

OBJECTIVES

Using an automated machine learning framework (Auto-**Prognosis**) to build a model for predicting 3-year mortality in CF patients using data from the UK CF registry.

Cruical for many clinical decisions:

• Establishing the optimal timing for referring patients for lung transplantation.

• Administring different types of **treatments**.

Our method: AutoPrognosis

• Automatically constructs ensembles of prognostic modeling pipelines, provides "clinical explanations" for the learned models, and can easily update its learned models as more data is collected over time.

• A prognostic modeling pipeline: data imputation, feature processing and classification algorithms.

RISK FACTORS

Which patient variables best explain accuracy gains? -• Variable importance rankings depend on the diagnostic accuracy metric used. • Oxygen therapy is the variable used by machine learning to improve precision.

Machine Learning-based predictions of prognosis in Cystic Fibrosis

AHMED M. ALAA¹, THOMAS DANIELS², R. ANDRES FLOTO³, AND MIHAELA VAN DER SCHAAR^{1,4}

¹UCLA, ² UNIVERSITY HOSPITAL SOUTHAMPTON, ³ DEPARTMENT OF MEDICINE, UNIVERSITY OF CAMBRIDGE & ROYAL PAPWORTH HOSPITAL, CAMBRIDGE, ⁴ ALAN TURING INSTITUTE This work was supported by the UK Cystic Fibrosis Trust.

PATIENT COHORT

Inclusion criteria:

• Enrolled in the UK CF registry with annual followup data available on the 31^{st} of **December**, 2012.

- Adult patients who are over **18 years** of age.
- Follow-up data on the 31^{st} of **December**, 2015.

Cohort statistics:

- A total of **4,064 patients** included.
- A total of **115 variables** for each patient.
- Mortality rate was **9.4**%.

DIAGNOSTIC ACCURACY

How should diagnostic accuracy be evaluated?

• Most previous works focused on AUC-ROC, but AUC-ROC can be deceptively large because true negatives can be trivially predicted + AUC-ROC does not account for imbalanced outcomes. • Alternative: area under the precision-recall curve (average precision) focuses only on positive cases.

Prognostic model	AUC-ROC	Youden's J statistic	AUC-PR	Average Precision	F ₁ score
AutoPrognosis	0.89 ± 0.01	0.67 ± 0.02	0.58 ± 0.04	0.59 ± 0.04	0.60 ± 0.03
Nkam <i>et al</i> .	0.86 ± 0.01	0.58 ± 0.03	0.50 ± 0.03	0.48 ± 0.03	0.52 ± 0.02
Buzzetti et al.	0.83 ± 0.01	0.54 ± 0.03	0.42 ± 0.02	0.44 ± 0.03	0.49 ± 0.02
CF-ABLE-UK	0.77 ± 0.01	0.48 ± 0.05	0.28 ± 0.04	0.20 ± 0.02	0.34 ± 0.02
FEV ₁ % predicted criterion	0.70 ± 0.01	0.41 ± 0.02	0.50 ± 0.02	0.27 ± 0.02	0.47 ± 0.01

Impact on lung transplant referral decisions

• Operating point: fix the negative predictive value (NPV) at the one achieved by the "FEV₁ < 30%" criterion. • Improvement in the positive predictive value (PPV) from 48% to 65%.

	Cutoff	PPV (95% CI) (%)	NPV (95% CI) (%)	Sens (95% CI) (%)	Spec (95% CI) (%)	Accuracy (%)	F ₁ score
FEV ₁ % predicted	<20	66 (62, 70)	92 (91, 93)	13 (9, 17)	99 (98, 100)	92 (91, 93)	21 (19, 23)
	< <u>30</u>	<u>48 (44, 52)</u>	95 (94, 96)	<u>46 (42, 50)</u>	95 (94, 96)	91 (90, 92)	47 (45, 49)
	<40	29 (27, 31)	96 (95, 97)	62 (60, 64)	86 (84, 88)	84 (83, 85)	40 (38, 42)
	<50	21 (19, 23)	97 (96, 98)	73 (71, 75)	75 (73, 77)	75 (74, 76)	33 (31, 35)
Nkam <i>et al</i> . ³⁶	>6.5	75 (64, 86)	92 (91, 93)	13 (11, 15)	99 (98, 100)	92 (91, 93)	22 (19, 25)
	>4	<u>56 (52, 60)</u>	95 (94, 96)	<u>46 (44, 48)</u>	96 (95, 97)	92 (91, 93)	50 (49, 51)
	>2.5	42 (37, 47)	96 (95, 97)	61 (60, 62)	91 (90, 92)	88 (87, 89)	49 (45, 53)
	>2	31 (27, 35)	97 (96, 98)	73 (72, 74)	83 (79, 87)	82 (78, 86)	43 (39, 47)
	>0.50	88 (79, 97)	92 (91, 93)	13 (12, 14)	99 (98, 100)	92 (91, 93)	23 (22, 24)
AutoPrognosis	> <u>0.33</u>	65 (61, 69)	95 (94, 96)	<u>46 (45, 47)</u>	97 (96, 98)	93 (92, 94)	53 (51, 55)
	>0.15	49 (43, 55)	96 (95, 97)	62 (61, 63)	93 (92, 94)	90 (89, 91)	54 (50, 58)
	>0.10	36 (32, 40)	97 (96, 98)	74 (73, 75)	87 (86, 88)	86 (84, 88)	48 (45, 51)

CONCLUSIONS

• The area under precision-recall curve is a more appropriate metric than AUC-ROC for evaluating prognostic scores. This fact was overlooked by previous works.

• Our results indicate that competitive machine learning approaches significantly improve prognostic forecasting and will support optimized referral for lung transplantation.

• Incorporating variables related to gas exchange (Oxygenation) into predictive models in addition to spirometric variables can significantly boost the precision of lung transplant referral decisions.

