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Abstract—In many wireless communication networks a com-
mon channel is shared by multiple users who must compete
to gain access to it. The operation of the network by self-
interested and strategic users usually leads to the overuse of
the channel resources and to substantial inefficiencies. Hence,
incentive schemes are needed to overcome the inefficiencies of
non-cooperative equilibrium. In this work we consider a slotted-
Aloha random access protocol and two incentive schemes: pricing
and intervention. We provide some criteria for the designer of
the protocol to choose one scheme between them and to design
the best policy for the selected scheme, depending on the system
parameters. Our results show that intervention can achieve the
maximum efficiency in the perfect monitoring scenario. In the
imperfect monitoring scenario, instead, there exists a threshold
for the number of users such that, for a number of users lower
than the threshold, intervention outperforms pricing, whereas, for
a number of users higher than the threshold pricing outperforms
intervention.

Index Terms—MAC protocols, Slotted–Aloha, Game Theory,
Incentive schemes, Pricing, Intervention, Imperfect monitoring

I. INTRODUCTION

We consider a slotted-Aloha random access protocol, where
each user transmits within a slot according to some user-
chosen probability. Without any further mechanism, self-
interested users would implement the always transmit strategy,
resulting in the network collapse. To make the network robust
to selfish users, it is fundamental to design a scheme that
provides to the users the incentives to adopt a better (from
the network designer’s point of view) strategy.

In the past decade a lot of research was devoted to the
development of such incentive schemes for slotted-Aloha
random access protocols. Some of this research, such as [1]–
[5], adopts pricing schemes that charge the users for their
resource usage.1 In this way, it is in the self-interest of each
user to limit its access probability.

Recently, a new incentive scheme, called intervention, has
been proposed in [6] and has been applied to MAC problems
in [7] and [8]. In this scheme, an intervention device is
placed in the network. Such a device can monitor the users’
behavior and intervene affecting the users’ resource usage. The
action of the intervention device depends on the actions of the
users. The intervention device provides the incentives for the
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1In the literature pricing schemes may refer also to distributed schemes in
which the users are cooperative and fictitious prices are used to obtain an
efficient distributed algorithm. Here we consider strategic and selfish users;
thus, to be effective, the pricing scheme requires the users to pay real money.

users to obey a given access probability rule by threatening
punishments if users disobey.

In this paper we provide the tools to design pricing and
intervention schemes to make a random access protocol robust
against strategic users. As in most of the previous works in
pricing and intervention, we consider only linear intervention
and linear pricing schemes, because they are simple to im-
plement and yet efficient enough to achieve high performance
(or even optimality in some cases). Simple rules are important
in particular for pricing schemes, because the users might not
accept to pay for their resource usage following complex rules.

The complexity of the design process and the performance
achievable depend on various features of the system, such
as the number of users, the users’ heterogeneity, and the
capability of monitoring the users’ actions. To the best of our
knowledge, this is the first work that compares intervention
and pricing in terms of the network environment. We focus
on a simple MAC protocol, slotted-Aloha, because it makes
it possible to formulate a simple game in which the outcomes
can be computed analytically, to highlight the consequence of
not taking into account the strategic nature of some users when
designing a MAC protocol, and to obtain important insights
about possible solutions to such a problem. For these features,
slotted-Aloha is widely used in game theoretic studies [1]–[5],
[7], [8]. The extension of this paper to more realistic MAC
protocols will be considered in future works.

This paper is divided into two main parts. In the first part,
we consider the perfect monitoring scenario, i.e., we assume
that the users’ actions are estimated without errors. We show
that intervention can achieve the maximum efficiency, i.e., the
maximum social welfare, while pricing is able to reach an
efficient use of the network resources but the positive payments
subtracted from the users’ utilities prevent it to achieve the
maximum social welfare. In the second part, we consider
an imperfect monitoring scenario, assuming that a uniformly
distributed noise term is added to the estimated actions. In the
imperfect monitoring scenario, the performance of the inter-
vention scheme degrades considerably as the number of users
increases, and there exists a threshold for the number of users
such that, for a number of users lower than the threshold, the
intervention scheme outperforms the pricing scheme, whereas
for a number of users higher than the threshold the pricing
scheme outperforms the intervention scheme. The analysis in
this paper can serve as a guideline for a designer to select
between pricing and intervention and to design the best policy
for the selected scheme, depending on some system parameters
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such as the number of users and the intensity of the monitoring
noise.

The remainder of this paper is organized as follows. In
Section II we describe the considered MAC protocol. We in-
troduce the games that model the interaction between strategic
users and we formulate the problem of designing efficient
incentive schemes in Section III. In Section IV we derive
the optimal pricing and intervention schemes to adopt in the
perfect monitoring scenario and we quantify the performance
achievable. We consider the imperfect monitoring scenario in
Section V. Section VI concludes with some remarks.

II. SYSTEM MODEL

We consider a wireless network of n users that share a
common channel and we make the following assumptions for
the contention model:
• Time is slotted and slots are synchronized;
• Users always have packets to transmit in every slot;
• If a packet is received, the receiver immediately sends an

acknowledgment (ACK) packet;
• The transmission of a packet and the (possible) corre-

sponding ACK are completed within a slot;
• A packet is received successfully if and only if it does

not collide with other transmissions;
• Each user i selects a transmission probability pi ∈ [0 1]

at the beginning of the communication and will transmit
with the same probability pi in every time slot, i.e., there
are no adjustments in the transmission probabilities. This
excludes coordination among users, for example, using
time division multiplexing.

Notice that ACK packets are always successfully received
because they are transmitted over idle channels.

Denoting with p = (p1, . . . , pn) the transmission probability
vector, the average throughput (in packets per slot) of user i
is given by

Ti(p) = pi

n∏
j=1,j 6=i

(1− pj) (1)

The resource usage of user i is therefore proportional to i’s
transmission probability.

We assume that the utility of user i is given by

Ui(p) = θi lnTi(p) (2)

where the parameter θi > 0 allows to differentiate between
different classes of users. The higher θi, the higher user i’s
valuation of the throughput. The logarithm makes the utility a
concave function, which models the fact that the users usually
have more desire to increase their own throughput when it is
low than when it is high.

We define the social welfare of the network as the sum of
all users’ utilities:

U(p) =

n∑
i=1

Ui(p) (3)

Finally, the network is said to operate optimally if the users
choose the transmission probabilities that maximize Eq. (3). It
is straightforward to check that the Hessian of U(p) is a diag-
onal matrix with strictly negative diagonal entries, therefore it

is negative definite. Imposing the partial derivatives equal to 0,
the unique transmission probability vector p∗ = (p∗1, . . . , p

∗
n)

that maximizes Eq. (3) is given by

p∗k =
θk∑n
i=1 θi

, k = 1, . . . , n (4)

We say that U(p∗) is the maximum efficiency utility.
In order to adopt the optimal transmission probability, the

users need to know the sum of the valuations θi of the other
users. This information must be spread in the network at the
beginning of the communication. This can be done either in a
distributed way or in a centralized way. In particular, in the last
case an entity (e.g., a predetermined user or the access point)
might collect the users’ valuations and broadcast to all users
the value

∑n
i=1 θi. Once the users have this information, they

can locally compute their optimal transmission probabilities
according to Eq. (4) and adopt them.

III. GAME MODEL AND DESIGN PROBLEM

While the network optimal transmission policy p∗ is easy
to compute, the actual transmission probability selected by
each user depends on the objective of that user. If the users
are compliant with the optimal policy, then they compute and
adopt p∗ and the network operates optimally. However, if the
users are self-interested and strategic, instead of complying
with the optimal policy they will adopt the transmission
probabilities that optimize their own utility. Since the interests
of individual users are different from the interests of the group
of users as a whole, the network might (and usually will)
operate inefficiently.

To analyze the interaction between strategic decision-
makers, we exploit the models offered by game theory [9].
We define the contention game

Γ = (N , A, {Ui(·)}ni=1) (5)

where N = {1, 2, · · · , n} denotes the set of users, A =
×ni=1 [0, 1]

n denotes the action space and Ui : A → <
is the utility of a generic user i, defined by Eq. (2). The
action for user i represents the transmission probability pi
chosen by user i. Throughout the paper, we will use the
terms action and transmission probability interchangeably, and
similarly for action profile (a collection of the users’ actions)
and transmission probability vector.

A widely accepted solution concept for non-cooperative
games is the Nash Equilibrium (NE), defined as the action
profile pNE so that each user obtains its maximum utility given
the actions of the other users, i.e.,

Ui
(
pNE

)
≥ Ui

(
pi, p

NE
−i
)
, ∀ i ∈ N , ∀ pi ∈ [0, 1]

where p−i denotes the transmission probabilities of all the
users except for user i.

An action profile p is a NE of the contention game Γ if
and only if at least one user adopts a transmission probability
equal to 1. Moreover, pi = 1 is a weakly dominant action
for every user i, i.e., ui(1, p−i) ≥ ui(p), for every action
profile p. Therefore, in our contention game, each user has an
incentive to adopt the always transmit strategy, resulting in
network collapse.

708



Here we ask if it is possible to design the network to make
it robust against strategic users. We want to introduce some
mechanism to deter the users from adopting high transmission
probabilities. The incentive schemes we consider belong to
two classes:
• Pricing: users are charged depending on their transmis-

sion probabilities
• Intervention: the users’ resource usage is affected by the

intervention device, in a way that depends on the users’
transmission probabilities

The interaction between the designer, the users and the
system can be roughly summarized into three stages, (1) the
design stage, (2) the information exchange stage, and (3) the
transmission stage.

In the design stage the designer designs the pricing or
intervention scheme. Specifically, the designer predicts strate-
gic users’ actions given any pricing or intervention scheme,
and chooses the pricing or intervention scheme that results
in the most desired outcome. This is done once, then the
designer leaves the system forever. Notice that, to efficiently
design these schemes, the designer has to know how pricing
or intervention affect the users’ utilities.

In the information exchange stage some useful information
is collect and, possibly, distributed. The intervention device (or
the device that manages the payments in the pricing scheme)
has to identify the users that are connected to the network,
has to inform them about the adopted intervention or pricing
scheme, and has to estimate the action they select, e.g., by
counting the number of correct transmissions of each user in
a certain time interval. To consider the impact of an imperfect
estimation we will denote by p̂i the estimated action of user
i, by p̂ the estimated action profile and by πi(p̂i | pi) the
probability density function of i’s estimated action, given that
i’s action is pi. We say that the monitoring is perfect if the
users’ actions are estimated without errors, i.e., p̂i coincides
with pi (in this case πi(p̂i | pi) might be thought as a Dirac
delta function centered in pi). We say that the monitoring is
imperfect if the estimates are affected by errors, i.e., there is
a positive probability that p̂i is different from pi.

In the transmission stage the users transmit packets adopting
their constant transmission probabilities and, in the meantime,
they have to pay for their resource usage based on the pricing
scheme, or their resource usage is affected based on the
intervention scheme.

In this paper we play the role of a benevolent designer that
seeks to design the pricing and intervention rules to maximize
the social welfare of the system in the transmission stage. We
neglect the social welfare obtained in the information exchange
stage because we assume that the transmission stage is much
longer than that of the information exchange stage.

A. Pricing

Pricing schemes use monetary charges to deter users’ greed-
iness. If i’s payment is increasing in i’s resource usage, user
i might find it convenient to limit its transmission probability.
In general, user i is charged according to the pricing rule
fPi : [0, 1] → <, which is a function of i’s estimated action

p̂i. Assuming that the payments affect additively the users’
utilities, i’s expected utility is given by

UPi (p) = θi lnTi(p)−
∫ 1

0

πi(p̂i | pi)fPi (p̂i)∂p̂i (6)

Once a pricing scheme is selected and communicated to the
users, the interaction among users can be modeled through the
game

ΓP =
(
N , A,

{
UPi (·)

}n
i=1

)
(7)

Among all the possible pricing rules, there is one class of
rules that is particularly interesting, namely, the class of linear
pricing rules, in which users are charged linearly with respect
to their transmission probabilities, i.e.,

fPi (p̂i) = cip̂i (8)

where ci ≥ 0 is the unit price. We restrict our attention to the
linear pricing rules, as done in most of the pricing literature,
because they are computationally simple to implement and we
do not lose much, in term of performance, in doing so.

Once the prices c = (c1, . . . , cn) are fixed, since we will
prove the existence and uniqueness of the NE of the game
ΓP , the social welfare can be uniquely determined. The goal
of the designer is to choose the unit prices c = (c1, . . . , cn) to
maximize the social welfare, i.e., it has to solve the following
Pricing Design (PD) problem:

PD argmax
c

∑
i∈N

UPi (pNE)

subject to:
ci ≥ 0 , ∀ i ∈ N
UPi (pNE) ≥ UPi (pi, p

NE
−i ) , ∀ pi ∈ [0, 1] , ∀ i ∈ N

B. Intervention

In the intervention framework the designer deploys in
the network an intervention device that monitors the users’
actions and can intervene adopting itself an action that affects
the users’ resource usage. In our case, we assume that the
intervention device is able to correctly recognize the packets
transmitted by different users and to estimate the users’
actions. If the packet of a generic user i is correctly received,
the intervention device may choose to jam its ACK2 depending
on the estimate of its action. Specifically, the intervention
device jams the ACK sent to user i with a probability that
is given by the intervention rule f Ii : [0, 1]→ [0, 1], which is
a function of the estimated action p̂i.

The intervention level f Ii (p̂i) must be interpreted as a pun-
ishment to user i after having deviated from a recommended
(socially-beneficial) action. Such punishments are a threat
to users, and must be designed such that the users find in
their self-interest to adopt the recommended actions. At the
same time, when users adopt the recommended actions, the
intervention level must be minimized (possibly, nullified), to
avoid to decrease the users’ utilities.

2Many works on security, such as [10]–[12], take into consideration the
possibility of performing intelligent jamming in which the jamming signal is
concentrated on control packets.
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Different from pricing, intervention changes the structure of
the utility of each user, affecting directly their resource usage.
In fact, the average throughput of user i is now given by

T Ii (p) = pi

(
1−

∫ 1

0

πi(p̂i | pi)f Ii (p̂i)∂p̂i

) n∏
j=1,j 6=i

(1−pj) (9)

where
∫ 1

0
πi(p̂i | pi)f Ii (p̂i)∂p̂i represents the average inter-

vention level.
The utility of user i is modified accordingly

U Ii (p) = θi lnT Ii (p) (10)

Once the intervention rules are selected and communicated
to the users, the interaction between the users can be modeled
through the game

ΓI =
(
N , A,

{
U Ii (·)

}n
i=1

)
(11)

Among all the possible intervention rules, there is one class
of rules that is particularly interesting, namely, the class of
affine intervention rules. f Ii : [0, 1] → [0, 1] is an affine
intervention rule if

f Ii (p̂i) = [ri(p̂i − p̃i)]10 (12)

for certain parameters p̃i ∈ [0, 1] and ri ≥ 0, where [·]ba =
min {max {a, ·} , b}.

In an affine intervention rule, p̃i represents a target action for
user i, while ri is the rate of increase of the intervention level
due to an increase in i’s action. If the estimated action p̂i is
lower than or equal to the target action p̃i, then the intervention
level is equal to 0. If p̂i is higher than p̃i, then the intervention
level is proportional to p̂i − p̃i, until it saturates to 1.

For ri → +∞, the intervention device jams the ACKs
sent to user i whenever it detects that i is adopting an action
higher than the target one. Such a rule, which we refer to as
an extreme rule, represents the strongest punishment that the
intervention device can adopt.

We restrict our attention to the affine intervention rules
because they are computationally simple to implement and
we do not lose much, in term of performance, in doing so (as
we will see, in some cases such rules are even able to achieve
the benchmark optimum).

Once the parameters p̃ = (p̃1, . . . , p̃n) and r = (r1, . . . , rn)
are fixed, and assuming that the users coordinate to the best
(from the social welfare point of view) NE of the game ΓI 3,
the social welfare can be determined. The goal of the designer
is to choose the parameters p̃ and r to maximize the social
welfare, i.e., it has to solve the following Intervention Design
(ID) problem:

ID argmax
p̃,r

[
max
pNE

∑
i∈N

U Ii (pNE)

]
subject to:
p̃i ∈ [0, 1] , ri ≥ 0 , ∀ i ∈ N
U Ii (pNE) ≥ U Ii (pi, p

NE
−i ) , ∀ pi ∈ [0, 1] , ∀ i ∈ N

3The existence of NEs will be proved and it is easy to coordinate the
users to the best NE. In fact, we will prove that the socially best NE is also
the best for each user, and it is uniquely determined by p̃.

Differently from the PD problem, the ID problem requires a
maximization with respect to the NEs because of the non
uniqueness of the NE.

IV. PERFECT MONITORING

In this section we assume that the estimated actions are
equal to the real actions, i.e., p̂i = pi, for every user i ∈ N .
Hence, in Eq. (6) and (9) the integrals must be substituted,
respectively, with fPi (pi) and f Ii (pi). In the following we
compute the optimal linear pricing scheme and affine inter-
vention rule that a designer should adopt to maximize the
social welfare if the monitoring is perfect.

A. Pricing design

Given a linear pricing scheme ci, i ∈ N , the interaction
between users in the perfect monitoring scenario adopting
pricing is modeled with the game

ΓP =
(
N , A,

{
UPi (·)

}n
i=1

)
(13)

where

UPi (p) = θi ln

pi n∏
j=1,j 6=i

(1− pj)

− cipi (14)

The goal of the designer is to design the unit prices c to
maximize the social welfare in the presence of strategic users,
solving the PD problem with the utilities given by Eq. (14).

Lemma 1. The unique NE of the game ΓP is pNEk =
θk
ck

,

k ∈ N .

Proof: To compute the best response function of users k,
we use the first order condition. First, we check that UPk (p)
is concave in pk (i.e., the second derivative with respect to pk
is negative). Then, we set to 0 the first derivative of UPk (p),
with respect to pk.

∂UPk (p)

∂pk
=
θk
pk
− ck ,

∂2UPk (p)

∂p2k
= −θk

p2k
< 0

∂UPk (p)

∂pk
= 0 → pk =

θk
ck

Proposition 1. The optimal pricing scheme to adopt is c∗k =∑
i θi.

Proof: We want to find the unit prices ck, k ∈ N , so
that the social welfare U(p) =

∑n
i=1 U

P
i (p) is maximized,

assuming that the users adopt the NE action profile (i.e., we
have to substitute ck with θk

pk
into the expression of U(p)). We

first prove that U(p) is a (multivariable) concave function, by
checking its Hessian.

∂U(p)

∂pk
=
θk
pk
−
∑
i 6=k θi

1− pk
∂2U(p)

∂p2k
= −θk

p2k
−
∑
i 6=k θi

(1− pk)2
< 0 ,

∂2U(p)

∂pkdpi
= 0 ∀ i 6= k

The Hessian of U(p) is negative definite (it is a diagonal
matrix with strictly negative diagonal entries), so U(p) is
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concave. Thus, the global maximizer of U(p) can be obtained
with the first order condition: ∂U(p)

∂pk
= 0 → pk = θk∑

i θi
→

ck =
∑
i θi, ∀ k ∈ N .

Notice that the transmission probabilities adopted by the
users in the optimal pricing policy are equal to the transmission
probabilities adopted by compliant users to maximize the
social welfare, i.e., pNEk = θk

c∗k
= p∗, where p∗ is defined

in Eq. (4).

B. Intervention design

Given an affine intervention rule ri and p̃i, i ∈ N , the
interaction between users in the perfect monitoring scenario
adopting intervention is modeled with the game

ΓI =
(
N , A,

{
U Ii (·)

}n
i=1

)
(15)

where

U Ii (p) = θi ln

pi (1− [ri(pi − p̃i)]10
) n∏
j=1,j 6=i

(1− pj)

 (16)

The goal of the designer is to design the intervention rule to
maximize the social welfare in the presence of strategic users,
solving the ID problem with the utilities given by Eq. (16).

To maximize the social welfare the designer has to guarantee
a positive throughput to every user. For this reason, in the
following we focus on intervention rules in which p̃k ∈ (0, 1),
∀ k. In fact, if p̃k = 1 the intervention device never jams the
ACK sent to user k, consequently pk = 1 represents a weakly
dominant action and the throughput of all the users except
k is 0. If p̃k = 0 user k is punished whenever it transmits
with positive probability, and it is possible to show that in this
case there always exists a non–zero p̃k such that the utility for
user k is higher than the one obtainable with p̃k = 0, with no
impact on the utilities of the other users.

In the intervention framework an action profile p in which at
least two users transmit with probability 1 always represents a
NE, regardless of the particular intervention rule adopted. We
refer to such equilibria as trivial NEs. They correspond to the
worst (socially and individually) case possible, in which the
throughput of all users is equal to 0. However, by accurately
choosing the parameters ri and p̃i, i ∈ N , it is possible to
coordinate the users to a NE in which they all obtain a positive
throughput.

Lemma 2. For any p̃ = (p̃1, . . . , p̃n), if rk ≥
1

p̃k
for every

user k ∈ N , then p̃ is the unique non trivial NE of the game
ΓI .

Proof: We can write rk = 1
p̃k+δ

, for some constant δ >
−p̃k. Then, if pk < p̃k,

U Ik (pk, p̃−k) = θk ln

pk∏
j 6=k

(1− p̃j)


If p̃k ≤ pk ≤ 2p̃k + δ,

U Ik (pk, p̃−k) = θk ln

−p2k + 2p̃kpk + δpk
p̃k + δ

∏
j 6=k

(1− p̃j)



If we exclude the trivial NEs from the analysis, we can
limit the search of user k’s best response in [0, 2p̃k + δ],
because if user k selects a higher transmission probability the
intervention level is equal to 1, resulting in a throughput equal
to 0 for user k. The derivative of k’s utility, with respect to
k’s action, is equal to

∂U Ik
∂pk

=


θk
pk

if pk < p̃k

θk
2 (p̃k − pk) + δ

pk (2p̃k − pk + δ)
if p̃k ≤ pk ≤ 2p̃k + δ

If δ ≤ 0 (i.e, rk ≥ 1
p̃k

), U Ik (pk, p̃−k) is continuous,
increasing in pk for pk < p̃k, and decreasing otherwise. Thus,
p̃k is the best action for user k. If δ > 0 (i.e, rk < 1

p̃k
),

U Ik (pk, p̃−k) is continuous, increasing in pk for pk < p̃k + δ
2 ,

and decreasing otherwise. Thus, p̃k + δ
2 is the best action for

user k. The two analyzed cases imply that p̃ is a NE if and
only if rk ≥ 1

p̃k
, ∀ k.

The proof of Lemma 2 shows that p̃k is a weakly dominant
action, for every user k, and that p̃ is individually and socially
better than any trivial NE. Hence, though it is not the unique
equilibrium, it is expected that the users coordinate to p̃.

Proposition 2. The optimal affine intervention rule to adopt

is rk ≥
1

p∗k
and p̃k = p∗k, for every user k, where p∗k is defined

in Eq. (4).

Proof: Given the actions of the users, the utility of a
user and the social welfare are decreasing as the intervention
level for that user increases. However, using the intervention
rule rk ≥ 1

p∗k
and p̃k = p∗k, ∀ k, the users have the incentive

to adopt the action profile p = p∗ and, at the same time, the
intervention level they are subjected to is equal to 0. Thus, the
outcome of the system is equal to the benchmark optimum.
Finally, this implies that rk ≥ 1

p∗k
and p̃k = p∗k define an

optimal affine intervention rule, and, in fact, also an optimal
intervention rule within the class of all intervention rules.

Corollary 1. The optimal affine intervention rule is optimal
in the class of all intervention rules.

C. Comparison between pricing and intervention

In the perfect monitoring scenario, by adopting either pric-
ing or intervention the designer can provide the incentive for
strategic users to choose the optimal action profile of Eq. (4).
Hence, the efficiency of the utilization of the channel resource
is optimized with respect to the valuations θi, i ∈ N , of
the users. However, there is a big difference between pricing
and intervention. Intervention schemes reach this objective by
threatening the users to intervene if they do not follow the
recommendations, although at the equilibrium the intervention
is not triggered and therefore the resource usage is not affected.
Conversely, pricing schemes charge each user that transmits
with a positive probability, thus affecting its utility and the
social welfare. Hence, only the intervention scheme is able
to achieve the optimal social welfare that can be obtained
when users behave cooperatively, i.e., when they comply to
a prescribed protocol that maximizes the social welfare.
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In Fig. 1 the social welfare and the total throughput in the
perfect monitoring scenario are plotted as a function of the
number of users in the system. We consider the case in which
the users behave cooperatively, and the cases in which the
users’ actions are enforced by the pricing and intervention
schemes derived in Sections IV-A and IV-B. A symmetric
scenario is considered, i.e., θi = 1, ∀ i ∈ N . Thus, the optimal
transmission policy in the cooperative case, defined by Eq. (4),
is p∗k = 1

n , for every user k.
The results confirm the above discussion: both schemes are

able to obtain the same total throughput of the cooperative
case, but only the intervention scheme is able to maximize
the (total) users’ satisfaction. In fact, there is a finite gap,
which increases as the number of users increases, between
the optimal social welfare and the one achievable with the
pricing scheme. Finally, notice that the social welfare always
decreases as the number of users increases because there are
more collisions and the number of unexploited slots increases,
resulting in an inefficient utilization of the channel; this is an
unavoidable consequence of the lack of coordination.

V. IMPERFECT MONITORING

We now study whether the qualitative results obtained for
the perfect monitoring scenario still hold for the imperfect
monitoring case. In this section we will see that there is a
substantial difference for the intervention scheme when the
monitoring is imperfect. The intuition behind it is related to
the possibility that the estimation errors trigger the intervention
even though the users are adopting the recommended actions.
For the pricing scheme, if the expectations of the estimated
actions are equal to the real actions, each user might be
overcharged or undercharged but, on average, it is charged
correctly, therefore the performance is not strongly affected.

The imperfect monitoring model we consider for the es-
timation of user i’s action is an additive noise term that is
uniformly distributed in [−εi, εi], with 0 < εi � 1, i.e.,

p̂i = [pi + ni]10 , ni ∼ U [−εi, εi] (17)

In the following we compute the best linear pricing scheme
and affine intervention rule that a designer should adopt to
maximize the social welfare, assuming that both the designer
and the users are aware of the estimation errors and know
their distribution (17). The interaction among users must be
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Fig. 1. Social welfare and total throughput vs. number of users, in the perfect
monitoring scenario

modeled through the games (7) and (11) and the designer has
to solve the PD and ID problems using the utilities given
by Eq. (6) and (10). With a similar approach, it is possible
to analyze the situations in which 1) neither the designer
nor the users are aware of the estimation errors, and 2) only
the designer is aware of the estimation errors. Due to space
constraints, we do not report the analysis of these two cases
in this paper, the interested reader can find it in [13].

A. Pricing design

Once the pricing scheme is given, the interaction among
users can be modeled with the game in Eq. (7), where

UPi (p) = θi ln

pi n∏
j=1,j 6=i

(1− pj)

− ci
2εi

∫ εi

−εi
[pi + x]

1
0 ∂x

Denote

C (ε) =

{
x :

1

2
≤ x ≤ 1− ε and x lnx− x ≥ ε

4
− 1

}

pk =


−εk

2
+

1

2

√
ε2k +

8εkθk
ck

if
θk
ck

< εk

θk
ck

if εk ≤ pk ≤
1

2
or pk ∈ C (εk)

1 otherwise

Lemma 3. pk is the unique NE of the game ΓP .

Proof: Due to space constraints, we only provide a sketch
of the proof. We refer the interested reader to [13] for the
complete proof. The second derivative of Ui(p), with respect to
pi, must be computed. It results that Ui(p), with respect to pi,
is concave in [0, max(

√
2εiθi
ci

, 1−εi)], and convex otherwise.

If 1
2 < θi

ci
≤ 1 − εi, after the change of concavity Ui(p)

decreases to a local minimum and then increases again. In
this case, user i’s best action is obtained comparing the two
local maxima. Otherwise, user i’s best action is the unique
local maximum.

Consider the following notation:

pk,4 =
θk(2− εk)

4
∑
i θi

+
1

2

√[
θk(2− εk)

2
∑
i θi

]2
+ 4

θkεk
2
∑
i θi

pk,5 = max C (εk)

Proposition 3. The optimal unit price ck to adopt is, ∀ k ∈ N ,

ck =



2εkθk
pk,4(pk,4 + εk)

if pk,4 < εk

θk
εk

if pk,4 ≥ εk and
θk∑
i θi
≤ εk∑

i θi if εk ≤
θk∑
i θi
≤ 1

2
or

θk∑
i θi
∈ C (εk)

θk
pk,5

otherwise

Proof: Due to space constraints, we only provide a sketch
of the proof. We refer the interested reader to [13] for the
complete proof. Considering that users adopt the unique NE
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pk , it is possible to compute the social welfare U(p) as a
function of the action profile p. In the interesting cases (i.e.,
such that pk < 1, ∀ k), the Hessian of U(p) is negative definite,
thus U(p) is concave. However, its first partial derivative with
respect to pk is not continuous in εk. If there exists user k’s
action in [0, pk,5] such that ∂G(p)

∂pk
= 0, than it is the maximizer

for U(p). Otherwise, either (1) ∂U(p)
∂pk

> 0 for pk < εk and
∂U(p)
∂pk

< 0 for pk > εk, thus the maximizer is εk, or (2) U(p)
increases in pk until reaching a maximum in pk = pk,5.

B. Intervention design

Once the intervention scheme is given, the interaction
among users can be modeled with the game in Eq. (11), where

U Ii (p) = θi ln

piE [[ri (pi + ni − p̃i)]10
] n∏
j=1,j 6=i

(1− pj)


and the expectation operator, E [·], yields the average interven-
tion level.

Lemma 4. Any pk such that 2εk ≤ pk ≤ 1 − εk can be
made the unique non trivial NE of the game ΓI by choosing
rk → +∞ and p̃k = pk + εk.

Proof: Due to space constraints, we only provide a sketch
of the proof. We refer the interested reader to [13] for the
complete proof. If pi < pi, the intervention level is always
equal to 0. If pi > pi + 2εi, the intervention level is always
equal to 1. If pi ≤ pi ≤ pi + 2εi, the intervention might be 0
or 1, depending on the value of the estimation error ni. The
resulting average intervention level is pi−pi

2εi
. With respect to

pi, Ui(p) is increasing in [0, pi] and ∂Ui(p)
∂pi

is decreasing in
[pi, pi + 2εi]. Thus, a necessary and sufficient condition such
that pi is a global maximum is that ∂Ui(p)

∂pi
≤ 0 for pi → p+i ,

which results in pi ≥ 2εi.
Lemma 4 states that, using an extreme rule, each user k has

the incentive to adopt a transmission probability pk which is
εk lower than p̃k, to avoid the possibility of an intervention
triggered by the estimation errors. This is true as long as p̃k
is not too low, otherwise for user k it is convenient to adopt
a transmission probability closer to p̃k, accepting the risk of
an intervention triggered by the estimation errors.

Proposition 4. If p∗k = θk∑n
i=1 θi

≥ 2εk for every user k, then
the intervention rule rk → +∞ and p̃k = p∗k+εk is an optimal
affine intervention.

Proof: According to Lemma 4, users have the incentive to
adopt p∗ = (p∗1, . . . , p

∗
n). In this case the intervention level is

equal to 0 because the estimation errors can not be higher than
ε = (ε1, . . . , εn). Thus, the outcome of the system is equal to
the benchmark optimum. Finally, this implies that rk → +∞
and p̃k = p∗k + εk define an optimal affine intervention rule,
and, in fact, also an optimal intervention rule within the class
of all intervention rules.

Corollary 2. If p∗k = θk∑n
i=1 θi

≥ 2εk, the optimal affine
intervention rule is optimal in the class of all intervention
rules.

We consider the following affine intervention rule, for every
user k

rk → +∞ , p̃k =

{
p∗k + εk if p∗k ≥ 2εk
3εk otherwise (18)

If p∗k ≥ 2εk for every user k, (18) defines an optimal
intervention rule. If p∗k < 2εk, for some user k, the intervention
rule might not be optimal. This rule is designed with the
objective to minimize the intervention level. In fact, each user
i has the incentive to adopt the action p̃i − εi, which results
in an intervention level equal to 0.

C. Comparison between pricing and intervention

Here we investigate the impact of imperfect monitoring on
the performance attainable with the pricing and the interven-
tion schemes. We consider the symmetric case, i.e., θi = θj
and εi = εj , ∀ i, j ∈ N . Thus, the optimal transmission policy
in the cooperative scenario, defined by Eq. (4), is p∗k = 1

n , for
every user k.

First we analyze how the social welfare and the total
throughput vary increasing the number of users in the system.
Fig. 2 shows that the estimation errors have different effects
in the two schemes. The social welfare of the pricing scheme
is not affected a lot by imperfect monitoring, in particular
the total throughput and the social welfare when the number
of users is less than or equal to 1

εi
= 10 (corresponding

to the condition p∗k ≥ εi) are equal to those attainable in
the perfect monitoring case. In fact, in this situation each
user is (on average) charged correctly. The impact of the
estimation errors in the intervention scheme is much stronger.
The intervention scheme is able to achieve the optimal social
welfare as long as the number of users is less than or equal to
5 (corresponding to the condition p∗k ≥ 2εk, as predicted by
Proposition 4). If the number of users is higher than 5, both
the total throughput and the social welfare decrease rapidly
as the number of users increases. This trend is a consequence
of the action adopted by the users in this situation, which
is constant and equal to 2εk instead of scaling with the
number of users. This causes a rapid increase of the number
of collisions. This trend determines a threshold in the number
of users such that, for a number of users lower than the
threshold, intervention outperforms pricing, whereas, for a
number of users higher than the threshold, pricing outperforms
intervention. The threshold value for the considered system
parameters is equal to 15.

In Fig. 3 the value of the threshold is plotted varying εk,
the maximum intensity of the noise. The threshold decreases
as εk increases, because the intervention scheme is more
sensitive to the estimation errors than the pricing scheme. For
the highest noise considered, i.e., εi = 0.2, the intervention
scheme outperforms the pricing scheme as long as the number
of users is less than 9.

Finally, in Figs. 4 and 5 we compare the considered inter-
vention scheme of Eq. (18) with the optimal affine intervention
rule, which is computed through an exhaustive search (this
is computationally possible because we consider a symmetric
scenario). Fig. 4 shows the action selected by the users and
the average intervention level varying the number of users,
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Fig. 2. Social welfare and total throughput vs. number of users, in the
imperfect monitoring scenario
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Fig. 3. Threshold vs. noise in the imperfect monitoring scenario

while Fig. 5 shows the social welfare and the total throughput
varying the number of users. Proposition 4 guarantees that
the considered intervention rule is optimal for a number
of users equal to or lower than 5 (corresponding to the
condition p∗k ≥ 2εk). However, as we can see, the considered
intervention rule is optimal until 9 users. If the number of
users exceeds 9, it is preferable to be more aggressive with
the intervention rule, using a p̃k lower than 3εk and forcing the
users to decrease their transmission probability as well, even
though this means that intervention is occasionally triggered.

VI. CONCLUSIONS

In this paper we tackle the problem of designing pricing
and intervention schemes to provide incentives for the users
to exploit efficiently the channel resource in a contention
game. We have considered both the perfect monitoring and
the imperfect monitoring scenarios. The analysis shows that
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Fig. 4. The users’ actions and the average level of intervention vs. number
of users in the imperfect monitoring scenario, considered vs. optimal policy
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Fig. 5. Social welfare and total throughput vs. number of users in the
imperfect monitoring scenario, considered vs. optimal policy

the intervention scheme, differently from the pricing scheme,
is able to achieve the optimal performance in the perfect
monitoring scenario. On the other hand, in the imperfect
monitoring scenario, as a rough general principle, intervention
achieves greater efficiency than pricing when the number of
users is small, while the opposite is true when the number
of users is large. The analysis in this paper can serve as
a guideline for a designer to select between pricing and
intervention and to design the best policy for the selected
scheme, depending on some system parameters such as the
number of users and the intensity of the monitoring noise.

REFERENCES

[1] Y. Jin and G. Kesidis, “A pricing strategy for an Aloha network of
heterogeneous users with inelastic bandwidth requirements,” in Proc.
IEEE CISS, 2002, pp. 1030–1033.

[2] D. Wang, C. Comaniciu, and U. Tureli, “A fair and efficient pricing
strategy for slotted Aloha in MPR models,” in Proc. IEEE VTC, 2006,
pp. 2474–2478.

[3] ——, “Cooperation and fairness for slotted Aloha,” Wireless Personal
Communications, vol. 43, no. 1, pp. 13–27, 2007.

[4] P. Nuggehalli, J. Price, and T. Javidi, “Pricing and QoS in wireless
random access networks,” in Proc. IEEE GLOBECOM, 2008.

[5] L. Yang, H. Kim, J. Zhang, M. Chiang, and C. W. Tan, “Pricing-
based spectrum access control in cognitive radio networks with random
access,” in Proc. IEEE INFOCOM, 2011, pp. 2228–2236.

[6] J. Park and M. van der Schaar, “The theory of intervention games
for resource sharing in wireless communications,” IEEE J. Sel. Areas
Commun., vol. 30, no. 1, pp. 165–175, 2012.

[7] ——, “Stackelberg contention games in multiuser networks,” EURASIP
Journal on Advances in Signal Processing, pp. 1–15, 2009.

[8] ——, “Designing incentive schemes based on intervention: The case of
imperfect monitoring,” in Proc. GameNets, 2011.

[9] G. Owen, Game Theory, 3rd ed. New York: Academic, 2001.
[10] D. J. Thuente and M. Acharya, “Intelligent jamming in wireless net-

works with applications to 802.11b and other networks,” in Proc. IEEE
MILCOM, 2006, pp. 1075–1081.

[11] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and
B. Thapa, “On the performance of IEEE 802.11 under jamming,” in
Proc. IEEE INFOCOM, Apr. 2008, pp. 1265–1273.

[12] A. Proano and L. Lazos, “Packet-hiding methods for preventing selective
jamming attacks,” IEEE Trans. Dependable Secure Comput., vol. 9,
no. 1, pp. 101–114, 2012.

[13] L. Canzian, Y. Xiao, M. Zorzi, and M. van der Schaar, Pricing
and Intervention in Slotted-Aloha: Technical Report, Technical report
available at: http://arxiv.org/abs/1211.3677, 2012.

714



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     7
     8
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     8
     7
     8
      

   1
  

 HistoryList_V1
 qi2base



