

¹ University Hospital Southampton, ² Alan Turing Institute, ³ UCLA, ⁴ Department of Medicine, University of Cambridge & Royal Papworth Hospital, Cambridge This work was supported by the UK Cystic Fibrosis Trust.

INFLUENTIAL COVARIATES

Influence of each covariate on the predicted risks: • Different ranking of influential covariates are found for different causes.

• Well-known risk factors, e.g., lung function scores and **nutritional status**, are found to be influential.

Rank	Death Causes					
	Resp. Failure	Other Causes				
1	IV ABX Days Hosp. (+1.65)	Colonic Stricture (+0.89)				
2	FEV1% Predicted (-0.85)	IV ABX Days Hosp. (+0.79)				
3	GI Bleed (non-var.) (-0.69)	Cancer (+0.44)				
4	Gram-Negative (-0.68)	FEV1% Predicted (-0.43)				
5	HD iBuprofen (-0.66)	Gram-Negative (-0.40)				
6	O2 Continuous (+0.65)	GI Bleed (var.) (+0.39)				
7	BMI (-0.54)	O2 Continuous (+0.38)				
8	Weight (-0.49)	HD iBuprofen (-0.32)				
9	GI Bleed (var.) (+0.46)	BMI (-0.28)				
10	Oral Hypo. Agents (-0.44)	Pancreatitis (-0.27)				

ABX: antibiotics

A Deep Learning Approach for Dynamic Survival Analysis with Competing Risks in CF

THOMAS W. V. DANIELS¹, MIHAELA VAN DER SCHAAR^{2,3}, R. ANDRES FLOTO⁴, AND CHANGHEE LEE³

Dynamic Survival Analysis

DISCRIMINATIVE PERFORMANCE

Time-dependent Concordance Index:

• Measure how well survival models **discriminate** the risks of patients • The following table gives the performance given the prediction time t age and the evaluation time Δt years - Risk predictions are issued at the prediction time utilizing the measurements colletcted until that time. - Risk predictions are assessed at the evaluation time.

Algorithms		Respiratory Failure		Other Causes			
		$\Delta t = 1$	$\Delta t = 5$	$\Delta t = 10$	$\Delta t = 1$	$\Delta t = 5$	$\Delta t = 10$
t = 30	cs-Cox	0.748 <u>+</u> 0.10	0.748 <u>+</u> 0.09	0.748 <u>+</u> 0.09	0.604 <u>+</u> 0.13	0.602 <u>+</u> 0.13	0.602 <u>+</u> 0.13
	RSF	0.935 <u>+</u> 0.01	0.925 <u>+</u> 0.01	0.922 <u>+</u> 0.01	0.799 <u>+</u> 0.04	0.772 <u>+</u> 0.05	0.776 <u>+</u> 0.05
	JM	0.833 <u>+</u> 0.02	0.870 <u>+</u> 0.01	0.880 <u>+</u> 0.00	0.728 <u>+</u> 0.04	0.759 <u>+</u> 0.05	0.772 <u>+</u> 0.05
	Proposed	0.954 <u>+</u> 0.00	0.947 <u>+</u> 0.01	0.948 <u>+</u> 0.01	0.920 <u>+</u> 0.02	0.914 <u>+</u> 0.02	0.916 <u>+</u> 0.02
t = 50	cs-Cox	0.801 <u>+</u> 0.11	0.801 <u>+</u> 0.11	0.801 <u>+</u> 0.11	0.649 <u>+</u> 0.15	0.649 <u>+</u> 0.15	0.649 <u>+</u> 0.15
	RSF	0.895 <u>+</u> 0.01	0.889 <u>+</u> 0.02	0.889 <u>+</u> 0.02	0.731 <u>+</u> 0.06	0.763 <u>+</u> 0.03	0.758 <u>+</u> 0.04
	JM	0.878 <u>+</u> 0.02	0.889 <u>+</u> 0.01	0.890 <u>+</u> 0.01	0.784 <u>+</u> 0.04	0.791 <u>+</u> 0.04	0.791 <u>+</u> 0.04
	Proposed	0.962 <u>+</u> 0.00	0.954 <u>+</u> 0.01	0.951 <u>+</u> 0.01	0.933 <u>+</u> 0.02	0.935 <u>+</u> 0.02	0.925 <u>+</u> 0.02

cs-Cox: Landmarking with cause-specific Cox model **

RSF: Landmarking with random survival forest **

JM: Joint models with linear mixture effect & Cox model **

CONCLUSIONS

• Our results indicate that our approach for dynamic survival analysis with competing risks (on the basis of longitudinal data) significantly improves discriminative performance.

We believe that:

- ods.

• Different covariates that are influential when making risk predictions are found for different causes.

• Our method provides dynamic survival analysis that flexibly updates the risk predictions when new mearurements are collected.

• Our approach has the potential to provide clinicians and people with CF with individually tailored risk predictions that may replace the current score-based meth-

• These results need validation in other cohorts but could play a role in day-to-day clinical consultations.