
1

Timely Event Detection by Networked Learners
Luca Canzian and Mihaela van der Schaar

Abstract—We consider a set of distributed learners that are in-
terconnected via an exogenously-determined network. The learners
observe different data streams that are related to common events
of interest, which need to be detected in a timely manner. Each
learner is equipped with a set of local classifiers, which generate
local predictions about the common event based on the locally
observed data streams. In this work, we address the following key
questions: (1) Can the learners improve their detection accuracy
by exchanging and aggregating information? (2) Can the learners
improve the timeliness of their detections by forming clusters, i.e.,
by collecting information only from surrounding learners? (3) Given
a specific tradeoff between detection accuracy and detection delay,
is it desirable to aggregate a large amount of information, or is it
better to focus on the most recent and relevant information? To
address these questions, we propose a cooperative online learning
scheme in which each learner maintains a set of weight vectors (one
for each possible cluster), selects a cluster and the corresponding
weight vector, generates a local prediction, disseminates it through
the network, and combines all the received local predictions from
the learners belonging to the selected cluster by using a weighted
majority rule. The optimal cluster and weight vector that a learner
should adopt depend on the specific network topology, on the
location of the learner in the network, and on the characteristics
of the data streams. To learn such optimal values, we propose a
general online learning rule that exploits only the feedbacks that
the learners receive. We determine an upper bound for the worst-
case mis-detection probability and for the worst-case prediction
delay of our scheme in the realizable case. Numerical simulations
show that the proposed scheme is able to successfully adapt to
the unknown characteristics of the data streams and can achieve
substantial performance gains with respect to a scheme in which
the learners act individually or a scheme in which the learners
always aggregate all available local predictions. We numerically
evaluate the impact that different network topologies have on the
final performance. Finally, we discuss several surprising existing
trade-offs.

Index Terms—Event detection, clustering, networked learn-
ers, online learning, distributed learning, ensemble of classifiers,
weighted majority, classification.

I. INTRODUCTION

The world is increasingly information-driven. Vast amounts
of data are being produced by diverse sources and in diverse
formats including sensor readings, physiological measurements,
documents, emails, transactions, tweets, and multimedia files.
Many businesses and government institutions are also embracing
automation and relying on a variety of sensors and infrastructure
to collect, store, and analyze data on a continuous basis. It
is becoming critical to endow assessment systems with the
ability to process streaming information from sensors in real-
time in order to better manage physical systems, derive informed
decisions, tweak production processes, and optimize logistics
choices [1].

Consider for example a city that is responsible for providing
public transport and road emergency services. The city can
use information from mobile phone applications such as Waze,

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Electrical Engineering, UCLA, Los
Angeles CA 90095, USA. Email: lcanzian@ucla.edu – mihaela@ee.ucla.edu.

This work was partially supported by the AFOSR DDDAS grant.

augmented with its own road sensors (loop sensors, cameras,
etc.) and transport sensors (GPS on buses and trains, etc.), to
predict some minutes in advance the amount of traffic in major
intersections. These predictions can be used to optimize the
transport grid in real-time, provide emergency services (e.g.,
evacuations and dynamic closures), modify public transport (e.g.,
dynamic connections between bus/train routes based on current
demand), and even control the traffic light systems.

This traffic example shows the need for developing novel ana-
lytic algorithms and platforms to support the unique requirements
of stream mining applications [2], [3], including 1) handling data
with different formats, sources, content, rates and features; 2)
analyzing data in motion, in order to support real-time and low-
latency requirements; and 3) processing the data in a distributed
manner.

The main aim of this paper is to develop a systematic
framework for real-time distributed stream-mining solutions for
event detection. The term “event” is used in this paper as an
abstract concept that is characterized by an unknown duration,
an unknown label, and observable features. We consider a
general network structure with multiple distributed learners that
observe (parts of) the features of the events, and their final
goal is to detect the events by discovering the changes in the
values of the labels in a timely manner, before the events
end. A learner is a node that relies on a local classifier – a
processing element that partitions data sets into multiple classes
of interest – to pre-process the observed features locally and to
make a local prediction. We allow the learners to exchange the
local predictions over a topology and to aggregate them before
deciding on a final label classification. Since information requires
time to spread in the network, some learners can receive out-
dated local predictions, and this can have a negative impact on
the final label classification. Therefore, we allow each learner to
limit the aggregation only to the most recent local predictions it
receives, which is equivalent to selecting a cluster of surrounding
learners and aggregating only the local predictions of the learners
belonging to that cluster. More critically, we allow the learners
to dynamically adapt the cluster selection and the aggregation
model to minimize a parametrizable cost function, which will
be formally defined as a combination between the detection
accuracy and the detection delay. This component is a key
feature of our framework and is particularly relevant in dynamic
scenarios where the nature of the information being analyzed is
constantly evolving.

Specifically, in our scheme each learner maintains a set of
weight vectors (one for each possible cluster), selects a cluster
and the corresponding weight vector, generates a local prediction,
disseminates it through the network, and combines all the
received local predictions from the learners belonging to the
selected cluster by using a weighted majority rule. After an
event ends, the learners receive a feedback about the event. For
example, in the traffic application in which the goal is to predict

2

some minutes in advance whether the amount of traffic in major
intersections is above a certain threshold, the correctness of the
predictions can be automatically verified after some minutes.
The learners can exploit the received feedbacks to improve their
cluster and weight vector choices. We propose a specific online
learning rule to learn and adapt in parallel the weight vectors
of all the possible clusters and to learn the optimal cluster to
adopt. We call our distributed learning scheme Cluster Weighted
Majority (CWM).

CWM is a general learning algorithm that can be applied
to stream mining applications in which the correlation between
the observed features and the event to detect is not perfectly
known beforehand. In a realizable scenario, i.e., when there
exist (unknown) weight vectors that would allow the learners
to detect all the events if they had available all the local
predictions, we determine performance guarantees for the mis-
detection probability and for the prediction delay of CWM, both
in absence and in presence of communication errors.

Finally, we run numerous simulations and we evaluate the
performance of the CWM for a variety of system parameters
and network topologies. The results show that 1) CWM is
able to successfully adapt to the unknown characteristics of
the data streams and can achieve substantial performance gains
with respect to a scheme in which the learners act individually
and with respect to a scheme in which the learners always
aggregate all available local predictions; and 2) interesting trade-
offs happen, which depend on the network topology and on the
system parameters.

The rest of this paper is organized as follows. Section II
reviews the relevant literature. Section III presents our formalism
and framework for distributed online learning. Section IV derives
the proposed learning rules. Section V proves performance guar-
antees in the realizable case. Section VI presents the empirical
evaluation of our scheme. Section VII concludes the paper.

II. RELATED WORKS

Similarly to our approach, in the works dealing with future
event prediction [4]–[7] the labels are correlated in time and the
feedback is received with delay. [4] and [5] exploit only the label
time series to make predictions. In addition [4] adopts a Bayesian
model in which the distribution of the process generating the
labels is known and there exists a belief (constantly updated)
about the values of the parameters of the process. Differently
from these papers, in our work we assume no a priori knowledge
about the statistical properties of the data and we exploit also
additional information – the local observations and predictions
of distributed learners – to determine the final label class. Addi-
tional information is also exploited in [6] and [7]. Specifically,
[6] exploits the textual tweets of users to predict box-office
revenues of movies, whereas [7] exploits Google Trends indexes
to predict Ford’s monthly sales. Differently from our approach,
none of the cited works in future event prediction consider a
distributed scenario and propose a model that adapts online based
on the characteristics of the observed data.

Ensemble techniques [8]–[11] build and combine a collection
of base classifiers into a unique classifier. Examples of these
techniques include bagging [8], boosting [9], and weighted
majority [10]. Similarly to our work, most of the ensemble learn-
ing techniques are developed assuming no a priori knowledge

about the statistical properties of the data. However, differently
from our work, such techniques are designed for a centralized
scenario; in fact, the base classifiers are not distributed entities,
they all observe the same data stream. The focus of ensemble
learning is on the statistical advantages of learning with an
ensemble and not on the nature of learning under communi-
cation constraints. One might cast these techniques within the
framework of distributed learning, but they would suffer from
many drawbacks. For example, [12], [13] would require an
entity that collects and stores all the data recently observed
by the learners and that tells the learners how to adapt their
local classifiers, which is clearly impractical in real-time stream
processing applications characterized by high data rates.

The estimation literature [14]–[19] consists of learning agents
that are linked together through a network topology. The agents
must estimate some parameters based on their local observations
and on the continuous sharing and diffusion of information
across the network. Similarly to our work, the estimation liter-
ature is about learning in a distributed environment under com-
munication constraints. In fact, [15] shows that a classification
problem can be cast within the estimation framework. However,
there is a major difference between our work and the estimation
techniques. In the estimation literature the parameter estimation
represents the final objective; hence, the goodness of a scheme
is measured by the time required to learn the parameters with a
certain accuracy. In our work the focus is on the timeliness of
the event detection, and the learning of the parameters (i.e., the
weights and the cluster levels) is designed with this objective in
mind.

The decentralized detection literature [20]–[22] considers a
scenario in which a network of nodes provides relevant infor-
mation about the state of nature to a fusion center, which then
solve a standard problem of statistical inference in order to detect
the events. The focus of the detection literature is on providing
the rules according to which the nodes should decide what to
transmit, whereas in our work we provide the rule according to
which the nodes learn how to aggregate the information received.

In our previous work [23] we consider a scenario in which
distributed learners observe distributed data streams, make local
predictions, exchange the predictions, and aggregate them using
a weighted majority rule. However, differently from the current
work, [23] focuses on designing a protocol to spread the local
predictions efficiently in the network and makes the assumption
that the classifiers receive all the local predictions before decid-
ing on a final label class. As a consequence, in [23] the network
topology and the location of a learner have no impact on the
final performance of the learner. Instead, in the current work
the learners receive information with delay. As a consequence,
differently from [23], in the current work 1) we include the
detection delay as a performance metric to investigate, 2) we
allow each learners to aggregate only the information belonging
to a cluster of learners, 3) we propose a scheme in which each
learner has to jointly learn the weights and the cluster, and 4)
the network topology and the learner position inside the network
play a fundamental role in the performance of each learner.

Importantly, all the above cited works focus only on the
accuracy of the prediction, whereas in this paper we also focus
on the timeliness of the event detection.

3

n

+1

-1

!"#$%%$%#&'(&)*"&
+,)*&"-"%)

.%/&'(&)*"&
+,)*&"-"%)

0")"1)$'%&/"234

tℓ tℓ+1Tℓ Zi,ℓ

T det
i,ℓ

0563)$'%&'(&)*"&+,)*&"-"%)

ŷni
yℓ, ŷ

n
i

yℓ

7"1"8)$'%&'(&(""/931:&
'(&)*"&+,)*&"-"%)

Fig. 1: Illustration of the considered scenario and notations.

III. THE CONSIDERED DISTRIBUTED LEARNING SETTING

We consider a set K = {1, . . . ,K} of K distributed learners
and we divide the time into slots. At the beginning of the n-th
time slot, one label yn ∈ {−1,+1} and K multi-dimensional
instances xni ∈ Xi, i = 1, . . . ,K, are generated by an unknown
(possibly stochastic) process.1 Each learner i observes the in-
stance xni and its task is to estimate the value of the label.

Each learner i is equipped with a local classifier fni : Xi →
{−1,+1} that generates the local prediction sni , fni (x

n
i)

at time slot n. The specific structure of the local classifiers
(e.g., pre-trained static classifiers vs. incremental classifiers [24],
Naive Bayes vs. Decision Trees, etc.) has an impact on the
final performance of our scheme. However, our scheme can be
applied with any type of classifier, and different learners can also
adopt different local classifiers. For this reason, throughout the
manuscript we assume that the form of the local classifiers are
given so that their design is not the focus of this work; instead,
our emphasis will be on how to aggregate the local predictions
made by the classifiers.

We define an event as a tuple,

e` = {t`, t`+1, y`, s1,`, . . . , sK,`} ,
where t` is the time instant at which the event begins, t`+1

is the time instant at which the event ends (which corresponds
to the time instant at which the subsequent event begins),
y`, s1,`, . . . , sK,` are the label and the local predictions asso-
ciated to the event. The label and the local predictions are fixed
for the whole duration of the event, i.e., yn = y` and sni = si,`,
∀ i ∈ K and t` ≤ n < t`+1.2 We denote by T` = t`+1 − t`
the duration of the event. Fig. 1 illustrates these notations and
the task of the learners: they must detect the events in a timely
manner following the changes in the labels – we will formally
define it in Section IV-A.

The learners are connected via an exogenously determined
network G, which is defined as the set of links among pairs
of learners. We say that there is a link (i, j) between learner
i and j if they can communicate directly. In this case, we say
that learners i and j are neighbors. We consider only connected
networks, i.e., all the learners can communicate with each

1The proposed framework and scheme can be extended to multi-class labels.
2We remark that a binary classifier divides the input space into two regions:

one region includes all the instances that are classified as +1, whereas the other
region includes all the instances that are classified as −1. Hence, the assumption
that the local predictions of a classifier are fixed during the whole duration of an
event is equivalent to the assumption that the variations of the observed instances
do not cause it to cross the separation boundary among the regions. For example,
in the network intrusion example that we describe at the end of this section,
a network attack can represent a situation in which some routers observe an
increase in their input traffic. Though the input traffic can slightly vary in time,
during such an attack these routers will consistently observe a traffic rate that
is higher than a given threshold, and hence they will consistently generate the
local prediction +1 during the whole duration of the attack. Finally, we remark
that this assumption is only required for the performance analysis (Section V),
and the proposed scheme can be adopted also in scenarios in which such an
assumption does not hold.

3

1

2

64 75

Binary Tree Network

14 158 9 10 11 12 13

sn15sn14sn13sn12sn11sn10sn8 sn9

[sn7 , s
n−1
14 , sn−1

15][sn6 , s
n−1
12 , sn−1

13][sn5 , s
n−1
10 , sn−1

11][sn4 , s
n−1
8 , sn−1

9]

[sn3 , s
n−1
6 , sn−1

7 , sn−2
12 , sn−2

13 , sn−2
14 , sn−2

15][sn2 , s
n−1
4 , sn−1

5 , sn−2
8 , sn−2

9 , sn−2
10 , sn−2

11]

sn1,2 =
(
1, sn1 , s

n
2 , s

n
3 , s

n−1
4 , sn−1

5 , sn−1
6 , sn−1

7

)

Fig. 2: Flow of information toward learner 1 at time slot n for a binary
tree network, sn1,2 is learner 1’s level-2 local prediction vector at time
instant n.

other through a multi-hop communication in which intermediate
learners forward the information they receive to the next learner
in the path. A path between learners i and j is a sequence of
dpath adjacent links that connect i to j, dpath is called the length
of the path. The distance dij(G) between learners i and j is
the minimum among the lengths of all the paths that connect
i to j, and a path with a length equal to the distance is called
shortest path. The eccentricity εi(G) , maxj dij of learner i
is the maximum distance between i and any other learner in
the network. We denote by Ki,d(G) the set of learners whose
distance from i is at most d, including learner i itself, and by
Ki,d(G) the cardinality of Ki,d(G). We refer to Ki,d(G) as learner
i’s cluster of level d. To simplify the notations, we will often
omit the dependency from the network G, i.e., we will write dij
instead of dij(G), and so on for the other network-dependent
parameters.

We allow the distributed learners to exchange and aggregate
their local predictions through multi-hop communications; how-
ever, within one time slot a learner can send only a single
transmission to each of its neighbors. We denote by snij learner
j’s local prediction possessed by learner i before the aggregation
at time instant n. The information is disseminated in the net-
work as follows. First, each learner i observes xni and updates
snii = sni = fni (x

n
i). Next, learner i transmits to each neighbor j

the local prediction sni and the local predictions sn−1ik , for each
learner k 6= i such that the link (i, j) belongs to the shortest
path between k and j. We assume that transmissions are always
correctly received (we deal with erroneous communication in
Subsection V-C), hence we obtain

snii = sni ; snij = s
n−dij+1
j ∀ j 6= i . (1)

For instance, Fig. 2 represents the flow of information toward
learner 1 for a binary tree network. Notice that some learners
are required to transmit several local predictions, but each local
prediction is simply encoded by one bit.

After having updated its local predictions snij , ∀ j ∈ K, learner
i aggregates all the local predictions to compute a final prediction
ŷni . Similarly to most ensemble techniques, such as [9], [10],
[12], [13], we consider a weighted majority aggregation rule.
Learner i maintains in memory εi weight vectors,

wn
i,d , (wni0,d, w

n
ij,d,∀ j ∈ Ki,d) ∈ <Ki,d+1 ,

d = 1, . . . , εi. Adopting the level-d weight vector wn
i,d, learner

i can compute the aggregate prediction ŷni,d with the weighted

4

majority aggregation rule

ŷni,d , sgn
(
wn
i,d · sni,d

)
,

{
+1 if wn

i,d · sni,d ≥ 0

−1 otherwise
,

where sni,d , (1, snij ,∀ j ∈ Ki,d) ∈ {−1,+1}Ki,d+1 is learner
i’s level-d local prediction vector, wn

i,d · sni,d , wni0,d +∑
j∈Ki,d w

n
ij,ds

n
ij is the inner product between wn

i,d and sni,d,
and sgn(·) is the sign function.

In each time instant n, learner i selects a specific cluster level
dni , dni ∈ {1, . . . , εi}, and outputs the final prediction

ŷni , ŷni,dni = sgn
(
wn
i,dni
· sni,dni

)
. (2)

In the above construction, learner i first selects dni , then it
adopts wn

i,dni
to aggregate the local predictions {snij , j ∈ Ki,dni }

of the learners belonging to the cluster Ki,dni , and finally it uses
the sign of the aggregated information to output its final classifi-
cation ŷni . According to (2), the equation wn

i,dni
·sni,dni = 0 defines

a hyperplane in <Ki,dni which separates the positive predictions
(i.e., ŷni = +1) from the negative ones (i.e., ŷni = −1).

While weighted majority aggregation rules have been con-
sidered before in the ensemble learning literature [9], [10],
[12], [13], there are some important distinctions that are worth
emphasizing: 1) since we are limiting the learners to exchange
information only via links, learners receive information from
other learners with delay – see Eq. (1). For this reason, we
allow the learners to select the cluster level dni , i.e., to trade-
off the quantity and the currency of the information to exploit;
and 2) we introduce the weight wni0,d that can be thought as
the weight associated to a “virtual learner” that always sends
the local prediction +1, this means that we do not constrain the
separating hyperplane to be homogeneous.

In traditional online learning settings [25] a learner is assumed
to receive a feedback, which consists of the real value of the
label, after it outputs the final prediction; this information is
exploited by the learner to update its configuration in order to
improve its classification accuracy. In our context the feedback
includes the information about an event, i.e., the starting time
t`, the ending time t`+1, the label y`, and the local predictions
s1,`, . . . , sK,`.3 However, we allow for the feedback to be
received with delay. Specifically, the feedback that refers to the
event e` is received by learner i at time instant t`+1+Zi,`, where
Zi,` is a random variable bounded by Z – see Fig. 1. We assume
that the feedbacks are received at the end of the time slot, after
the learners have computed their final predictions for the current
time slot. If at the end of the n-th time slot learner i receives
a feedback, it exploits this information to update its aggregation
weight vectors wn

i,d, ∀ d ∈ {1, . . . , εi}, and to select the cluster
level dni in the subsequent time instants.

To summarize, a generic time slot n can be subdivided into
the following four phases:
1. Observation: each learner i observes the instance xni ;
2. Local Prediction Exchange: each learner i computes its
current local prediction sni , sends to its neighbors the local
predictions it possesses, receives the local predictions sent by
its neighbors, and updates the state of the local predictions it
possesses;

3Notice that after having observed t` learner i can compute the local
predictions sj,` = s

t`+dij−1

ij , ∀ j.

3. Final Prediction: each learner i selects the cluster level dni
and computes its final prediction ŷni using (2);
4. Update: if learner i receives a feedback it updates its current
weight vectors wn

i,d, ∀ d ∈ {1, . . . , εi}, and its current estimate
dni of the optimal cluster level to adopt.

In Subsection IV-C we will propose a specific update rule to
adapt wn

i,d, whereas in Subsection IV-B we describe a specific
selection rule to choose the cluster level dni .

Before concluding this section, we discuss a possible applica-
tion of our model.

Example: Network Intrusion. Consider a situation in which
K learners (e.g., routers) are monitoring the traffic of a network
and have to distinguish between normal connections and attacks.
Since the traffic volume can be huge4, it is costly and sometimes
unfeasible to exchange the raw information observed by the
learners. Hence, the learners can generate local predictions based
on the local traffic they observe, exchange only the local predic-
tions, and aggregate them to detect an attack in a more accurate
and timely manner. In this context, an event corresponds to a
specific attack or to a normal connection. In the KDDCUP’99
network intrusion data set [13], a data set widely used in the
stream mining literature, multiple TCP connections are acquired
every second, whereas network attacks last tenths of minutes.
As a consequence, a long sequence of time slots with no attacks
(i.e., the label is −1) is followed by a long sequence of time
slots with attacks (i.e., the label is +1). This shows that in this
type of application the event duration is typically much longer
than the time slot.

IV. THE PROPOSED LEARNING SCHEME

In this section we first define a performance metric (Subsection
V-A), then we propose a selection rule to choose the cluster level
dni (Subsection IV-B) and a learning rule to adapt the weight
vectors wn

i,d (Subsection IV-B).

A. Performance metric

We say that the event e` is detected by learner i if there exists
a time instant n` ∈ {t`, . . . , t`+1} such that

ŷni 6= y` , ∀n = t`, . . . , n` − 1 ,

ŷni = y` , ∀n = n`, . . . , t`+1 . (3)

Notice that (3) includes also the case in which the final prediction
ŷni agrees with the label for the whole duration of the event, in
this case n` = t`. For a detected event, we define the detection
delay T deti,` , n` − t`.

Given a sequence of N events, eN , (e1, e2, . . . , eN) ,
we denote by Edeti (eN) and Ndet

i the set and number of
events detected by learner i, respectively. We define the mis-
detection probability Pi(eN) of learner i as the average number
of undetected events,

Pi(eN) ,
N −Ndet

i

N
, (4)

and we define the delay Di(eN) of learner i as the average
detection delay,

Di(eN) ,

∑
`∈Edeti

T deti,`

Ndet
i

. (5)

4A single Internet Service Provider can receive thousands of DNS queries
each second [26].

5

In order to incorporate these two measures in a single perfor-
mance metric, we consider the following cost function,

Ci(eN) , Pi(eN) + αDi(eN) . (6)

The trade-off parameter α is a design parameter which is used
to trade-off between detection accuracy and delay. The value of
α must be small if the considered application does not require
timely detections, whereas it must be large if it is essential to
detect an event in a timely manner.

In the next subsections we design the cluster level selection
rule and the weight vector update rule in order to minimize the
cost Ci(eN). Note that there is no a priori knowledge about the
(stochastic) process that generates the labels and the instances,
and about the accuracies of the local classifiers. Hence, it is
not possible to write an optimization problem to minimize the
(expected) cost function (6). The selection and update rules
must be designed in order to minimize estimates of the real
cost Ci(eN), and such estimates can be computed thanks to the
received feedback.

B. Cluster level selection rule

Before describing our approach for the cluster level selection
rule, we consider a simple example to highlight the importance
of the choice of dni . Let us consider the binary tree network
illustrative example in Fig. 2 and let us focus on learner 1 and on
a time instant n in which the event e` begins, such that the label
y` is different from the label of the preceding event e`−1. We
assume that the probability P [si,` = y`] that the local prediction
si,` agrees with the label y` is 3/4, ∀ i, and the event si,` = y`
is independent from the event sj,` = y`, ∀i 6= j. Finally, we
assume that wn10,d = 0 and wn1i,d = 1, ∀ d, i, i.e., the local
predictions of different learners are weighted equally (with this
choice the detection accuracy is maximized). Fig. 3 shows the
probability P that learner 1 detects the event e`, using different
cluster levels and in different time instants. On one hand, after
two time slots (i.e., at time instant n+2) the highest probability
to detect an event is achieved when learner 1 adopts dni = 3, i.e.,
when it aggregates all the local predictions. On the other hand,
the probability to detect the event immediately is maximized
when learner 1 adopts dni = 1, i.e., when it aggregates only
the prediction from its neighbors. This example shows that the
choice of dni has opposite effects on the accuracy and the delay
of learner i, hence it must reflect the trade-off defined in Eq.
(6) between accuracy and delay. To reach this objective, we
empirically estimate the cost function (6) for each possible value
of the cluster level, and in time instant n we adopt the cluster
level dni that minimizes such empirical costs.5

Specifically, learner i keeps in memory the following 2εi + 1
parameters: 1) Nfed,n

i is the number of feedbacks received by
learner i by time instant n; 2) Ndet,n

i,d is the number of times
learner i would have detected an event adopting the cluster level

5In this work we focus on a scenario in which the cluster level is continuously
adapted in real-time; as a consequence, each learner has to update the local
predictions for all the other leaners and has to estimate the cost function for
each possible value of the cluster level. This can be problematic and expensive
if the number of learners is very large. A variation of the considered approach,
in which the cluster learning phase is performed only once at the beginning (i.e.,
during a training phase) may be used for large scale stream-mining applications.
Indeed, once the cluster for each node is learned, the real-time exchange of
information is limited only to the nodes belonging to the same clusters, and
each node has to receive and update only the local predictions of the nodes that
belong to its cluster.

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

K1,1
!"#"$%&' !"#"$%&' !"#"$%&'

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

!"#"$%'(!"#"$%)* !"#"$%)*K1,2

dn1 = 1

dn1 = 3

dn1 = 2

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

3

1

2

64 75

14 158 9 10 11 12 13

K1,3
!"#"$%$) !"#"$%'' !"#"$%)&

+ +,(+,-./01"23456

Fig. 3: Probability that learner 1 detects the event e` in a given time
instant. Different rows refer to different cluster level values.

d, among all events whose feedbacks have been received by
time instant n, d = 1, . . . , εi; 3) Tni,d is the sum of the detection
delays of all the events learner i would have detected adopting
the cluster level d, among all events whose feedbacks have
been received by time instant n, d = 1, . . . , εi. Exploiting these
parameters learner i can compute

Ĉni,d ,
Nfed,n
i −Ndet,n

i,d

Nfed,n
i

+ α
Tni,d

Ndet,n
i,d

,

that represents an estimate of the cost function that learner i
obtains selecting the cluster level d, d = 1, . . . , εi.

At time slots n learner i selects the cluster level that minimizes
Ĉni,d,

dni , argmin
d

Nfed,n
i −Ndet,n

i,d

Nfed,n
i

+ α
Tni,d

Ndet,n
i,d

. (7)

The parameters Nfed,n
i , Ndet,n

i,d and Tni,d are initialized to 0
and are updated whenever a new feedback is received. Assume
that at time instant n the feedback that refers to the event e` is
received. We write Ii,d,` = 1 if the event e` would have been
detected by learner i adopting the current weight vector wn

i,d, and
in this case Ti,d,` is the corresponding detection delay; otherwise
Ii,d,` = Ti,d,` = 0. The parameters Nfed,n

i , Ndet,n
i,d and Tni,d are

updated as follows,

Nfed,n
i , Nfed,n−1

i + 1 ,

Ndet,n
i,d , Ndet,n−1

i,d + Ii,d,` ,

Tni,d , Tn−1i,d + Ti,d,` . (8)

C. Weight vectors update rule

To update the weight vector wn
i,d, we consider an empirical

cost function that depends only on the probability to detect an
event. The main reason why we do not consider the delay in this
phase is that the values of the weights do not have a significant
impact on the delay. Indeed, if the cluster level is d, after a
maximum of d−1 time slots learner i receives all the information
from the learners belonging to the level-d cluster; hence, the
delay cannot be larger than d− 1 independently of the values of
the weights. Moreover, given the total cost defined in Eq. (6), it
is not trivial to derive a suitable cost function for the individual
events that includes also the delay, because the detection delay
is undefined for non-detected events.

Let n = t` + Zi,` the time instant at which learner i receives
the feedback which refers to the event e`. We define the set

6

Efed,ni , {e` : t`+1+Zi,` ≤ n} of events whose feedbacks have
been received by i by time instant n. For each event e` ∈ E

fed,n
i

and for each value of d ∈ {1, . . . , εi}, we consider the one-shot
hinge loss function [27],

Li,`(wi,d) , max
(
0,−y`wi,d · si,d,`

)
,

where si,d,` , (1, sn
j,`
,∀ j ∈ Ki,d) is the level-d local prediction

vector associated to the event e`.
The hinge loss function Li,`(wi,d) is equal to 0 if the weight

vector wi,d allows to predict correctly the label y` given the
local prediction vector si,d,` associated to the event e`, otherwise
Li,`(wi,d) is proportional to the distance of the local prediction
vector si,d,` from the separating hyperplane defined by wi,d.

A possible approach to update the weight vector wn
i,d is to

compute wn+1
i,d in order to minimize the overall loss of all the

observations available at the end of time slot n,

wn+1
i,d = argmin

wi

∑

`∈Efed,ni

Li,`(wi,d) . (9)

However, to solve (9) learner i must store all the past labels
and all the past local predictions of all the learners in the system,
which is impractical in real stream mining systems in which the
volume of the incoming data is high and the number of learners
is large. Hence, we adopt a stochastic gradient descent algorithm
to incrementally approach the solution of (9) using only the most
recent feedback. The weight wn+1

i,d is updated is the following
manner:

wn+1
i,d = wn

i,d − β∇Li,`(wi,d) ,

where ∇Li,`(wi,d) is the gradient of Li,`(wi,d), and β > 0 is
the step size. We have

∇Li,`(wi,d) =

{
0 if sgn (wi,d · si,d,`) = y`
−y`si,d,` otherwise .

Therefore, if in time instant n learner i observes the event e`,
the resulting update rule for the weight vector wn

i,d is

wn+1
i,d =

{
wn
i,d if sgn (wn

i · si,d,`) = y`
wn
i,d + βy`si,d,` otherwise . (10)

This construction allows a meaningful interpretation. It shows
that learner i should maintain its level of confidence in its level-
d weight vector when it does not observe any event or when the
label of the observed event y` agrees with the decision it would
have taken with the current weight vector wn

i,d. If disagreement
occurs, then learner i needs to assess which local predictions
would have led to the mis-classification: the weight wnij,d that
learner i adopts to scale the local predictions it receives from
learner j is increased by β unit if sj,` agrees with the label y`,
otherwise wnij,d is decreased by β unit.

Notice that if the weights are initialized to 0 then the choice of
β does not influence the performance of the scheme. To see this,
let denote by wn

i,d the weight vector we obtain using β, and by
wn
i,d the weight vector we obtain using β. At each time instant

n we have wn
i,d = wn

i,dβ/β. Since β/β > 0, the predictions
generated by Eq. (2) using wn

i,d are equal to the predictions
generated using wn

i,d. Hence, we can simply set β = 1.
We name the proposed distributed learning scheme Cluster

Weighted Majority (CWM). The parameters Nfed
i , Ndet

i,d , Ti,d,
and wij,d are initialized to 0 and adapted following the update

Algorithm Cluster Weighted Majority (CWM)

1: Initialization:
2: Nfed

i = Ndet
i,d = Ti,d = wij,d = sij = 0, ∀ i, j, d

3: For each learner i and time slot n
4: Observe xi and compute si = fi(xi)
5: Exchange and update sij , ∀ j ∈ K
6: Select d← argmind

Nfedi −Ndeti,d

Nfedi

+ α
Ti,d
Ndeti

7: Predict ŷi ← sgn(wi,d · si,d)
8: If feedback y` is received
9: Nfed

i ← Nfed
i + 1

10: For each cluster level d
11: Compute ŷi,d ← sgn(wi,d · si,d,`)
12: If ŷi,d = y`
13: Update Ndet

i,d ← Ndet
i,d + 1

14: Update Ti,d ← Ti,d + Ti,d,`
15: Else
16: Update wi,d ← wi,d + y`si,d,`

rules (8) and (10), the cluster level is chosen with (7), and the
final prediction is computed adopting the aggregation rule (2).

V. PERFORMANCE GUARANTEES FOR CWM

In this section we analytically quantify the performance of
the proposed scheme in the realizable scenario, in terms of mis-
detection probability (4) and delay (5).

A. Realizable case and information eccentricity definitions

In this section we focus on the realizable case, i.e., we
assume that there exists an unknown and non-empty class of
weight vectors W such that for each possible event e` and
for each weight vector w ∈ W we have sgn

(
w · s`

)
= y`,

where s` = (1, s1,`, . . . , sK,`). This assumption asserts that there
exist unknown weight vectors that would allow the learners
to detect all the events if they had available all the local
predictions. We remark that the validity of the realizability
assumption assumption depends on the instances observed and
local classifiers adopted by the learners; however, it does not
require a specific structure on the local classifiers (e.g., some
of them can be pre-trained static classifiers and others can be
incremental classifiers).

Assume for the moment that an event e` has a duration equal
to or larger than εi, such that learner i receives all the local
predictions s1,`, . . . , sK,` before the event ends. This implies
that learner i is potentially able to detect the event e`. However,
learner i might be able to detect e` before it receives all the local
predictions from all the learners in the network. For this reason,
we define a new eccentricity metric, the information eccentricity
εIi (G), which is the distance of learner i from the minimum
amount of local predictions it requires to detect all the possible
events. Formally,

εIi (G)=min{d : ∃w ∈ W such that wj = 0, ∀ j /∈ Ki,d(G)} .

The information eccentricity depends on the specific position
of a learner in the network, and we have εIi (G) ≤ εi(G) < K. At
most after εIi (G)− 1 time slots from the beginning of an event,
learner i possesses an amount of information that potentially
allows him to detect the event.

Fig. 4 illustrates two simple examples of information ec-
centricity for the learners 1 and 9 in the binary tree network.

7

1

4

9

1

64

8 9

ǫI1 = 2
ǫI1 = 3

ǫI9 = 1

ǫI9 = 5

Fig. 4: An illustrative representation of the information eccentricity.
If learner 4’s local prediction is enough to detect all the events, then
ε1 = 2 and ε9 = 1 (left side). If the local predictions of the learners 4,
6, and 8 are required to detect all the events, then ε1 = 3 and ε9 = 5.

In the first example (left side) the local prediction of learner
4 always agrees with the label, hence ε1 = d14 = 2 and
ε9 = d94 = 1. In the second example (right side) an event
is predicted correctly by either learner 4, learner 6, or learner 8,
hence ε1 = d18 = 3 and ε9 = d96 = 5.6 We remark that this is
a simple illustrative example, in general the events may depend
on the local predictions following more complex rules.

B. Mis-detection probability and delay bounds

Let eN be a sequence of N events. We denote by Ndur
d the

number of events in eN that have a duration smaller than d, and
we denote by Nmis

i,d the number of mis-detections that learner
i obtains if it always selects the cluster level dni = d, for each
time instant n. Lemma 1 shows that Nmis

i,d is upper bounded
by a number which depends only on the number of aggregated
local predictions Ki,d, on the number Ndur

d of events that have
a duration smaller than d, on the maximum feedback delay Z,
and on the cluster level d. Notice that Nmis

i,d is not the number
of mis-detections of the proposed scheme, since the proposed
scheme select dni adopting (7) instead of using a fixed dni = d.
However, the bound defined by Lemma 1 will be useful to derive
the results in Theorems 1 and 2 that refer to our scheme.

Lemma 1. For every d such that εIi (G) ≤ d ≤ εi(G) we have

Nmis
i,d ≤ Ki,d (Ki,d + 1) +Ndur

d +

⌊
Z − d
d

⌋
, (11)

where bxc is the largest integer lower than or equal to x.

Proof: See Appendix A.
Among the three terms of the right hand side of (11), only

Ndur
d increases in N . This means that the weight vector update

rule defined in (10) converges after a finite number of updates to
a weight vector wn

i,d that allows learner i to detect all the events
that are longer than d. The maximum number of required updates
depends quadratically on the number Ki,d of local predictions
aggregated.

Theorem 1 asserts that there exists an upper bound for the mis-
detection probability of a learner i that adopts our scheme. Such
bound depends on many parameters of the system: the trade-off
parameter α, the information eccentricity εIi (G), the eccentricity
εi(G), the number Ndur

d of events that have a duration smaller
than d, the number of learners K, and the maximum feedback
delay Z. However, most contributions vanish to 0 as the number
of events N increases.

6In this case a weight vector w that allows to detect all the events is for
example w0 = 2, w4 = w6 = w8 = 1, and wi = 0, ∀ i 6= 0, 4, 6, 8. Notice
that if we constrain w0 = 0, as in [9], [10], [12], [13], we would not be able to
find a weight vector w that allows to detect all the events.

Theorem 1. The mis-detection probability Pi(eN) of a learner
i that adopts CWM is upper bounded by

Bmis
i (eN) = α

(
εIi − 1

)2
+ εi

Ndur
εi

N
+
εIi − 1

N
+

+
εi
N

[
K(K + 1) + Z

]
. (12)

Proof: See Appendix B.
The bound Bmis

i (eN) increases in α, εIi (G), εi(G), Ndur
εi ,

K, and Z, whereas it decreases in the number of events N .
Importantly, notice that the bound (12) is valid for any number
of events N and for any sequence eN . As a particular case,
if N → +∞ the bound Bmis

i (eN) tends to α
(
εIi (G)− 1

)2
+

εiP
dur
εi , where P durεi , limN→+∞Ndur

εi /N can be interpreted
as the probability that an event has a duration smaller than i’s
eccentricity εi(G). This is remarked in Corollary 1.

Corollary 1. limN→+∞Bmis
i (eN) = α

(
εIi − 1

)2
+ εiP

dur
εi .

Remark 1. Corollary 1 states that, adopting CWM, learner i’s
mis-detection probability is bounded by a number that depends
only on the trade-off parameter α, on learner i’s eccentricity εi
and information eccentricity εIi (G), and on the probability P durεi
that an event has a duration smaller than i’s eccentricity εi(G).
Since εIi (G) ≤ εi(G), if the designer knows an upper bound for
P durεi (e.g., in the KDDCUP’99 network intrusion data set [13]
the typical duration of an attack is in the order of hundredths of
time slots), then he can set the parameter α in order to guarantee
a certain level of accuracy.

Notice that the lower α the lower the worst-case mis-
detection probability, in the extreme case α = 0 we have that
Bmis
i (eN)→ P durεi . However, α has the opposite impact on the

delay, as remarked by Theorem 2 and Corollary 2.

Theorem 2. The delay Di(eN) of a learner i that adopts CWM
is upper bounded by

Bdel
i (eN) = εIi − 1 +

Nmis
i,εIi

Nα
(εi − εIi) . (13)

Proof: See Appendix C.
Theorem 2 asserts that there exists an upper bound for the

delay of a learner i that adopts our scheme. Such bound increases
in εIi (G), εi(G), and Nmis

i,εIi
, whereas it decreases in α and N .

Notice that when α → ∞ (i.e., we only care about the delay)
the upper bound Bdel

i (eN) approaches εIi − 1. Indeed, without
any further assumption, the delay bound Bdel

i (eN) can never be
smaller than εIi − 1 for the following reason. The delay defined
in Eq. (5) is the average of the detection delay, and the detection
delay is defined only for detected events. We know that, by
definition of εIi , after a time equal to εIi−1 learner i is potentially
able to detect any event. However, it can also be that learner i
is never able to detect any event before the time εIi − 1. In this
case, which represents a worst case from the delay perspective,
the delay cannot be lower than εIi − 1. As consequence, when
α→∞ the bound defined by Theorem 2 is strict.

Substituting (11) into (13) and computing the limit for N →
+∞ we obtain the results stated in Corollary 2.

Corollary 2. limN→+∞Bdel
i (eN) = εIi − 1 +

Pdurεi

α (εi − εIi).

8

Remark 2. Corollary 2 states that, adopting CWM, learner i’s
delay is bounded by a number that depends only on α, εIi (G),
and P durεi . By setting α the designer can decrease the delay to
a desired value close enough to εIi − 1, but the worst case delay
cannot be smaller than the time εIi −1 needed to collect the local
predictions required to detect all the events.

C. Robustness to communication errors

So far we have considered an idealized setting in which the
learners always receive the transmission sent by their neighbors.
In a distributed environment one cannot expect that this is always
true: sometimes communications can fail, e.g., due to temporarily
broken links. In this subsection we discuss how to deal with
this issue and we extend the bounds derived in the preceding
subsection to this scenario.

When communications are affected by errors it is important to
define which information snij learner i uses whenever it does not
receive learner j’s local prediction in time instant n. It is natural
to define snij as learner j’s most recent local prediction possessed
by learner i by time instant n. Formally, if learner i does not
receive any local prediction from learner j at time instant n, it
sets snij = sn−1ij . This means that Eq. (1) is not valid anymore,
in the general case we have snii = sni and snij = smj , for some
m ≤ n− dij +1, j 6= i. In fact, when communications can fail,
local predictions spread in the network with a rate lower than
one link per time slot.

Learner i still uses the rules (8) and (10) to update its state,
the rule (7) to select the cluster level, and the rule (2) to compute
the final prediction.

In the following, we generalize Theorems 1 and 2 in case of
failed communications, considering the expected mis-detection
probability Pi(eN) and delay Di(eN), where the expectation is
taken with respect to the process that regulates the communica-
tion among learners. We consider the following communication
model. We denote by perr the probability that the transmission
over a link fails.7 We assume that the process that regulates
the failure over a link is independent from the processes that
regulate the failures over the other links and from the process
that generates the events.

Theorem 3. The expected mis-detection probability Pi(eN) of
a learner i that adopts CWM is upper bounded by

Bmis
i (eN) = α

(
εIi − 1

)2
+ εi

Ndur
εi

N
+
εIi − 1

N
+

+
εi
N

[
K(K + 1) + Z

]
+ 1− (1− perr)K−1 . (14)

Proof: See Appendix D.

Corollary 3.

lim
N→+∞

Bmis
i (eN) = α

(
εIi − 1

)2
+ εiP

dur
εi + 1− (1− perr)K−1 .

Remark 3. The term 1 − (1− perr)K−1 can be interpreted as
the accuracy loss due to communication errors. This term tends
to 0 if perr → 0, meaning that a little deviation from the ideal
setting does not affect considerably the accuracy of the scheme.
Notice that the bound (14) is independent from the durations of

7Notice that the results in Theorems 3 and 4 can be generalized for link-
dependent failure probabilities; however, this does not add any important insight.

the events because we derived it in the worst-case scenario in
which a single communication error in the first εi communication
slots results in a mis-detection. However, if the durations of
the events are typically much longer than εi then an event can
be detected even if many communication errors occur, and the
resulting expected mis-detection probability Pi(eN) can be much
smaller than Bmis

i (eN).

Theorem 4. The expected delay Di(eN) of a learner i that
adopts CWM is upper bounded by

Bdel
i (eN) = εIi − 1 +

Nmis
i,εIi

Nα
(εi − εIi) + (K − 1)

perr
1− perr

.

Proof: See Appendix E.

Corollary 4.

lim
N→+∞

Bdel
i (eN) = εIi −1+

P durεi

α
(εi− εIi)+(K−1)

perr
1− perr

.

Remark 4. The term (K − 1)perr/(1− perr) can be interpreted
as the delay loss due to communication errors. This term tends
to 0 if perr → 0, meaning that a little deviation from the ideal
setting does not affect considerably the delay of the scheme.

VI. SIMULATIONS

In this section we present several illustrative results aimed to
evaluate the efficacy of the proposed approach and to understand
the impact of the network topology and of the system parameters
in the learning problem. In Subsection VI-A we generate artifi-
cial data sets departing from a scenario that has been considered
in some estimation works [17]. Artificial data sets allow us
to control some system parameters (e.g., the intensity of the
observed noise) and to understand the impact of such parameters
in the learning problem. Finally, in Subsection VI-B we consider
a real data set – the network intrusion data set used for the KDD
Cup 1999 [13] – and we compare the performance of our scheme
with the performance achieved by the weighted majority scheme
[10] and by the combine then adapt scheme [15].

A. Artificial data set: label embedded in Gaussian noise

We consider the following artificial data set. We generate Neve
events such that 1) the duration of an event follows a geometric
distribution with parameter pdur; 2) the label y` of an event is
generated with probabilities P [y` = −1] = P [y` = 1] = 0.5; 3)
the feedback of an event is received with probability pfed and
(if received) with a delay from the end of the event that follows
a geometric distribution with parameter pfed. Similarly to some
estimation works [17], we assume that each learner i observes
the label embedded in an additive Gaussian noise with zero mean
and variance equal to σ, i.e., xi,` = y` + qi,`, qi,` ∼ N (0, σ),
and the noise terms qi,` are independent across different learners
and across different events.

For each learner i we consider a static local classifier that
generates the following local prediction: sni = 1 if xni ≥ 0,
and sni = −1 if xni < 0. Notice that this represents the most
accurate local prediction given the statistic of the considered
noise. The use of static well-trained local classifiers allows us to
focus on the advantages of our scheme and on the learning aspect
of our scheme, instead of on the learning aspect of incremental
classifiers.

9

Parameter description Symbol Value
Number of events simulated Neve 103

Probability label is 1 P [y`] = 1 0.5
Geometric distribution parameter for the event duration pdur 0.1
Geometric distribution parameter for the feedback delay pfed 0.1
Standard deviation of the noise σ 2
Tradeoff parameter α 0.1
Probability that a communication fails perr 0
Probability that a feedback is not received pfed 0
Number of simulation runs Nsym 50

TABLE I: Basic Simulation Settings.

3

1

2

3

1

2

K1,2

K2,2

K3,1

Fig. 5: Randomly generated network topology. The right side represents
the clusters adopted by learners 1, 2 and 3 when σ = 1.

We adopt the basic simulation settings represented in Table I
and we perform several series of simulations. In each simulation
we vary the value of a single parameter within a specific range,
and for each value of the parameter we average the results over
Nsym = 50 simulation runs.

To get some insights on how the performance of the individual
learners adopting the CWM scheme depend on their positions in
the network, we first consider the randomly generated network
topology represented in the left side of Fig. 5, consisting of
K = 20 learners, and we focus our attention on the learners
marked as 1, 2, and 3. Fig. 6 shows the cost associated to each
learner (left side) and the cluster level selected by each learner
at the end of the simulation (right side), varying the value σ
of the standard deviation of the noise. When the noise is very
low, all the three learners adopt a cluster level dni = 1, i.e., they
aggregate only the local predictions of their neighbors, this is
enough for them to detect almost all the events instantaneously.
With the increase of σ learners 1 and 2, which are located at
the border of the network and have only a single neighbor, need
to increase the values of the cluster levels they select to be able
to detect the events accurately, this results in larger delays and
costs. In fact, for large values of σ learner 3, which is located in
a central location and surrounded by many learners, achieves a
substantially lower cost than learner 1 and 2. Notice that learner
2 has a single neighbor as learner 1, but 2’s neighbor is better
connected than 1’s neighbor, and this allows learner 2 to achieve
typically better performance than learner 1. An exception to
this is encountered for the range of values σ ∈ [0.4, 1.1], in
which learner 1’s cost is lower than learner 2’s cost. The reason
behind this counter-intuitive result is the following. When learner
2 adopts a cluster level dn2 = 2 – see for example the right side
of Fig. 5 – four among the six local predictions it aggregates
belong to learners that are two hops away. As a consequence,
the final prediction is mainly driven by these learners and the
prediction delay increases consistently. On the other hand, if
learner 1 adopts a cluster level dn1 = 2 only one among the
three local predictions that it aggregates belongs to a learner that

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
o

s
t

fo
r

e
a

c
h

 l
e

a
rn

e
r

Standard deviation noise σ

0 1 2 3
1

2

3

4

5

6

C
lu

s
te

r
le

v
e

l
fo

r
e

a
c
h

 l
e

a
rn

e
r

Standard deviation noise σ

Learner 1

Learner 2

Learner 3

Fig. 6: Cost and cluster level for learners 1, 2, and 3 vs. the standard
deviation of the noise σ for the random network topology.

is two hops away. This allows learner 1 to slightly increase its
detection accuracy without increasing consistently its prediction
delay. Indeed, this is also the reason why learner 1’s optimal
cluster level is dn1 = 2 starting from σ = 0.4, whereas learner 2
starts adopting dn2 = 2 only when σ = 0.8. Another interesting
thing to remark is that dn1 decreases by one unit – from dn1 = 5
to dn1 = 4 – when σ is larger than 2.6. This is due to the fact
that, when the noise is very large, even with the cluster level of
dn1 = 5 learner 1 is subject to many mis-detections, hence it is
convenient for him to adopt a lower cluster level and improve
its delay.

Next, we investigate how far are the worst case analytical
bounds derived in Subsection V-B with respect to the empirical
performance achieved by learner 3. For this type of analysis
we increase the number of simulated events to Neve = 105,
we consider only the simulation runs satisfying the realizability
assumption, and in order to have enough realizable cases we
decrease the standard deviation of the noise associated to learner
1 to σ = 0.2 (i.e., the local predictions of learner 1 agree with
the labels most of the times). As a consequence, in most of the
simulation runs the information eccentricity of learner 3 is equal
to the distance between learners 3 and 1, i.e., εI3 = 3; whereas
learner 3’s eccentricity is ε3 = 4. Fig. 7 shows that the mis-
detection probability bound is close to the real mis-detection
probability experienced by learner 3 when α = 0, i.e., when
the only goal is to detect the events accurately. As soon as α
increases, the mis-detection probability bound diverges from the
real mis-detection probability. As for the prediction delay, for a
small α the delay experienced by learner 3 is slightly larger than
one time slot, whereas when α increases (i.e., detecting events
in a timely manner becomes more important) the prediction
delay improves at the expense of the detection accuracy. Instead,
according to Eq. (13), the prediction delay bound is always larger
than εI3 − 1 = 2. It is not surprising that the bounds are in
general not strict, indeed we remark that the bounds derived
in Subsection V-B are worst-case bounds that are valid for any
sequence of events and local predictions; hence, it is reasonable
that, on average, the proposed scheme performs better that what
the bounds suggest.

Now we investigate how the average cost of the random
network – defined as the sum of the costs of all learners divided
by the number of learners – varies with respect to σ. We compare
the cost obtained by our scheme with the costs achieved by two
benchmark schemes: in the no aggregation scheme the learners
do not exchange and aggregate information, they only rely on
their local predictions, whereas in the fixed cluster scheme the
learners always aggregate all the local predictions, i.e., dni = εi,

10

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

M
is

−
d

e
te

c
ti
o

n
 p

ro
b

a
b

ili
ty

 f
o

r
le

a
rn

e
r

3

Trade−of parameter α
0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

P
re

d
ic

ti
o

n
 d

e
la

y
 f

o
r

le
a

rn
e

r
3

Trade−of parameter α

Bound

Real performance

Fig. 7: Mis-detection probability and prediction delay for learner 3 vs.
the trade-off parameter α.

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Standard deviation noise σ

Our scheme, CWM

Fixed cluster

No aggregation

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 c

lu
s
te

r
le

v
e

l
fo

r
o

u
r

s
c
h

e
m

e

Standard deviation noise σ

Fig. 8: Average network cost and cluster level vs. the standard deviation
of the noise σ for the random network topology.

∀ i, n, and adopt (10) to adapt the unique weight vector wn
i,εi

.
The left side of Fig. 8 shows that for very low values of σ
the costs of CWM and of the no aggregation scheme are equal
to 0. Indeed, in this range of values the learners can detect
correctly all the events relying simply on their local predictions,
and this allows them to detect the events instantaneously. The
right side of Fig. 8, which represents the average cluster level
adopted by the learners for the CWM scheme, shows that for
very low values of σ the learners automatically learn that the
optimal strategy is to aggregate only the local predictions of
their neighbors. Differently from CWM and the no aggregation
scheme, for very low σ the fixed cluster scheme has a non-
zero cost because the learners are not always able to detect the
events instantaneously. On the other hand, with the increase of
σ it is necessary to aggregate many local predictions to detect
accurately the events, and the costs of CWM and of the fixed
aggregation scheme converge. In summary, the proposed scheme
is able to successfully adapt to the unknown characteristics of
the noise: when σ is low CWM gives the advantage of the no
aggregation scheme in terms of prediction delay, when σ is large
CWM provides the benefit of the fixed aggregation scheme in
terms of detection accuracy, and for intermediate values of σ
CWM outperforms both benchmarks. Finally, notice that for
large values of σ the average cluster level of CWM stabilizes to a
value of about 3.5, which is substantially lower than the average
eccentricity of the network, which is 5.65. This implies that it is
useless to propagate all the local predictions through the whole
network, because local predictions from very far learners are
never aggregated. Hence, to limit the complexity of the proposed
scheme – in terms of number of clusters that each learner has
to consider and of information amount to spread in the network
– without incurring any cost in terms of performance, the local
predictions can be forwarded only for a finite number of links.

In order to study the impact of the network topology on the
performance of CWM, in the following series of simulation

12

1

2

11

8

3

4

5

10

9

7

6

12

1 2

11

8

3

4
5

10

9

7

6 12

1 2
11

8

3 4

5

10

9

7

6

12

1

2

11

8

3

4

5

10

9

7

6

Loop network Star network
Core-periphery

network
Complete network

Fig. 9: Loop, star, core-periphery, and complete network topologies.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Trade−of parameter α
0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Standard deviation noise σ

Complete

Star

Loop

Core−periphery

Binary Tree

Fig. 10: Average network cost for different network topologies vs. the
standard deviation of the noise σ and the trade-off parameter α.

we consider K = 12 learners that are connected through
the loop, star, core-periphery, and complete network topologies
represented in Fig. 9, and through the binary tree topology
obtained by removing learners 13, 14 and 15 from Fig. 2.

We first analyze how the tradeoff parameter α affects the
average network cost. We consider a range of α from 0 to 1.
The left side of Fig. 10 shows that the mis-detection probability
and the delay of the complete network topology are constant
with respect to α. Indeed, in the complete topology all the
information is available instantaneously to all learners. As a
consequence, learners have a lot of information to combine to
filter the noise and achieve large detection accuracies, and at the
same time events are always detected immediately (if detected).
The figure shows also that there exists an ordering among the
networks in terms of performance: the networks that have small
diameters (complete, star, and core-periphery) achieve lower cost
than the networks that have large diameters (loop and binary
tree). However, this is not always true and interesting trade-offs
exist, as we see in the next simulations.

Now we investigate the impact of the standard deviation of
the noise σ. The right side of Fig. 10 shows how the network
performance vary from σ = 0 to σ = 3 for different network
topologies. Interestingly, there is a range of values of σ such
that the loop and tree topologies achieve lower costs than the
core-periphery and star topologies. In this range the learners
of the loop and binary tree topologies adopt often the cluster
level dni = 1 because the noise is enough low to allow for the
detection of almost all the events by aggregating a total of three
local predictions (all learners of the loop topology have two
neighbors and half of the learners of the binary tree topology
have at least two neighbors). On the other hand, the noise is
not low enough to allow the learners to detect accurately all
the events by aggregating only two predictions. Hence, most of
the learners in the core-periphery and star topologies either 1)
select dni = 1 obtaining a lower accuracy than the learners in
the loop and binary tree topologies; or 2) they select dni > 1
obtaining larger delays than the learners in the loop and binary
tree topologies.

Next, we investigate how the average network cost varies with

11

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Average event duration
0 2000 4000 6000 8000 10000

0

0.05

0.1

0.15

0.2

0.25

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Average time for feedback observation

Complete

Star

Loop

Core−periphery

Binary Tree

Fig. 11: Average network cost for different network topologies vs.
the average event duration 1/pdur and the average time to observe a
feedback 1/pfed.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Probability communication error
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

A
v
e

ra
g

e
 n

e
tw

o
rk

 c
o

s
t

Probability feedback not observed

Complete

Star

Loop

Core−periphery

Binary Tree

Fig. 12: Average network cost for different network topologies vs. the
probability that a communication fails perr and the probability that a
feedback is not received pfed.

respect to the average event duration 1/pdur and to the average
time to observe a feedback 1/pfed. The left side of Fig. 11 shows
that it is difficult to detect very short events. Indeed, in this case
the learners must use small cluster levels (otherwise the events
end before the required local predictions are collected), and as a
consequence they cannot accurately filter out the noise. However,
the network costs stabilize starting from an event duration of
some tenths of time slots, this means that the event duration
is not an important factor as long as it is not extremely low.
The right side of Fig. 11 shows that the performance of the
network decreases very slowly as the average time to observe a
feedback increases. This implies that the learners adopting the
CWM scheme learn fast, they require few feedbacks to learn an
accurate detection model.

Finally, we investigate the impact on the average network cost
of the probability perr that a communication fails and of the
probability pfed that a feedback is not received. The left side of
Fig. 12 shows that perr affects substantially the network costs if
it is large, but the trends of the network costs are flat (for all the
considered topologies) for a range of perr from 0 to 0.2. In most
applications, it is unreasonable to have larger communication
error probabilities. Similar considerations are valid for the right
side of Fig. 12, which shows that the network cost is very flat
for a very large range of pfed. This confirms that the proposed
CWM scheme allows the learners to learn accurately even with
few feedbacks.

B. Real data set: the KDDCUP’99 data set

In this subsection we exploit the network intrusion data set
used for the KDD Cup 1999 and available in the UCI archive
[28]. This data set is widely used in the stream mining literature
[13], [29]. It consists of a series of TCP connection records,
labeled either as normal connections or as attacks. For a more

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

M
is

−
d

e
te

c
ti
o

n
 p

ro
b

a
b

ili
ty

 f
o

r
le

a
rn

e
r

3

Trade−of parameter α
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 d

e
la

y
 f

o
r

le
a

rn
e

r
3

Trade−of parameter α

Our scheme

Weighted Majority

Combine Then Adapt

Fig. 13: Mis-detection probability and prediction delay for learner 3 vs.
the trade-off parameter α.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

C
o

s
t

fo
r

le
a
rn

e
r

3

Trade−of parameter α

Our scheme

Weighted Majority

Combine Then Adapt

Fig. 14: Cost for learner 3 vs. the trade-off parameter α.

detailed description of the data set we refer the reader to [29].
As described in the example at the end of Section III, this data

set refers to a local communication network and is very suitable
for the framework considered in this manuscript. However, to
the best of our knowledge, the KDDCUP’99 data set has been
released without any information about the underlying network
topology of the local communication network. For this reason
we enrich such a data set with an associated network topology.
Specifically, we consider again the randomly generated network
topology represented in the left side of Fig. 5. We split each
instance of the original data set into three non-overlapping
sub-instances, these sub-instances represent the observations of
learners 1, 2 and 3. These three learners adopt logistic regression
classifiers to generate the local predictions, such classifiers are
trained using the first 10, 000 instances of the KDDCUP’99 data
set. The other learners generate random local predictions. As a
consequence, only the local predictions of leaners 1, 2, and 3
contain useful information to detect network attacks.

We investigate the performance that learner 3 achieves adopt-
ing our scheme, the weighted majority scheme [10], and the
combine then adapt scheme [15], varying the value of the trade-
off parameter α. The left side of Fig. 13 shows that the three
schemes achieve comparable accuracies for α = 0, i.e., when
the prediction delay is not important. The value of α does not
have any impact on the mis-detection probability (left side of
Fig. 13) and on the prediction delay (right side of Fig. 13) of
the weighted majority and combine then adapt schemes; indeed,
the goal of these two schemes is to estimate the optimal weights
to detect the events, without taking into account the timeliness of
the detection. Instead, Fig. 13 proves that our scheme is able to
trade-of the prediction accuracy and the prediction delay: with
the increase of α, the prediction accuracy of our scheme gets
worse, whereas the prediction delay improves. To quantify the
advantages of our scheme, Fig. 14 shows the cost incurred by
learner 3 with the threes schemes. When α is 0 the costs of the
three schemes are comparable, whereas when α increases (i.e.,
detecting events in a timely manner becomes more important) the
cost associated to our scheme diverges from the cost associated

12

to the other two benchmark schemes. This proves the efficacy of
the proposed approach in scenarios in which timely detections
are required.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we analyze the problem of how a set of dis-
tributed learners that are interconnected over a network can coop-
erate to detect in a timely manner events of interests. We propose
a scheme in which the learners exchange local predictions
and each learner selects a cluster of surrounding learners and
aggregates the local predictions belonging to that cluster using
a weighted majority rule. We propose online learning rules to
learn the weight vector for each cluster and the cluster to adopt.
In the realizable case we determine performance guarantees
for the proposed scheme. Numerical simulations show that the
proposed scheme is able to successfully adapt to the unknown
characteristics of the data streams and can achieve substantial
performance gain with respect to a scheme in which the learners
act individually and with respect to a scheme in which the
learners always aggregate all available local predictions.

We conclude with a discussion on open research problems
that are worth investigating. First, the scalability of the proposed
scheme needs to be investigated and modifications may be
required in order to cope with the scalability issues of large
steam mining applications. For example, in order to limit the
amount of exchanged and stored information, the cluster level
may be learned during a training period instead of being adapted
continuously. Second, in this work we did not investigate specific
issues that arise when the network topology varies continuously
in time. For example, the learners need to recompute the shortest
paths that connect them to the other learners – which can be
computationally expensive for large networks – and they need
to learn again the optimal cluster levels and weights, either from
scratch or exploiting the parameters learned in the old network.
Third, in addition to the robustness to communication errors,
other types of robustness can be analyzed. For example, the
robustness of the scheme to imperfect feedback (i.e., erroneous
feedback or not received feedback) represents an interesting area
for future research.

APPENDIX A
PROOF OF LEMMA 1

For each d ≥ εIi , assumptions A1 and A2 and the information
eccentricity definition imply that there exists a non-empty class
of weight vectors

Wd = {wi,d : sgn(wi,d · si,d,`) = y`,∀ events e`} .
The local predictions sij,` ∈ {−1,+1}, ∀ j ∈ Ki,d, represent

a particular vertex of an hypercube in <Ki,d . The class Wd

defines a class of hyperplanes H(V−1,V+1) which separates the
2K vertexes of the hypercube in two subsets V−1 and V+1,
representing the vertexes resulting in a negative and positive
prediction, respectively. Denote by γ(H) the minimum distance
between the hyperplane H and the vertexes of the hypercube.
We want to compute

γ , min
V−1,V+1

max
H∈H(V−1,V+1)

γ(H) .

It is easy to see that the sets V−1 and V+1 that minimize the
resulting γ are such that one vertex must be separated by all the

vertexes it is connected with through an edge, and the separating
hyperplane that maximizes γ must be equidistant from all these
vertexes. Since the distances between the vertexes and the sep-
arating hyperplane are invariant with respect to translation and
rotation of both the hypercube and the hyperplane, we consider
the hypercube with vertexes v ∈ 0, 2Ki,d , and we want to find
the hyperplane defined by the parameters (a0, . . . , aKi,d) which
separates with the largest margin the vertex v(0) = (0, . . . , 0)
from the vertexes v(j) = (0, . . . , 0, 2, 0, . . . , 0) having 2 in
position j, j = 1, . . . ,Ki,d. Imposing that the signed distance
between v(0) and the separating hyperplane is the opposite of
the signed distance between v(j) and the separating hyperplane,
we obtain

a0 + v
(0)
1 a1 +. . .+ v

(0)
Ki,d

aKi,d√∑Ki,d
i=1 a2i

= −
a0 + v

(j)
1 a1 +. . .+ v

(j)
Ki,d

aKi,d√∑Ki,d
i=1 a2i

→ a0 = −aj .
Repeating the same procedure for every vertex v(j), j =
1, . . . ,Ki,d, we obtain that the best separating hyperplane must
satisfy a0 = −aj , ∀ j, hence the distance between it and v(0) is
|a0|√
Ki,da20

= 1√
Ki,d

.

The above means that it is always possible to find a unit length
weight vector u which separates the local prediction vectors
which a margin of at least 1√

Ki,d
, i.e., such that ‖u‖ = 1 and

y`u · si,d,` ≥ 1√
Ki,d

. Let w
(n)
i,d be learner i’s level-d weight

vector before the n-th update, and assume for the moment that
the feedbacks are received at the end of an event, i.e., Zi,` = T`.
We have

w
(n+1)
i,d · u = w

(n)
i,d · u+ y`si,d,`u ≥ w

(n)
i,d · u+

1√
Ki,d

.

By applying straightforward inductive argument we have

w
(n+1)
i,d · u ≥ n√

Ki,d

. (15)

We also have ‖w(n+1)
i,d ‖2 = ‖w(n)

i,d + y`si,d,`‖2 = ‖w(n)
i,d ‖2 +

‖si,d,`‖2 + 2y`si,d,` ·w(n)
i,d ≤ ‖w

(n)
i,d ‖2 + ‖si,d,`‖2 = ‖w(n)

i,d ‖2 +
Ki,d+1, where the inequality is valid because during an update
we must have sgn(y`si,d,`) 6= y`.

By applying straightforward inductive argument we have

‖w(n+1)
i,d ‖2 ≤ n (Ki,d + 1) . (16)

Putting together (15) and (16) we have
√
n (Ki,d + 1) ≥ ‖w(n+1)

i,d ‖ ≥ w
(n+1)
i,d · u ≥ n√

Ki,d

.

which implies n ≤ Ki,d (Ki,d + 1).
This means that after a maximum of Ki,d (Ki,d + 1) updates

learner i’s level-d weight vector reaches a state that allows
learner i to detect all the events. Notice that the number of
updates is equal to the number of mis-detections if all the events
have a duration larger than d and if the feedbacks are received
immediately after the events end. Since this is not valid, we have
to add to the number of updates 1) Ndur

d , which represents the
maximum number of additional errors that the system can make
because of the events that are too short to be detected with the
cluster level d, and 2)

⌊
Z−Tmin
Tmin

⌋
, which represents the maximum

13

number of additional mis-detections from the Ki,d (Ki,d + 1)-th
mis-detection to the Ki,d (Ki,d + 1)-th update. Finally, we obtain

Nmis
i,d ≤ Ki,d (Ki,d + 1) +Ndur

d +

⌊
Z − d
d

⌋
.

APPENDIX B
PROOF OF THEOREM 1

Let Ñmis
i,d be the number of errors made using the cluster level

d only in those time slots in which our scheme selects the cluster
level d. Obviously, Ñmis

i,d ≤ Nmis
i,d , hence the right side of (11)

is an upper bound of Ñmis
i,d for d ≥ εIi (G).

Ñmis
i,d is also upper bounded by the number of times Nsel

i,d

learner i selects the cluster level d. We must have

Nsel
i,d ≤ Nmis

i,εIi
+Nα

(
εIi − 1

)
+ 1 . (17)

Indeed, assume for absurd that (17) is not valid. Let n denotes
the last time instant the cluster level d is selected. Since (17) is
not valid we must have

Nfed,n
i −Ndet,n

i,d > Nfed,n
i −Ndet,n

i,εIi
+Nα

(
εIi − 1

)
. (18)

However, since Tni,d ≥ 0 and Tn
i,εIi
≤ N

(
εIi − 1

)
, (18) implies

that Ĉn
i,εIi

< Ĉni,d, and this contradicts the initial assumption that
d is selected as the cluster level. Hence, (17) is valid.

Finally, since Ki,d ≤ K, Ndur
d ≤ Ndur

εi , and
⌊
Z−d
d

⌋
< Z,

∀ d, we obtain

Ñmis
i =

εIi−1∑

d=1

Ñmis
i,d +

εi∑

d=εIi

Ñmis
i,d ≤

≤
(
εIi − 1

) [
K (K + 1) +Ndur

εi + Z +Nα
(
εIi − 1

)
+ 1
]
+

+
(
εi − εIi + 1

) [
K(K + 1) +Ndur

εi + Z
]
=

= Nα
(
εIi − 1

)2
+ εiN

dur
εi + εIi − 1 + εi

[
K(K + 1) + Z

]
.

Dividing the above by N we obtain (12).

APPENDIX C
PROOF OF THEOREM 2

We denote by T
n

i,d learner i’s average detection delay associ-
ated to the selection of the cluster level d until time instant n.
We have T

n

i,d ≤ d − 1, because after d − 1 time slots learner i
receives all the local predictions from the learners belonging to
the cluster Ki,d(G).

Let n be a time instant in which i selects the cluster level
d > εIi . This implies that

Nmis
i,d

n
+ αT

n

i,d ≤
Nmis
i,εIi

n
+ αT

n

i,εIi
.

Since
Nmisi,d

n ≥ 0 and T
n

i,εIi
≤ εIi − 1, we have T

n

i,d ≤
Nmis
i,εI
i

n +

α(εIi − 1) that implies n ≤
Nmis
i,εI
i

α(T
n
i,d−εIi−1)

. As a consequence,

denoting by Nsel
i,d the number of times that the cluster level d is

selected up to time instant N , we have that Nsel
i,d is bounded by

Nmis
i,εI
i

α(T
N
i,d−εIi−1)

, ∀ d > εIi . Finally, we obtain:

Di(eN) ≤ 1

N


∑

d<εIi

Nsel
i,d (d− 1) +

∑

d>εIi

Nsel
i,d T

n

i,d

+


N −

∑

d<εIi

Nsel
i,d −

∑

d>εIi

Nsel
i,d


 (εIi − 1)




≤ 1

N


∑

d>εIi

Nsel
i,d T

n

i,d +


N −

∑

d>εIi

Nsel
i,d


 (εIi − 1)




≤ 1

N


∑

d>εIi

Nmis
i,εIi

T
n

i,d

α(T
N

i,d − εIi − 1)
+


N−

∑

d>εIi

Nmis
i,εIi

α(T
N

i,d − εIi − 1)


(εIi − 1)




≤ 1

N


∑

d>εIi

Nmis
i,εIi

α(εi − εIi)
(εi − 1)+


N−

∑

d>εIi

Nmis
i,εIi

α(εi − εIi)


(εIi − 1)




=
Nmis
i,εIi

Nα
(εi − 1)+

(
1−

Nmis
i,εIi

Nα

)
(εIi − 1) = εIi−1+

Nmis
i,εIi

Nα
(εi − εIi) ,

where the first inequality is valide because T
n

i,d ≤ d − 1,
the second inequality is valid because

∑
d<εIi

Nsel
i,d (d − 1) ≤∑

d<εIi
Nsel
i,d (εi − 1), the third inequality is valid because the

right hand side increases in Nsel
i,d and Nsel

i,d ≤
Nmis
i,εI
i

α(T
N
i,d−εIi−1)

, and

the forth inequality is valid because the right hand side increases
in T

N

i,d and T
N

i,d ≤ (εi − 1).

APPENDIX D
PROOF OF THEOREM 3

Theorem 1 shows that in absence of communication errors we
have that Pi(eN) is bounded by

Bmis
i (eN) = α

(
εIi − 1

)2
+ εi

Ndur
εi

N
+
εIi − 1

N
+

+
εi
N

[
K(K + 1) + Z

]
. (19)

The communication errors represents an additional source of
mis-detection. We can focus on an event e` whose duration T` is

equal or larger than εi, because the term
Ndur
εi

N
takes already into

account the mis-detections caused by events whose duration is
smaller than εi. Let A be the additional expected mis-detection
contribution caused by failed communications. We have

A = P [i does not receive all local predictions after T` slots]
≤ P [i does not receive all local predictions after εi slots]
≤ P [at least 1 communication error in K − 1 transmissions]
= 1− P [no communication errors in K − 1 transmissions]

= 1− (1− perr)K−1 ,
where the first inequality is valid because T` ≥ εi and the second
inequality is valid because for the following argument. Consider
a spanning tree GSP of the network G. The probability that i does
not receive all local predictions after εi time slots in G is equal
to or lower than the probability that i does not receive all local
predictions after εi time slots in GSP , because G contains some

14

redundant links that can protect from communication errors.
Learner i receives all local predictions after εi time slots in GSP
if and only if: 1) at the first time slot all learners whose distance
from i is εi transmit correctly their information to the learners
whose distance from i is εi; 2) 1) at the second time slot all
learners whose distance from i is εi − 1 transmit correctly their
information to the learners whose distance from i is εi − 2; . . .
at the εi-th time slot all learners whose distance from i is 1
transmit correctly their information to i. Since the network GSP
has K − 1 links, learner i receives all local predictions after εi
time slots in GSP if and only no communication error occurs in
K − 1 transmissions.

We conclude the proof by adding the upper bound of A to the
right hand side of (19).

APPENDIX E
PROOF OF THEOREM 4

Theorem 2 shows that in absence of communication errors we
have that Di(eN) is bounded by

Bdel
i (eN) = εIi − 1 +

Nmis
i,εIi

Nα
(εi − εIi) . (20)

The communication errors increase such delay bound because
learner i may require more time to come into possession of the
local predictions it needs to detect the event. To bound such
additional expected time T com due to the communication errors,
let consider the worst network possible in terms of time required
to receive the local predictions from all the learners. We consider
the network in which learners are connected in line and learner i
is located at an extreme. For simplicity of exposition, we rename
learner i into learner 1 and we order the learner sequentially (i.e.,
learner 2 is neighbor of 1, 3 is neighbor of 2, and so on). In
absence of communication errors learner 1 requires K − 1 time
slots to receive the local predictions from all the other learners.
With communication errors the time required to receive all local
prediction is equal to 1) the time required by K to send the
information containing it local prediction to learner K − 1; plus
2) the time required by K−1 to send the information containing
K’s local prediction (and, if not already sent, K − 1’s local
prediction) to learner K − 2; plus . . . plus the time required by
2 to send K’s local prediction (and, if not already sent, the local
prediction of other learners in the cascade) to 1. Such time is the
sum of K − 1 i.i.d. geometric random variable with parameter
(1− perr). Hence, the expected additional time is:

T com ≤ (K − 1)
1

1− perr
− (K − 1) = (K − 1)

perr
1− perr

.

We conclude the proof by adding the upper bound of T com

to the right hand side of (20).

REFERENCES

[1] “IBM Smarter Planet,” http://www.ibm.com/smarterplanet, retrieved Octo-
ber, 2012.

[2] L. Canzian and M. van der Schaar, “Real-time stream mining: online
knowledge extraction using classifier networks,” to appear in IEEE Network
Magazine - Special Issue on Networking for Big Data, 2015.

[3] Y. Zhang, D. Sow, D. S. Turaga, and M. van der Schaar, “A fast online
learning algorithm for distributed mining of bigdata,” in The Big Data
Analytics Workshop at SIGMETRICS, 2013.

[4] M. Antunes, M. A. Turkman, and K. F. Turkman, “A Bayesian approach
to event prediction,” Journal of Time Series Analysis, vol. 24, no. 6, pp.
631–646, 2003.

[5] G. Amodeo, R. Blanco, and U. Brefeld, “Hybrid models for future event
prediction,” in Proc. ACM CIKM, 2011, pp. 1981–1984.

[6] S. Asur and B. A. Huberman, “Predicting the future with social media,” in
Proc. IEEE WI-IAT, vol. 1, 2010, pp. 492–499.

[7] H. Choi and H. Varian, “Predicting the present with google trends,”
Economic Record, vol. 88, no. s1, pp. 2–9, 2012.

[8] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[9] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, Aug. 1997.

[10] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Inf.
Comput., vol. 108, no. 2, pp. 212–261, Feb. 1994.

[11] Z. Haipeng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
Models, limits, and algorithms,” IEEE Trans. Signal Process., vol. 59, no. 1,
pp. 386–398, 2011.

[12] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. ACM SIGKDD, 2003, pp.
226–235.

[13] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Integrating
novel class detection with classification for concept-drifting data streams,”
in Proc. ECML PKDD, 2009, pp. 79–94.

[14] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262–5276,
2010.

[15] Z. J. Towfic, J. Chen, and A. H. Sayed, “On distributed online classification
in the midst of concept drifts,” Neurocomputing, vol. 112, pp. 139–152,
2013.

[16] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 56–69,
2006.

[17] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, Distributed de-
tection and estimation in wireless sensor networks, available at:
http://arxiv.org/pdf/1307.1448v2.pdf, 2013.

[18] S. Barbarossa and G. Scutari, “Decentralized maximum-likelihood esti-
mation for sensor networks composed of nonlinearly coupled dynamical
systems,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3456–3470,
2007.

[19] H. Zhang, J. Moura, and B. Krogh, “Dynamic field estimation using
wireless sensor networks: Tradeoffs between estimation error and commu-
nication cost,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2383–2395,
2009.

[20] J. N. Tsitsiklis, “Decentralized detection,” in Advances in Statistical Signal
Processing, 1993, pp. 297–344.

[21] V. Veeravalli, “Decentralized quickest change detection,” IEEE Trans.
Inform. Theory, pp. 1657–1665, 2001.

[22] J.-F. Chamberland and V. Veeravalli, “Decentralized detection in sensor
networks,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407–416, Feb
2003.

[23] L. Canzian and M. van der Schaar, “A network of cooperative learners for
data–driven stream mining,” in Proc. IEEE ICASSP, vol. 3, May 2014, pp.
2908–2912.

[24] D. Shutin, S. R. Kulkarni, and H. V. Poor, “Incremental reformulated
automatic relevance determination,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4977–4981, 2012.

[25] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176, 2004.

[26] K. Ishibashi, T. Toyono, and K. Toyama, “Detecting mass-mailing worm
infected hosts by mining DNS traffic data,” in Proc. SIGCOMM, 2005.

[27] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss
functions all the same?” Neural Comput., vol. 16, no. 5, pp. 1063–1076,
May 2004.

[28] K. Bache and M. Lichman, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, University of California, Irvine, School of
Information and Computer Sciences, 2013.

[29] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data
streams: Analysis and practice,” in Proc. IEEE ICDM, 2007, pp. 143–152.

Luca Canzian [M’13] received the B.Sc., M.Sc., and Ph.D. degrees in Electrical
Engineering from the University of Padova, Italy, in 2005, 2007, and 2013,
respectively. From 2007 to 2009 he worked in Venice, Italy, as an R&D Engineer
at Tecnomare. From January 2013 to April 2014 he was a Postdoc at the Electrical
Engineering Department of the University of California, Los Angeles (UCLA).
Since April 2014 he has been a Postdoc at the Computer Science Department of
the University of Birmingham. His research interests include Big Data, online
learning, real-time stream mining, and game theory applied to wireless networks.

Mihaela van der Schaar [F’10] is Chancellor’s Professor of Electrical En-
gineering at UCLA. She was Distinguished Lecturer of the Communications
Society and Editor in Chief of IEEE Transactions on Multimedia. She received
an NSF CAREER Award, 3 IBM Faculty Awards, and several Best Paper Awards.
She holds 33 granted US patents. She is also the founding director of the
UCLA Center for Engineering Economics, Learning, and Networks. Her research
interests include engineering economics and game theory, network science, expert
and social networks, online reputation and social media, dynamic multi-user
networks and system designs, wireless networks, online and interactive learning,
and real-time stream mining.

