after the initial learning phase. This indicates that in both the

cases, the attackers learned the best nodes to attack. Multiple
attackers with coordination learn more slowly than the single
attacker because of the longer exploration phases (of duration
|V |2) as mentioned above. Therefore, this performance (both
the learning rate and the final attack performance achieved)
indicates that it is beneficial for multiple attackers to behave
as a single attacker in practical real-time settings.

In Fig. 11, it is also seen that the joint slotted explore-
exploit learning algorithm (where multiple attacker cooperate)
performs significantly better than the independent learning
techniques (both independent slotted explore-exploit and in-
dependent UCB) where the multiple attackers learn indepen-
dently of the other attackers. The joint learning algorithm
initially performs poorly in comparison with the independent
learning algorithms because of the longer exploration phase of
duration |V |2 as opposed to |V | in the case of independent
learning (again recall that in the case of independent learning,
each attacker independently uses Alg. 1 or UCB). When
attackers are learning independently, they can learn the best
nodes to attack if and only if all possible combinations of
the attackers’ choices are encountered during the respective
exploration phases. But this can be ensured only when there is
cooperation between the multiple attackers or if the exploration
phases (i.e., which nodes to attack at any given time instant)
are decided a priori before the learning starts. Therefore, this
reinforces the fact that cooperation is necessary when multiple
attackers exist and this results in significant performance gains
over naive independent learning.

VII. CONCLUSIONS

In this paper, we studied blind network interdiction strategies
i.e., attacking networks when their topology is unknown.
Several learning algorithms have been proposed that attempt
to learn the best node to attack in order to disrupt the network.
We considered cases where a single attacker or multiple
attackers can attack either a single node or multiple nodes
in the network. We showed that (a) relying on well-known
graph metrics, such as betweenness centrality, to attack a
network works only in the case of star networks and does
not necessarily work for all network topologies unless the
flows are random, (b) under blind scenarios, the learning rates
cannot be improved beyond O(|V |) where |V | is the number of
nodes in the network, (c) in fixed-flow scenarios, the proposed
slotted explore-exploit learning algorithm learns the optimal
node to attack and in random flow scenarios it learns the
node with the maximum betweenness metric in the underlying
network, (d) multiple attackers have to collaborate at every
time instant in order to learn the best set of nodes to attack in
the network when the topology is unknown and (e) the learning
performance, be it a single attacker or multiple attackers,
depends on the network structure and not just the number of
nodes in the network. We also showed that the proposed slotted
explore-exploit learning always performs better, in terms of
the flows stopped, than the popular learning algorithms such
as UCB and contextual bandits. It remains to answer what
additional observable parameters can help the attacker improve
its learning rates i.e., better than O(|V |).

15

REFERENCES

[1] S. Amuru and R. M. Buehrer, “Optimal jamming in digital communica-
tion - impact of modulation,” in Proc. Global Commun. Conf., Austin,
TX, Dec. 2014.

[2] S. Amuru and R. M. Buehrer, “Optimal jamming against digital
modulation,” IEEE Trans. Inf. Forensics and Security, vol. 10, no. 10,
pp. 2212-2224, Oct. 2015.

[3] S. Amuru et al., “Jamming bandits,” in arXiv:1411.3652, Nov. 2014.

[4] S. Amuru and R. M. Buehrer, “Optimal jamming using delayed learn-
ing,” in Proc. Military Commun. Conf., Baltimore, MD, Oct. 2014,
pp. 1528-1533.

[5] M. Litchman et. al., “A communications jamming taxonomy,” IEEE
Security and Privacy, to appear, 2015.

[6] A. Proano and L. Lazos, “Selective jamming attacks in wireless
networks,” in Proc. Intern. Conf. Commun., (ICC), Cape Town, South
Africa, May 2010, pp. 1-6.

[7] R. K. Wood, “Deterministic network interdiction,” Mathl. Comput.
Modelling, vol. 17, no. 2, U.K., 1993, pp. 1-18.

[8] E. Israeli and R. K. Wood, “Shortest-path network interdiction,” Netw.
vol. 40, no. 2, pp. 97-111., 2002.

[9] D. S. Altner, O. Ergun, and N. A. Uhan, “The maximum flow network
interdiction problem: valid inequalities, integrality gaps, and approx-
imability,” Oper. Res. Lett., vol. 38, pp. 33-38, 2010.

[10] K. Cormican, D. Morton, and K. Wood, “Stochastic network interdic-
tion,” Oper. Res., vol. 46, pp. 184-197, 1998.

[11] A. Washburn and K. Wood, “Two-person zero sum games for network
interdiction,” Oper. Res., vol. 43, no. 2, Mar. 1995, pp. 243-251.

[12] H. Sreekumaran et. al., “Multi-agent decentralized network interdiction
games,” in arXiv:1503.01100, Mar. 2015.

[13] P. Tague et. al., “Linear programming models for jamming attacks on
network traffic flows,” in Proc. Intl. Symp. Modeling and Opt. Mobile,
Ad Hoc, and Wireless Netw., (WiOpt), Berlin, Germany, Apr. 2008,
pp. 207-216.

[14] R. Albert et. al., “Error and attack tolerance of complex networks,”
Nature, vol. 406, pp. 378-482, 2000.

[15] D. Magoni, “Tearing down the internet,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 6, pp. 949-960, Aug. 2003.

[16] D. Zhang, E. K. Çetinkaya, and J. P. G. Sterbenz, “Robustness of mobile
ad hoc networks under centrality-based attacks,” in Proc. Reliable Netw.
Design Modeling, (RNDM), Almaty, KZ, Sept. 2013, pp.1-7.

[17] B. R. da Cunha et. al., “Complex networks vulnerability to module-
based attacks,” in arXiv:1502.00353, Feb. 2015.

[18] P.-Y. Chen and A. O. Hero, “Assessing and safeguarding network
resilience to nodal attacks,” IEEE Commun. Mag., vol. 52, no. 11,
pp. 138-143, Nov. 2014.

[19] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35-41, Mar. 1977.

[20] U. Brandes, “A faster algorithm for betweenness centrality,” J. Math.
Soc., vol. 25, no. 2, pp. 163-177, 2002.

[21] P. Erdös and A. Rényi (1959). “On random graphs,” Publ. Math.
Debrecen, vol. 6, pp. 290-297, 1959.

[22] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509-512, 1999

[23] D. Acemoglu, M. Dahleh, I. Lobel, A. Ozdaglar, “Bayesian learning in
social networks,” Review of Economic Studies, vol. 78, pp. 1201-1236,
Mar. 2011.

[24] D. Acemoglu, A. Ozdaglar, A. ParandehGheibi, “Spread of
(mis)information in social networks,” Games and Economic Behavior,
vol. 70, no. 2, pp. 194-227, Feb. 2010.

[25] D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, “Cascades in networks
and aggregate volatility,” working paper, MIT, 2010.

[26] M. Valko, R. Munos, B. Kveton, and T. Kocak, “Spectral bandits
for smooth graph functions,” in Proc. Intern. Conf. Mach. Learning
(ICML), Beijing, China, Jun. 2014, pp. 46-54.

[27] M. K. Hanawal and V. Saligrama, “Efficient detection and localization
on graph structured data,” in Proc. Intern. Conf. Acoust. Speech Signal
Process. (ICASSP), Brisbane, Australia, 2015.

[28] S. Amuru, R. M. Buehrer, and M. van der Schaar, “Blind Network
Interdiction Strategies - A Learning Approach” available at http://www.
buehrer.ece.vt.edu/papers/BlindNetworkInterdiction.pdf

[29] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in Proc. Intern. Conf. Data Engg. (ICDE),
Cancun, Apr. 2008, pp. 506-515.

[30] H. Wang, J. M. Hernandez and P. Van Mieghem, “Betweenness cen-
trality in a weighted network,” Phys. Rev. E, vol. 77, pp. 0461051-
04610510, Apr. 2008.

[31] H. S. Dhillon, R. K. Ganti, F. Baccelli and J. G. Andrews, “Modeling
and analysis of K-tier downlink heterogeneous cellular networks,” IEEE
J. Sel. Areas Commun., vol. 30, no. 3, pp. 550-560, Apr. 2012.

[32] R. W. Stevens, TCP/IP Illustrated, Vol. 1: The protocols. Addison-
Wesley, 2011.

[33] S. Chen, Estimating the number of nodes in a mobile wireless network,
in Proc. Global Commun. Conf., Miami, FL, Dec. 2010, pp. 1-5.

[34] Z. Yang et. al., Determining the number of nodes for wireless sensor
networks, in Proc. Symp. on Emerging Tech. Mobile and Wireless
Comm., Jun. 2004, pp. 501-504.

[35] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multi-armed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235-256,
May 2002.

[36] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multi-armed bandit problem,” SIAM J. Comput., vol. 32,
no. 1, pp. 48-77, Jan. 2002.

[37] R. Kleinberg, “Nearly tight bounds for the continuum-armed bandit
problem,” in Proc. Neural Inf. Proc. Syst., 2004.

[38] S. Magureanu et al, “Lipschtiz bandits: regret lower bounds and optimal
algorithms,” in Proc. Conf. Learning Theory, (COLT), 2014.

[39] A. Slivkins, “Contextual bandits with similarity information,” in Proc.
Conf. Learning Theory, (COLT), 2011.

[40] C. Tekin, L. Canzian, and M. van der Schaar, “Context adaptive big data
stream mining,” in Proc. Allerton Conf. Commun. Control and Comput.,
Monticello, IL, Oct. 2014.

[41] A. Garivier and E. Moulines, “On upper-confidence bound policies for
switching bandit problems,” in Proc. Conf. Alg. Learning Theory (ALT),
Espoo, Finland, Oct. 2011, pp. 174-188.

[42] F. Comellas and S. Gago, “Spectral bounds for the betweenness of a
graph,” Linear Algebr. Appl., vol. 423, no. 1, pp. 74-80, 2007.

[43] A. Fronczak, P. Fronczak, and J. Holyst, “Average path length in
random networks,” J. Phys. Rev. E, vol. 70, no. 5, pp. 0561101-0561107,
Nov. 2004.

[44] V. Blondel et. al., “Distance distribution in random graphs and ap-
plication to network exploration,” J. Phys. Rev. E, vol. 76, no. 6,
pp. 0661011-0661018, Dec. 2007

[45] B. Kveton et. al., “Tight regret bounds for stochastic combinatorial
semi-bandits,” in Proc. Artificial Intell. Stat. (AISTATS), Jul. 2015.

[46] A. Sengupta, et. al., “Learning distributed caching strategies in small
cell networks,” in Proc. Intern. Symp. Wireless Commun. Syst. (ISWCS),
Barcelona, Spain, Aug. 2014, pp. 917-921.

[47] W. Chen, et. al., “Combinatorial Multi-Armed Bandit: General Frame-
work, Results and Applications,” in Proc. Intern. Conf. Mach. Learning,
Atlanta, GA, Jun. 2013, pp. 1-9.

http://www.buehrer.ece.vt.edu/papers/BlindNetworkInterdiction.pdf
http://www.buehrer.ece.vt.edu/papers/BlindNetworkInterdiction.pdf

	Introduction
	System Model and Problem Formulation
	Victim Network Model
	Flow model
	Attack Model

	Single-Node Attack – Benchmark Strategies and Performance Analysis
	Omniscient attacker
	Node Betweenness-based attack
	Notes on attacker performance

	Single-Node Attack – Blind Strategies and Performance Analysis
	Random attacks
	Learning strategies against fixed flow scenarios
	Notes on feedback used by the attacker for learning
	Notation

	Random flow scenarios
	Time varying regret bound for the slotted explore-exploit algorithm

	Learning rates in blind scenarios

	Results - Single Node Attack Scenario
	Fixed flow scenarios
	Random flow scenarios

	Multiple node attack strategies
	Single attacker
	Multiple attackers

	Conclusions
	References

