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Abstract—We study a wireless network in which multiple users
stream delay-sensitive applications such as video conferencing
and video streaming. Existing spectrum sharing policies, which
determine when users access the spectrum and at what power
levels, are either constant (i.e. users transmit simultaneously,
at constant power levels) or weighted round-robin time-division
multiple access (TDMA) (i.e. users access the spectrum in
turn, one at a time). Due to multi-user interference, constant
policies have low spectrum efficiency. We show that round-robin
policies are inefficient for delay-sensitive applications because the
various “positions” (i.e. transmission opportunities) in a cycle are
not created equal: earlier transmission opportunities are more
desirable since they enable users to transmit with lower delays.
Specifically, we show that (weighted) round-robin TDMA policies
cannot simultaneously achieve high network performance and
low transmission delays. This problem is exacerbated when the
number of users is large.

We propose a novel framework for designing optimal TDMA
spectrum sharing policies for delay-sensitive applications, which
can guarantee their continuing QoS (CQoS), i.e. the desired
throughput (and the resulting transmission delay) starting from
every moment in time is guaranteed for each user. We prove
that the fulfillment of CQoS guarantees provides strict upper
bounds on the transmission delays incurred by the users. We
construct the optimal TDMA policy that maximizes the desired
network performance (e.g. max-min fairness or social welfare)
subject to the users’ CQoS guarantees. The key feature of
the proposed policy is that it is not cyclic as in (weighted)
round-robin policies. Instead, it adaptively determines which user
should transmit next, based on the users’ remaining amounts
of transmission opportunities needed to achieve the desired
performance. We also propose a low-complexity algorithm, which
is run by each user in a distributed manner, to construct the
optimal policy. Simulation results demonstrate that our proposed
policy significantly outperforms the optimal constant policy and
round-robin policies by up to 6 dB and 4 dB in peak signal-to-
noise ratio (PSNR) for video streaming.

I. INTRODUCTION

A variety of bandwidth-intensive and delay-sensitive appli-
cations, such as multimedia streaming, gaming, and telecon-
ferencing, are increasingly deployed over wireless networks.
Such applications impose huge challenges when deployed over
wireless networks, in which the users share the spectrum and
cause interference to each other. Hence, it is crucial to design
spectrum sharing policies that provide delay-sensitive users
with both high rates and low delays.

The spectrum sharing policies studied in earlier works [1]–
[4] require the users to transmit at constant power levels all
the time. We call them constant (spectrum sharing) policies.
Constant policies are inefficient in many spectrum sharing
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Fig. 1. Two simple round-robin schedules with cycle length 8 for 4 users. The
first one has low delay of 4 for all 4 users, but unfair sharing of transmission
opportunities (TXOPs) (i.e. user 4 gets later TXOPs). The second one has a
fair sharing of TXOPs, but incurs high maximum delay of 7 for user 1.

scenarios with strong multi-user interference. Under strong
multi-user interference, increasing one user’s power level sig-
nificantly degrades the other users’ throughput, which results
in low spectrum efficiency.

One way to manage interference is to let one user access
the spectrum at one time, as in e.g. 802.11e MAC wireless
networks [5]. Such policies are commonly known as time-
division multiple access (TDMA) policies. This paper focuses
on designing optimal TDMA policies for delay-sensitive users.

All the existing TDMA policies are round-robin policies
or their variants (e.g. weighted round-robin policies) [5]–[8].
In round-robin policies, time slots are divided into cycles of
a fixed predetermined length, and each user transmits in fixed
predetermined positions within each cycle. The cyclic nature
of round-robin policies simplifies the implementation, but
imposes restrictions that render round-robin policies inefficient
for delay-sensitive applications. For delay-sensitive applica-
tion, not all the transmission opportunities (i.e. positions) in a
cycle are created equal: the earlier transmission opportunities
(TXOPs) are more desirable because they result in higher
chances to deliver packets before their delay deadlines [5]–[9].
To ensure that the user’s rate and delay constraints are met,
round-robin policies need a long cycle, and a careful sharing
of TXOPs in a cycle. First, a long cycle is necessary. Suppose
that the cycle length is the shortest possible, namely equal to
the number of users (as in standard round-robin policies). Then
the user allocated to the last TXOP suffers severely from delay.
We can compensate this user for its delay by having a longer
cycle and allocating some of the extra TXOPs to it. However,
a long cycle results in an exponentially increasing (in the cycle
length) number of possible policies to choose from. Second,
a careful sharing of TXOPs is necessary (see Fig. 1 for an
illustration of the following discussion). Suppose that the cycle
length is twice the number of users, and that each user gets
two positions in a cycle. For fairness, no user should get two
advantageous (i.e. earlier) TXOPs. A possible fair sharing may
ensure that the user gets both an earlier and a later TXOPs.
However, such a schedule is inefficient in worst-case delay:
the user who gets the first and the last TXOPs in a cycle
will experience high delay between consecutive transmissions.
As we will illustrate in our motivating example (Section IV)
and by simulations (Section VII), round-robin policies cannot



TABLE I. COMPARISON WITH RELATED WORKS.

Spectrum CQoS Delay System or individual
efficiency guarantee guarantee performance achieved

Constant Low No Yes Neither[1]–[4]
Round-robin High No Yes Either for small # of users

[5]–[8] Neither for large # of users
Proposed High Yes Yes Both

simultaneously achieve high system performance (e.g. max-
min fairness) and fulfill the guarantees in terms of transmission
delays required by the delay-sensitive users.

In this paper, we propose a framework for designing opti-
mal TDMA spectrum sharing policies for delay-sensitive ap-
plications. We define a novel quality-of-service (QoS) metric,
called continuing QoS (CQoS) guarantees. CQoS guarantees
require a user’s average throughput starting from every point in
time to be higher than a threshold. CQoS guarantees are stricter
requirements than conventional QoS guarantees which only
guarantee the average throughput starting from the beginning.
We will prove that fulfilling CQoS guarantees results in upper
bounds on transmission delays. We propose a systematic de-
sign methodology, which constructs the optimal TDMA policy
that maximizes the system performance (e.g. fairness) subject
to the users’ CQoS guarantees. The key feature of the proposed
policy is that it is not cyclic as in round-robin policies. Instead,
it adaptively determines which user should transmit according
to the users’ remaining amounts of TXOPs needed to achieve
the target throughput. We propose a low-complexity distributed
algorithm to construct the optimal policy. Simulation results
show that our proposed policy significantly outperforms the
optimal constant policy [1]–[4] and round-robin policies in
peak signal-to-noise ratio (PSNR) for video streaming, by up
to 6 dB and 4 dB respectively, .

Finally, we summarize related works in Table I.

II. SYSTEM MODEL

We consider a wireless network with N users. The set
of users is denoted by N , {1, 2, . . . , N}. Each user has
a transmitter and a receiver. The channel gain from user i’s
transmitter to user j’s receiver is gij . Each user i chooses a
power level pi from a compact set P̂i. We assume that 0 ∈ P̂i,
namely user i can choose not to transmit. We also assume that
the users need to comply with some interference temperature
constraints (ITCs) measured at K locations in the network.
Depending on different scenarios, the ITCs can be imposed
by primary users in a cognitive radio network or the base
station in a femtocell network. The channel gain from user
i’s transmitter to the kth location is gi0k

. Each user i knows
the channel gain {gi0k

}Kk=1 to each measurement location and
the interference temperature limit {Ik}Kk=1 at each location.
Hence, each user i’s set of admissible power levels is

Pi = {pi ∈ P̂i : gi0k
· pi ≤ Ik,∀k = 1, . . . ,K}. (1)

For convenience, we also define user i’s maximum admissible
power level as Pmaxi , maxpi∈Pi pi.

Remark 1: Our system model is general enough to model
many wireless communication networks. It can model wireless
ad hoc networks where N users transmit in the unlicensed
spectrum without ITCs (K = 0). It can also model the

uplink (the receivers are co-located) and the downlink (the
transmitters are co-located) of a cellular network with pos-
sible ITCs imposed by base stations in nearby cells. It can
also model cognitive radio networks with N secondary users
sharing the spectrum with K primary users imposing ITCs at
their receivers.

Denote the joint power profile of all the users by p =
(p1, . . . , pN ). Since the users cannot jointly decode their
messages and can only treat other users’ interference as noise,
each user i’s instantaneous throughput under p is [1]–[4]

ri(p) = log2

(
1 + pigii∑

j∈N ,j 6=i pjgji+σi

)
, (2)

where σi is the noise power at user i’s receiver. We write each
user i’s maximum throughput as rmaxi , log2 (1 + pigii/σi),
which is achieved when user i transmits at the maximum power
level and the other users do not transmit.

The system is time slotted at t = 0, 1, . . .. We write each
user i’s transmission policy as πi : N+ → Pi, where πi(t) is
user i’s transmit power level at time t. The spectrum sharing
policy is then the collection of all the users’ transmission
policies, denoted by π = (π1, . . . , πN ). In a constant policy,
we have π(t) = pconst for all t ∈ N+. In a TDMA policy, we
have ‖π(t)‖0 = 1, where ‖ · ‖0 is the `-0 norm, namely the
number of nonzero elements in a vector.

Each user i’s (discounted) average throughput is defined as

Ri(π) = (1− δ)
∑∞
t=0 δ

t · ri(π(t)), (3)

where δ ∈ [0, 1) is the discount factor that models the delay-
sensitivity of a user [4][9]. A more delay-sensitive user dis-
counts the future throughput more (i.e. has a smaller discount
factor), because it has more urgency to transmit.

III. CONTINUING QOS GUARANTEES

The widely-used average QoS (AQoS) guarantee [1]–[9] is
that the average throughput is above some fraction γavgi of the
maximum possible throughput rmaxi , namely

AQoS: Ri(π) ≥ γavgi · rmaxi . (4)

The AQoS guarantee does not provide sufficient guarantees for
TDMA policies: even if a user’s average throughput (starting
from the beginning) Ri(π) is high, it may get a extremely low
throughput starting from certain point in time, because it may
not get sufficient TXOPs after certain point.1

In this paper, we propose continuing QoS (CQoS) guaran-
tees, which ensure that at every point in time, a user’s future
throughput is guaranteed to be above some minimum require-
ment. Such continuing guarantees are important for delay-
sensitive users. Next, we formally define CQoS guarantees.

First, we define the continuation throughput at time t as

Rti(π) = (1− δ)
∑∞
τ=0 δ

τ−t · ri(π(τ)), (5)

1Constant policies do not have such a problem. If they fulfill the average
throughput requirements, the throughput will be high enough starting from
every point in time. However, it is difficult for them to fulfill the average
throughput requirement in the first place, due to multi-user interference.
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Fig. 2. Relationship of delay and CQoS guarantees of user i. The solid
curve with square data points is the amount of data transmitted; each jump
in the curve corresponds to a transmission. The two straight lines through the
origin are the amount of data transmitted as if the throughput was R0

i and
γcont
i ·rmax

i , respectively. At each time t, if the continuation throughput Rt
i is

higher, the user needs to transmit more after time t. Hence, the corresponding
delay di(t) is lower.

which is the discounted average throughput starting from time
t. Note that R0

i (π) = Ri(π). Then, the continuing QoS
guarantees can be written as

CQoS: Rti(π) ≥ γconti · rmaxi , ∀t = 0, 1, . . . . (6)

To avoid triviality, we assume that γconti < γavgi .

A byproduct of the CQoS guarantees is that once they are
satisfied, we can also provide upper bounds on the transmission
delays of each user. First, we define user i’s transmission delay
at any time t as

Transmission Delay: dti(π) , minτ>t {τ − t : πi(τ) > 0} .

In words, the transmission delay dti(π) is the minimum wait
time until the next transmission. An upper bound on the
transmission delays are critical for delay-sensitive applications.
According to Theorem 3, each user’s CQoS guarantee leads
to an upper bound on its maximum delay supt d

t
i(π). Fig. 2

illustrate the relationship of delay and CQoS guarantees.

IV. A MOTIVATING EXAMPLE

We provide a motivating example to illustrate the im-
portance and impact of the CQoS guarantees, and to show
the advantage of the proposed optimal TDMA policy over
round-robin TDMA policies, in terms of both the performance
and the computational complexity. Consider a simple network
with four symmetric users. They have the same maximum
throughput normalized to 1 bits/s/Hz (i.e. rmaxi = 1, ∀i), and
the same discount factor of δ = 0.83. The system performance
metric is the max-min fairness (i.e. the minimum of all the
users’ throughput).

A. CQoS Guarantees and System Performance

We first illustrate the tradeoff between CQoS guarantees
and the system performance. Intuitively, CQoS guarantees
require that a user has sufficiently many transmission opportu-
nities every once in a while. In other words, the transmission
delay at any point in time should be small. For example, for
round-robin TDMA policies with cycle length L = 8, the one
that maximizes CQoS guarantees (or minimizes transmission

TABLE II. ROUND-ROBIN TDMA POLICIES CANNOT ACHIEVE BOTH
GOOD PERFORMANCE AND GOOD CQOS.

Cycle length L = 4 L = 5 L = 6 L = 7
Rates (bits/s/Hz) 0.18 0.19 0.20 0.23
CQoS (bits/s/Hz) 0.18 0.13 0.10 0.07

TABLE III. PERFORMANCE LOSS AND COMPLEXITY OF ROUND-ROBIN
TDMA POLICIES, UNDER CQOS GUARANTEES γcont

i = 0.1.

Cycle length L = 4 L = 5 L = 6 L = 7 Proposed
Worst user’s rate 0.18 0.19 0.20 0.23 0.25
CQoS guarantee fulfilled fulfilled fulfilled violated fulfilled
Performance loss 40% 32% 25% N/A –(compared to proposed)

# of policies 24 240 1560 8400 –

delay) has a cycle of 1234 1234. It is not difficult to see that,
any other policies (we consider the policy with a cycle of
4321 4321 as the same since the users are symmetric) with
L = 8 will have a maximum transmission delay higher than 4,
and will have a worse CQoS. However, the policy with cycle
1234 1234 is not fair: user 4 always transmits at later positions
in the cycle, and hence will experience a very low average
rate. The policy that achieves the best max-min fairness (i.e.
the worst user’s rate is maximized) has a cycle of 1234 4321,
because user 4 will get two positions in the middle of the cycle.
However, such a policy has a worst-case transmission delay of
7 (for user 1). In other words, user 1 has a low CQoS (e.g.
its throughput starting from time slot 2 is very low, because it
needs to wait until time slot 8 to transmit).

We illustrate the tradeoff between the CQoS guarantees and
the system performance (i.e. max-min fairness) for round-robin
TDMA policies in Table II. We can see that with the increase
of the cycle length, round-robin TDMA policies achieve better
performance, but will have worse CQoS guarantees.

In Table III, we illustrate the performance loss of round-
robin TDMA policies compared to the proposed optimal
TDMA policy. We find the optimal round-robin policies of
different cycle lengths subject to a CQoS guarantee of 0.1
bits/s/Hz. The proposed policy achieves the optimal fairness
(i.e. 0.25 bits/s/Hz for all 4 users), and outperforms round-
robin policies by at least 20%.

B. Computational Complexity

Our proposed optimal policy is much easier to compute
than round-robin policies. Note that in a round-robin policy,
the user’s performance is determined not only by the number
of slots in a cycle but also by the positions of the slots
since users are discounting their future throughput (due to
delay sensitivity). For a given number of users N and a
given cycle length L, the number of non-trivial round-robin
schedules (i.e., the ones in which each user gets at least one
time slot in a cycle) is greater than NL−N . So searching
among these schedules will be totally impractical even if L
is moderately larger than N . For instance, for the 4-user
case above, achieving energy efficiency within 10% of the
optimal policy requires that the cycle length be at least 7, and
requires searching among the thousands (8400) of different
nontrivial schedules of cycle length 7. Even this small problem
is computationally intensive. For a moderate number of users
- say 10 - and a cycle length of 20 - we need to search
more than ten billion (i.e. 1010) schedules, which is completely



intractable. However, we will propose a simple algorithm to
compute the optimal policy whose complexity grows linearly
with the number of users.

Algorithm 1 The Optimal Operating Point Selection (OOPS)
algorithm run by user i.
Require: AQoS γavgi , precision ε

1: Set λ = 0, λ̄ = 1, λ = λ̄.
2: Solve ∂W

∂ri
= − λ

rmax
i

for r∗i
3: Set r∗i ← max{r∗i , γ

avg
i · rmaxi }

4: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j from users j 6= i

5: while
∑
j∈N r

∗
j /r

max
j > 1 do

6: λ̄← 2 · λ̄, λ← λ̄
7: Solve ∂W

∂ri
= − λ

rmax
i

for r∗i , r∗i ← max{r∗i , γ
avg
i ·rmaxi }

8: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j , j 6= i

9: end while
10: while

∣∣∣∑j∈N r
∗
j /r

max
j − 1

∣∣∣ > ε do

11: λ← λ+λ̄
2

12: Solve ∂W
∂ri

= − λ
rmax
i

for r∗i , r∗i ← max{r∗i , γ
avg
i ·rmaxi }

13: Broadcast r∗i /r
max
i , and receive r∗j /r

max
j , j 6= i

14: if
∑
j∈N r

∗
j /r

max
j < 1 then

15: λ̄← λ
16: else
17: λ← λ
18: end if
19: end while
20: Normalize r∗i ← r∗i /

(∑
j∈N r

∗
j /r

max
j

)

V. FORMULATION OF THE POLICY DESIGN PROBLEM

We aim to design a TDMA spectrum sharing policy π that
maximizes the system performance, defined as a function of
the users’ throughput, W (R1(π), . . . , R1(π)). We assume that
W (·) is increasing and strictly concave in each argument Ri.
Such a definition of system performance is general enough to
include the objective functions adopted in most existing works
[1]–[9] as special cases. One example of system performance,
which will be used in our simulations, is the (normalized) max-
min fairness defined as W (R1(π), . . . , R1(π)) = mini

Ri(π)
rmax
i

.
In addition, we will impose the AQoS and CQoS guarantees.
To sum up, we can formally define the policy design problem:

Design Problem: max
π

W (R1(π), . . . , R1(π)) (7)

s.t. AQoS: Ri(π) ≥ γavgi · rmaxi , ∀i,
CQoS: Rti(π) ≥ γconti · rmaxi , ∀i, t.

For the policy design problem (7) to be feasible, we require
that

∑
i∈N γ

avg
i ≤ 1.

VI. SOLVING THE POLICY DESIGN PROBLEM

Now we solve the policy design problem (7). Our proposed
solution (illustrated in Fig. 3) has two phases: an offline phase
implemented before run-time, which determines the optimal
operating point (i.e. each user’s target average throughput), and
a low-complexity online phase implemented at run-time, which
determines the transmission schedule that achieves the optimal
operating point while fulfilling AQoS and CQoS guarantees.

OOPS algorithm

Input: system performance metric W(R1,…,RN) 

LDF scheduling 

AQoS

optimal operating point

Output: optimal scheduling (with transmission 

             delay guarantees) π

CQoS

Fig. 3. Illustration of our proposed design framework. The operations in
blue and in red are done by the policy designer and the decentralized users,
respectively.

A. Offline Phase – The Optimal Operating Point

Before run-time, the users solve the following problem in
a distributed manner to determine the optimal operating point:

r? = arg maxr≥0 W (r1, . . . , rN ) (8)
s.t.

∑
i∈N ri/r

max
i = 1,

ri ≥ γavgi · rmaxi , ∀i.

In (8), the linear equality
∑
i∈N ri/r

max
i = 1 comes

from the requirement that the policy is TDMA. Intuitively,
it ensures that the total fraction of all the users’ transmission
opportunities sum up to 1. Note that the CQoS guarantees are
not present in (8). They will be taken care of in our scheduling
policy described in the next subsection.

We propose a distributed optimal operating point selection
(OOPS) algorithm (described in Algorithm 1) to solve (8).

Theorem 1: The optimal operating point r? that solves
(8) can be found by each user running the distributed OOPS
algorithm (Algorithm 1), which converges linearly2 at rate 1

2 .

Proof: See [11, Appendix A].

B. Online Phase – The Optimal Transmission Schedule

After finding the optimal operating point r?, we need to de-
termine the transmission schedule that achieves it. Importantly,
the transmission schedule should fulfill the CQoS guarantees,
which is the major challenge of our solution. We propose
a distributed online longest-distance-first (LDF) scheduling
algorithm (described in Algorithm 2).

Algorithm 2 has a nice interpretation of longest distance
first scheduling. At each time slot t, the user with the largest
“distance to target” (i.e. αj(t) in Algorithm 2) transmits in this
time slot3. The algorithm updates the distances in the “correct”
way, such that the optimal operating points are achieved.
Theorem 2 proves the desirable properties of the proposed LDF
scheduling algorithm.

2Suppose that the sequence {xk} converges to x. We say that this sequence
converges linearly at rate c, if limk→∞

|xk+1−x|
|xk−x| = c [10, Sec. 9.3.1].

3Ties can be broken arbitrarily. In Algorithm 2, we choose the user with the
smallest index. Specifically, when argmaxj∈N αj(t) returns a set of indices,
we choose the minimum one.



Theorem 2: For any δ ≥ N−1
N−

∑
j∈N γ

cont
j

, if each user i
runs the distributed LDF scheduling algorithm, then

• each user i’s average throughput up to time t con-
verges to its optimal operating point linearly at rate δ,
namely |(1− δ)

∑t
τ=0 δ

τ · rτi − r?i | ≤ rmaxi · δt+1;

• each user i fulfills its CQoS guarantee.

Proof: See [11, Appendix B].

Algorithm 2 The Longest-Distance-First (LDF) scheduling
algorithm run by user i.
Require: normalized operating points {r?j /rmaxj }j∈N , dis-

count factor δ
Initialization: t = 0, “distances” αj(0) = r?j /r

max
j , ∀j ∈

N
repeat

Find the user i∗ , min {arg maxj∈N αj(t)}
if i = i∗ then

Transmit at power level Pmaxi
end if
Updates distances αj(t+ 1) for all j ∈ N as follows:
αi∗(t+ 1) = αi∗ (t)

δ − ( 1
δ −1), r′j(t+ 1) =

αj(t)
δ , ∀j 6= i∗

t← t+ 1
until ∅

Remark 2: Although the CQoS guarantees do not directly
appear in Algorithm 2, they impose a constraint on the discount
factor δ used in Algorithm 2. Theorem 2 proves that the
algorithm, given a proper input of discount factor (namely
δ ≥ N−1

N−
∑

j∈N γ
cont
j

), will construct a policy that fulfill the
CQoS guarantees.

Theorems 1 and 2 establish the convergence results of our
proposed scheme. Theorem 1 proves that the process of finding
the optimal operating points converges in logarithmic time,
and Theorem 2 proves that the LDF scheduling achieves the
optimal operating points in logarithmic time. Hence, the overall
convergence speed is fast. Moreover, Theorem 2 ensures that
the CQoS guarantees are fulfilled.

As we have discussed before, a byproduct of the CQoS
guarantees is the upper bounds on the transmission delays,
which are provided in Theorem 3

Theorem 3: For any discount factor δ ≥ N−1
N−

∑
j∈N γ

cont
j

,
if each user i ∈ N runs the distributed LDF scheduling
algorithm, we have

• each user i’s maximum transmission delay is upper
bounded, namely supt≥0 d

t
i(π) ≤ log γcont

i

log δ ;

• at each time t, each user i’s transmission delay is
upper bounded, namely dti(π) ≤ logαi(t)

log δ , where αi(t)
is user i’s distance from target at time t calculated in
Algorithm 2.

Proof: See [11, Appendix C].

Theorem 3 gives us the upper bound of the maximum trans-
mission delay, as well as finer upper bounds of transmission
delays at each time t based on the user’s distances from target
αi(t) (calculated in Algorithm 2). Note that the upper bound

TABLE IV. COMPARISON OF COMPUTATIONAL COMPLEXITY.

Policy Computational complexity
Constant policies [1]–[4] NP-hard to find the optimal pconst

Round-robin TDMA (cycle length L)
Offline: ≥ NL−N policies to search
Online: 0

Proposed
Offline: N ·O(log2 1/ε)

Online: O(N)

on the maximum delay, namely log γconti / log δ, is decreasing
in the CQoS, because we have γconti < 1 and δ < 1.

C. Computational Complexity and Message Exchange

We compare the computational complexity of the existing
solutions and our proposed solution, and discuss the amount
of message exchange in our solution.

1) Computational Complexity: For constant policies, find-
ing the optimal power profile pconst is NP-hard in general [1].
This is due to the nonconvexity of the problem: the throughput
function is not jointly concave in the power profile because of
the interference. For round-robin TDMA policies, the number
of policies to search is lower bounded by NL−N . To ensure a
good performance, the cycle length needs to be large, which
means that the number of policies grows exponentially with
the number of users N . Hence, it may take a long time to
find the optimal round-robin TDMA policy before run-time,
although they are easy to implement at run-time. In contrast,
in our proposed solution, the OOPS algorithm converges in
logarithmic time before run-time, and the complexity of the
online LDF scheduling is low (i.e. each user only needs to
update the distances based on simple analytical formula).

2) Message Exchange: In our proposed solution, the mes-
sage exchange happens only before run-time. The total amount
of message exchange (i.e. the broadcast of r∗i /r

max
i ) is

N ·O(log2 1/ε). There is no message exchange at run-time.

VII. SIMULATION RESULTS

We demonstrate the performance gain of our proposed
TDMA policy over existing policies. Throughout this section,
we use the following system parameters. The noise powers at
all the users’ receivers are normalized as 0 dB. The maximum
transmit powers of all the users are 20 dB. We normalize the
direct channel gains to 1, namely gii = 1,∀i, and generate
the cross channel gains randomly according to the distribution
gij ∼ CN (0, 0.5),∀i 6= j. The system performance is mea-
sured by the (normalized) max-min fairness miniRi/r

max
i ,

namely we aim to maximize the worst user’s (normalized)
throughput. At the optimal max-min fairness, each user’s
normalized average throughput Ri(π)/rmaxi cannot exceed 1

N .
Hence, we let each user’s AQoS guarantee to be within 10% of
its maximum normalized throughput, namely γavgi = 0.9

N ,∀i.
In most simulations, we will vary the CQoS guarantees (which
are equal cross users). Given each CQoS guarantee, we choose
the minimum discount factor specified by Theorem 2, namely
δ = N−1

N(1−γcont
i )

. In other words, we evaluate the performance
of the most delay-sensitive applications.

We first fix the number of users to be N = 4, and increase
the CQoS guarantees from 0.1 to 0.22. Note that the AQoS
guarantee under N = 4 is 0.225. Hence, a CQoS guarantee
of 0.22 is close to the AQoS guarantee. In Fig. 4, we show
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Fig. 4. Comparison of the max-min fairness achieved by different policies
under different CQoS guarantees.
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Fig. 5. Comparison of the maximum number of users that can be supported
by different policies under different CQoS guarantees.

the optimal max-min fairness (i.e. miniRi/r
max
i ) achieved by

different policies. We can see that under all CQoS guarantees,
our proposed policy can achieve the optimal max-min fairness
of 0.25. In contrast, the optimal constant policy is at least
50% away from the optimal max-min fairness when the CQoS
guarantee is small, and becomes infeasible when the CQoS
guarantee exceeds 0.13. For round-robin policies, we search
all the 186480 non-trivial policies up to cycle length 9 and
choose the optimal one under each CQoS guarantee. We can
see that the performance of round-robin policies decreases to
20% away from the optimal performance before it becomes
infeasible at CQoS of 0.19.

Next, we investigate the maximum number of users that can
be supported by each policy under different CQoS guarantees.
We increase the CQoS guarantees from 0.05 to 0.20. Note that
theoretically, the maximum number of users that can possibly
be supported is b 1

γcont
i
c (because we need N · γconti ≤ 1).

In Fig. 5, we can see that the maximum numbers of users
supported by our proposed policy are the same as the theoret-
ical upper bounds most of the time. In contrast, the other two
polices can support much fewer users. At a CQoS guarantee of
0.05, we roughly double the number of users accommodated
by the other two policies. Hence, we can utilize the spectrum
much more efficiently while fulfilling CQoS guarantees.

Finally, we evaluate the performance of different polices
for wireless video transmission. In the performance evaluation,
we use the PSNR, which is commonly-used as performance
metric for video quality. In the experiment, We consider a
network with 4 users, and use the classic “Coastguard” video
sequence. In Table V, we show the worst-case PSNR achieved
by different policies under different CQoS guarantees. We

TABLE V. IMPROVEMENT OF PSNR OVER CONSTANT AND
ROUND-ROBIN POLICIES UNDER DIFFERENT CQOS GUARANTEES.

CQoS guarantee 0.12 0.15 0.18 0.20
Constant 29 dB infeasible infeasible infeasible

Round-robin 34 dB 32 dB 32 dB infeasible
Proposed 36 dB 36 dB 36 dB 36 dB

Improvement over Constant 6 dB – – –
Improvement over Round-robin 1 dB 3 dB 4 dB –

can see that our proposed policy improves the PSNR of the
constant policy and the round-robin policy by up to 6 dB
and 4 dB, respectively. Moreover, when the CQoS guarantees
increase, the other two policies become infeasible.

VIII. CONCLUSION

In this paper, we studied spectrum sharing among users
with delay-sensitive applications. We proposed a novel perfor-
mance metric, namely continuing QoS guarantees, to ensure
the performance of delay-sensitive applications. We designed
the optimal TDMA policy that maximizes the system perfor-
mance subject to the CQoS guarantees, and proposed low-
complexity distributed algorithms for the users to construct the
optimal policy. Our proposed policy significantly outperforms
existing constant policies and round-robin policies, in terms of
the system performance (e.g. max-min fairness), the number of
users accommodated while fulfilling their QoS guarantees, as
well as the computational complexity of designing the optimal
policies. When applied to video streaming, our proposed policy
can achieve performance improvement of up to 6 dB and 4 dB,
compared to constant policies and round-robin policies.
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