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ABSTRACT

We propose and analyze a distributed learning system to
classify data captured from distributed and dynamic data
streams. Our scheme consists of multiple distributed learners
that are interconnected via an exogenously-determined net-
work. Each learner observes a specific data stream, which
is correlated to a common event that needs to be classified,
and maintains a set of local classifiers and a weight for each
local classifier. We propose a cooperative online learning
scheme in which the learners exchange information through
the network both to compute an aggregate prediction and to
adapt the weights to the dynamic characteristics of the data
streams. The information dissemination protocol is designed
to minimize the time required to compute the final prediction.
We determine an upper bound for the worst-case misclas-
sification probability of our scheme, which depends on the
misclassification probability of the best (unknown) static ag-
gregation rule. Importantly, such bound tends to zero if the
misclassification probability of the best static aggregation
rule tends to zero. When applied to well-known data sets ex-
periencing concept drifts, our scheme exhibits gains ranging
from 20% to 70% with respect to state-of-the-art solutions.

Index Terms— Big Data, Stream Mining, Data-Driven
Application, Concept Drift, Online Learning, Classification,
Networked Learners

1. INTRODUCTION

Recent years have witnessed the proliferation of data-driven
applications that exploit the large amount of data captured
from distributed data sources. Examples of such applications
include surveillance, network monitoring, smart grids, social
multimedia, and patient monitoring. However, the effective
utilization of such high-volume data also involves significant
challenges that are the main concern of this work. First, the
statistical properties of the data can evolve in time. Second,
the privacy, communication, and sharing costs make it diffi-
cult to collect and store all the observed data.
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To address these challenges, in this work we propose an
online learning scheme [1] in which a set of distributed learn-
ers, interconnected via an exogenously-determined network,
observe different data streams and exchange pre-processed
information to classify a common event and to adapt their
configurations to the dynamic characteristics of the data
streams. Specifically, each learner maintains a set of local
classifiers and a weight for each local classifier, and generates
a weighted local prediction about the common event based
on the locally observed data. The weighted local predictions
are exchanged and combined by each learner using a majority
rule to compute the final prediction. After the final prediction
has been generated, the learners observe the label – the true
value of the event to be classified – and exploiting such infor-
mation they update their local weights adopting a Perceptron
learning rule [2].

We determine an upper bound for the worst-case misclas-
sification probability of our scheme which depends on the
misclassification probability of the best (unknown) static ag-
gregation rule. Importantly, the misclassification probability
of our scheme tends to 0 if the misclassification probability of
the best static aggregation rule tends to 0. Since in the pres-
ence of concept drift [3] (i.e., non-stationary data streams) it
is highly unlikely that the misclassification probability of the
best static aggregation rule tends to 0, we also extend such
an asymptotic result considering assumptions that are more
appropriate in the presence of concept-drifting data streams.
When applied to well-known data sets experiencing concept
drifts, our scheme exhibits gains ranging from 20% to 70%
with respect to state-of-the-art solutions.

Much work has been done in the past decade on the devel-
opment of online ensemble learning techniques [4, 5, 6]. An
online version of Adaboost [7] is described in [8], and similar
proposals are made in [9] and [10]. Weighted majority [11]
maintains a collection of given learners and their weights, pre-
dicts using a weighted majority rule, and decreases (in a mul-
tiplicative manner) the weights of the learners in the pool that
disagree with the label whenever the ensemble makes a mis-
take. Modified versions of weighted majority are proposed in
[12] and [13]. [14] proposes a scheme based on two online en-
sembles, one used for system predictions, the other one used
to learn the new concept after a drift is detected.

All the above learning techniques consider a centralized
scenario, in which the learners observe the same data and can



be centrally retrained. The present study is related to these
works and exploits a learning scheme which is similar to that
adopted by the weighted majority schemes, but it is focused
on a distributed scenario, in which the learners observe dif-
ferent data streams and are connected via an exogenously-
determined network, which constrains their communication
capabilities. In fact, our learning scheme is proposed and
evaluated not only for its prediction accuracy, but also for its
capability to generate timely predictions in a distributed envi-
ronment.

The rest of this paper is organized as follows. Section
2 presents our formalism, framework, and algorithm for dis-
tributed online learning. Section 3 characterizes the predic-
tion delay of the proposed system and proves a bound for
the misclassification probability of our scheme. Section 4
presents the empirical evaluation of our algorithm on several
data sets. Section 5 concludes the paper.

2. THE PROPOSED COOPERATIVE DISTRIBUTED
LEARNING SCHEME

We consider a set of L learners and we divide time into slots.
At the beginning of the n-th time slot, each learner i observes
a multi-dimensional instance or feature vector x

(n)
i ∈ Xi,

which is correlated to a common and unknown label y(n) ∈
{−1, 1}. The task of each learner is to predict the label y(n).

Each learner i is equipped with a set {f (n)i,k } of Ki local

classifiers. Each local classifier f (n)i,k : Xi → {−1, 1} gen-

erates the local prediction s(n)i,k , f
(n)
i,k [x

(n)
i ] at time slot n.

The classifier f (n)i,k can either be a pre-trained static classifier
or an incremental classifier that varies with time n [15]. In
both cases, we assume that its form is given so that its design
is not the focus of this work: our emphasis will be on how
to aggregate the local predictions made by the classifiers. We
denote by K ,

∑
iKi the total number of local classifiers in

the system. In addition to the set of classifiers, we assume that
learner imaintains a set ofKi weights, one weight for each of
its local classifiers. We denote by w(n)

i,k the weight that refers

to classifier f (n)i,k in time instant n. We define the contribution

C
(n)
i of learner i to the final prediction in time instant n as

C
(n)
i ,

Ki∑
k=1

w
(n)
i,k s

(n)
i,k

We assume that the learners are connected via an exoge-
nously determined network G, which is defined as the set of
links among pairs of learners. We say that there is a link
(i, j) between learners i and j if they can communicate di-
rectly. The distance di,j between i and j is defined as the
minimum number of links which separates i from j. The di-
ameterD(G) , maxi,j di,j of the network G is the maximum
among all the distances.

We consider a minimum diameter spanning tree G of the
original network G [16], i.e., among all the acyclic connected
networks obtained by cutting some links from G, G has the
smallest diameter. If D(G) is even there is a unique learner
– which we refer to as sink learner – whose distance from
the other learners is at maximum D(G)/2. If D(G) is odd
there are two linked learners – which we refer to as sink learn-
ers – whose distance from the other learners is at maximum
(D(G) + 1)/2. We define the depth δi(G) of learner i in
G as the distance between i and the farther sink learner, we
have maxi δi(G) = dD(G)

2 e, where dze denotes the smallest
integer equal to or larger than z. If i and j are linked and
δj(G) = δi(G) + 1 we say that i is the parent of j and j is a
child of i. We denote by N i the set of children of i.

The proposed cooperative distributed learning scheme ini-
tializes the weights w(1)

i,k = 0, ∀ i, k, and in each time slot n is
described through the following five sequential phases:
1) Observation phase. Each learner i observes the data x

(n)
i

and computes its contribution C(n)
i .

2) Exchange of the aggregate contributions. We divide this
phase into dD(G)

2 e stages. For each stage s = 1, . . . , dD(G)
2 e,

each learner i having depth δi(G) = dD(G)
2 e+ 1− s sends to

its parent the message m(n)
i = C

(n)
i +

∑
j∈N i

m
(n)
j , where

m
(n)
j is the message i received in the preceding stage from its

child j ∈ N i.
3) Computation and exchange of the final prediction. Each
sink learner computes the final prediction ŷ(n) adopting a
weighted majority rule [8, 11, 12, 13],

ŷ(n) = sgn
(
w(n) · s(n)

)
(1)

where w(n) , (w
(n)
1,1 , . . . , w

(n)
1,K1

, w
(n)
2,1 , . . . , w

(n)
L,KL

) ∈ <K

and s(n) , (s
(n)
1,1 , . . . , s

(n)
1,K1

, s
(n)
2,1 , . . . , s

(n)
L,KL

) ∈ {−1, 1}K
are the weight and local prediction vectors, respectively,
w(n) · s(n) ,

∑L
i=1 C

(n)
i is the inner product between

w(n) and s(n), and sgn(·) is the sign function (we define
sgn(0) , 1). The final prediction ŷ(n) is then spread in the
network throughD(G)−dD(G)

2 e stages in which each learner
forwards ŷ(n) to its children.
4) Feedback phase. The learners observe the label y(n).
5) Weights update phase. Each learner i compares ŷ(n) with
y(n) and use this information to update the weights w(n)

i,k ,
k = 1, . . . ,Ki, of its local classifiers. Specifically, we ap-
ply the Perceptron learning rule [2] to the aggregation rule
(1), obtaining the following update rule

w
(n+1)
i =


w

(n)
i,k if ŷ(n) = y(n)

w
(n)
i,k + 1 if ŷ(n) 6= y(n) and s(n)i,k = y(n)

w
(n)
i,k − 1 if ŷ(n) 6= y(n) and s(n)i,k 6= y(n)

(2)

Learner i maintains the same weights if the final prediction
agrees with the observed label, ŷ(n) = y(n). If disagreement



occurs, then learner i increases by one unit the weights of its
classifiers that agree with the label, and decreases by one unit
the weights of its classifiers that disagree with the label. Every
other learner in the network implements a similar strategy.
Notice that w(n)

i,k is always an integer number, ∀ i, k, n.

3. PERFORMANCE

In this section, we evaluate the performance of the proposed
learning scheme.

In Subsection 3.1 we characterize the prediction delay –
the time to output the final prediction – and we show that for
a large class of networks the proposed information dissemi-
nation protocol is optimal – it minimizes the prediction delay.

In Subsection 3.2 we analyze the misclassification proba-
bility – the number of prediction mistakes per instance – and
we prove an upper bound for the misclassification probability
of our scheme that depends on the misclassification probabil-
ity of the best (unknown) static weighted majority aggrega-
tion rule. Importantly, the resulting bound tends asymptoti-
cally to 0 if the misclassification probability of the best static
aggregation rule tends to 0.

3.1. Prediction delay
In many stream mining applications it is vital to take timely
decision based on timely predictions. In a distributed envi-
ronment, the time required to compute the final prediction
ŷ(n) is constrained by the prediction delay T (G), i.e., the time
needed to spread the required information in the network.

We consider a positive and monotonically increasing link
delay function f : N → <+.1 We interpret f(x) as the time
required to transmit x bits over a link. Alternatively, f(x) can
be interpreted as a cost, e.g., the energy required to transmit
x bits over a link or the price to pay to access the information
of another learner. We denote by xboo and xint the number of
bits – included overhead bits – required to transmit a Boolean
value and an integer number, respectively.

Proposition 1 characterizes the prediction delay TP (G)
for the proposed scheme.

Proposition 1 The prediction delay TP (G) of the proposed
scheme is

TP (G) =
⌈
D(G)
2

⌉
f(xint) +

(
D(G)−

⌈
D(G)
2

⌉)
f(xboo)

Proposition 1 shows that the prediction delay depends
only on the diameter of the minimum diameter spanning
tree network G and hence increases slowly in the number of
learners L.2 Notice the proposed dissemination protocol is

1The proposed information dissemination protocol can be generalized
considering link-dependent delay functions fi,j , for each link (i, j).

2[17] proves that the diameter of a random acyclic network grows as
O(

√
L).

not simply a matter of networking, it exploits the particular
structure of the proposed aggregation and learning rules, (1)
and (2), to efficiently combine data at intermediate learners.

Proposition 2 shows that the considered information dis-
semination protocol allows to minimize the prediction delay
for the class CDP of diameter-preserving spanning tree net-
works, i.e., for each network G such that D(G) = D(G).
Acyclic networks are an example of such networks.

Proposition 2 Let P̃ an information dissemination protocol
such that all learners are able to compute the final prediction
(2). If G ∈ CDP then T P̃ (G) ≥ TP (G)

3.2. Misclassification probability

We denote by q(n)(x(n)
1 , . . . ,x

(n)
L , y(n)) the probability that

the learners observe the instances x
(n)
1 , . . . ,x

(n)
K and the la-

bel is y(n). As in [3], we refer to a particular probability dis-
tribution qc as a concept, we say that the concept is stable if
q(n) is an independent and identically distributed process with
q(n) = qc, ∀n, whereas we say that at time instant n there is
a concept drift if q(n+1) 6= q(n).

Given the sequence of N instances and labels

DN ,
(
x
(n)
1 , . . . ,x

(n)
K , y(n)

)
n=1,...,N

,

we denote by PO(DN ) the misclassification probability of a
learner that combines the local predictions of all the classifiers
in the system with the optimal static weight vector wO that
minimizes its number of mistakes,

PO(DN ) , min
wO

1

N

N∑
n=1

I{sgn
(
wO · s(n)

)
6= y(n)}

We remark that the computation and adoption of wO

would require to know in advance, at the beginning of the
first time slot, the sequences of local predictions s(n) and
labels y(n), for every time slot n = 1, . . . , N .

Moreover, we denote by P (DN ) the misclassification
probability of a learner if all the learners adopt the proposed
scheme,

P (DN ) ,
1

N

N∑
n=1

I{sgn
(
w(n) · s(n)

)
6= y(n)}

where w(1)
i,k = 0 and w(n)

i,k evolves according to (2), for each
learner i = 1, . . . , L and classifier k = 1, . . .Ki.

Theorem 1 determines an upper bound for P (DN ) in
terms of the unknown benchmark PO(DN ).

Theorem 1 For every sequence of labeled instances DN , the
misclassification probability P (DN ) is upper bounded by

B(DN ), (1+
√
K)PO(DN )+2

√
(K +

√
K)PO(DN )

N
+
K

N



Importantly, notice that the bound B(DN ) is valid for any
time horizon N and for any sequence of labeled instances
DN . As a particular case, if the time horizon tends to infinity
and PO(DN ) tends to 0, the misclassification probability of
our scheme tends to 0 as well.

Corollary 1 If limN→+∞ PO(DN ) = 0, then

lim
N→+∞

P (DN ) = 0

Corollary 1 can be useful if the concept is stable, but it
is not useful if there is concept drift because the accuracies
of the classifiers and, consequently, the optimal weight vec-
tor wO can change consistently from one concept to another.
Now we generalize the result of Corollary 1 considering an
assumption that is more realistic if there are concept drifts.

We denote by DNc
a sequence of Nc instances and labels

generated by the concept qc. We say that the concept qc is
learnable if, ∀DNc ,

lim
Nc→+∞

min
wO

c

1

Nc

Nc∑
n=1

I{sgn
(
wO

c · s(n)
)
6= y(n)} = 0

That is, the concept q(n)c is learnable if there exists a static
weight vector wO

c whose asymptotic misclassification proba-
bility, over the instances and labels generated by that concept,
tends to 0.

Theorem 2 If DN , for N → +∞, is generated by a finite
number of learnable concepts and a finite number of concept
drifts occurred, then

lim
N→+∞

P (DN )→ 0

We remark that Corollary 1 requires the existence of a
unique weight vector, wO, whose misclassification probabil-
ity over the labeled instances generated by all concepts con-
verges to 0; whereas Theorem 2 requires the existence of one
weight vector for concept, wO

c , whose misclassification prob-
ability over the labeled instances generated by concept qc con-
verges to 0.

4. SIMULATIONS

In this section we evaluate empirically the performance of our
scheme and compare it with the ensemble learning techniques
listed in Table 1. For each scheme we adopt the parameters
used in the corresponding paper. We consider three data sets
widely used by the literature dealing with concept drift, that
refer to real-world problems: in R1 the task is to detect a
network attack [10, 14, 18, 19]; in R2 the task is to detect if
the price of the energy will increase or decrease [14, 20, 21];
and in R3 the task is to classify the forest cover type of a
particular area [10, 20, 22, 19]. For a detailed description of

Table 1. The considered schemes and their percentages of
misclassifications in the data sets R1-R3

Name and Reference Performance
R1 R2 R3

Average Majority, [18] 3.07 41.8 29.5
Adaboost, [7] 5.25 41.1 57.5

Weighted Majority (WM), [11] 0.29 22.9 14.1
Blum’s variant of WM, [12] 1.64 37.3 22.6

TrackExp, [13] 0.52 23.1 14.8
Our scheme 0.23 14.4 4.1

the considered schemes and data sets, we refer the reader to
the cited references.

For each data set we consider a set of 8 logistic regression
classifiers [23]. The training and testing procedures are as
follows. From the whole data set we select 8 training data
sets, each of them consisting of Z sequential records. Z is
equal to 5, 000 for the data sets R1 and R3, and 2, 000 for
R2. Then we take other sequential records (20, 000 for R1
and R3, and 8, 000 for R2) to generate a set in which the
local classifiers are tested, and the results are used to train
Adaboost. Finally, we select other sequential records (20, 000
for R1 and R3, 21, 000 for R2) to generate the testing set
which is used to run the simulations and test all the considered
schemes.

Table 1 reports the final misclassification probability in
percentages (i.e., multiplied by 100) obtained for each data
set for the considered schemes. The schemes that update
their models (WM, Blum’s variant of WM, TrackExp, and
our scheme) outperform the static schemes (average major-
ity and Adaboost); in fact, the latter do not adapt to changes
in concept. Importantly, in all the considered data sets our
scheme outperforms the other schemes and exhibits perfor-
mance gains ranging from 20% (R1) to 70% (R3) with respect
to WM, the second best scheme.

5. CONCLUSION

We proposed a distributed online ensemble learning scheme
to classify data captured and pre-processed by multiple dis-
tributed local learners. We designed an efficient information
dissemination protocol to spread the required information in
the network. We rigorously determined a bound for the worst-
case misclassification probability of our scheme which de-
pends on the misclassification probability of the best static ag-
gregation rule. Importantly, this bound tends asymptotically
to 0 if the misclassification probability of the best static ag-
gregation rule tends to 0. Simulation results show that, when
applied to well-known data sets experiencing concept drifts,
our scheme exhibits performance gains ranging from 20% to
70% with respect to state-of-the-art solutions.
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