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Abstract—We propose an image stream mining method in
which images arrive with contexts (metadata) and need to be
processed in real-time by the image mining system (IMS), which
needs to make predictions and derive actionable intelligence
from these streams. After extracting the features of the image
by preprocessing, IMS determines online which of its available
classifiers it should use on the extracted features to make a
prediction using the context of the image. A key challenge
associated with stream mining is that the prediction accuracy
of the classifiers is unknown since the image source is unknown;
thus these accuracies need to be learned online. Another key
challenge of stream mining is that learning can only be done
by observing the true label, but this is costly to obtain. To
address these challenges, we model the image stream mining
problem as an active, online contextual experts problem, where
the context of the image is used to guide the classifier selection
decision. We develop an active learning algorithm and show
that it achieves regret sublinear in the number of images that
have been observed so far. To further illustrate and assess the
performance of our proposed methods, we apply them to diagnose
breast cancer from images of cellular samples obtained from
fine needle aspirate (FNA) of breast mass. Our findings show
that very high diagnosis accuracy can be achieved by actively
obtaining only a small fraction of true labels through surgical
biopsies. Other applications include video surveillance and video
traffic monitoring.

Index Terms—Image stream mining, active learning, online
classification, online learning, contextual experts, breast cancer
diagnosis.

I. INTRODUCTION

Image stream mining aims to extract relevant knowledge
from a diverse set of images generated by medical or surveil-
lance systems, or personal cameras [1]. In this paper, we intro-
duce a novel image stream mining method for classification
of streams generated by heterogeneous and unknown image
sources. The images sequentially arrive to the IMS which is
equipped with a heterogeneous set of classifiers.

The images are first pre-processed using any of a plethora
of existing image processing methods (targeted towards the
specific application) to extract a set of features. In addition
to the extracted features, each image comes together with a
context that may give additional information (metadata) about
the image. For example, for medical images, some dimensions
of the context may include information from the health record
of the patient, while some other dimensions may include a
subset of the features extracted from the image. Fig. 1 depicts
the envisioned system for a specific image stream mining
application. Note, however, that our method is applicable
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to a wide range of other image stream mining applications
such as surveillance, traffic monitoring etc. The task of the
IMS is to mine the images as soon as they arrive and make
predictions about the contents of the images. To accomplish
this task, the IMS is endowed with a set of classifiers that
make predictions using the features extracted from the images,
which are trained a-priori based on images obtained from
different sources, using a variety of training methods (logistic
regression, naive Bayes, SVM, etc.). The goal of the IMS
is to utilize the context information that comes along with
the image to choose a classifier and follow its prediction. A
key challenge is that the image characteristics of the acquired
image streams are unknown, and thus, the accuracy of the
various classifiers when applied to these images is unknown;
the accuracy of a classifier for certain image streams, for
specific contexts, can only be learned by observing how
well such a classifier performed in the past when mining
images with similar contexts. We call the module of the IMS
that performs this learning as the learning algorithm. The
performance of a classifier is measured against the true class
(label) of the images. Nevertheless, observing the true label
is costly and thus, labels should be judiciously acquired by
assessing the benefits and costs of obtaining them. We call
the task of the IMS, where image streams are acquired and
need to be mined online, by selecting among a set of classifiers
of unknown performance, and whose performance is learned
online by proactively acquiring labels based on a benefit-cost
analysis, active image stream mining. In this paper we propose
methods for performing active image stream mining.

A key application of the envisioned active image stream
mining is related to medical image diagnosis. One field which
has received a lot of attention recently is radiology. The
healthcare industry started taking steps to use data driven
techniques to improve diagnosis accuracy from radiological
images due to the existence of high error rates in radiological
interpretations [2] and high variability of interpretations made
by different radiologist on the same image [3]. Thus, it is
important to design automated learning algorithms to help
radiologists reduce error rates and interpretation variance. In
the illustration provided in Fig. 1, breast cancer diagnosis is
performed by analyzing images of cells obtained from FNA of
breast mass which is a minimally invasive procedure with a
low cost [4]. For these images, features and contexts such
as the number of cells, cell size, cell uniformity, etc. can
be extracted by applying readily available feature extraction
techniques [5], [6]. For example, [6] proposes a threshold-
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Fig. 1. Active image stream mining performed by the IMS by utilizing contextual information for classifier selection for breast cancer diagnosis.

ing method to count the number of cells, while [5] uses a
watershed based region growing approach to detect the cell
nucleus and the features of nucleus (size shape, etc.) in a breast
tissue image. However, such image analysis methods can only
provide a prediction, and the true label (whether there is cancer
or not), can only be obtained by a surgically invasive biopsy
of the breast mass [7], which has a high cost. Then, a key
task becomes learning when to ask for the true label such that
the joint loss from misclassification and cost of asking for
the true label is minimized. As we noted before, we call this
task active image stream mining. It is different from most of
the works in active learning [8] in the following sense. The
focus of active image stream mining is to learn which classifier
to choose among a set of pre-trained classifiers based on the
context of the image, i.e., to learn the contextual specialization
of classifiers, by inquiring minimum number of labels. In
contrast, the focus of active learning is to selectively choose
the training samples to design a classifier that works well on
the remaining set of instances. Since we do not have control
over the arriving images, most of the prior active learning
methods [9]–[13] do not work in our problem.

According to our formulation, each classifier can be inter-
preted as an expert, that outputs a prediction about the image
under consideration. Thus, in a more general instantiation of
our proposed system, a classifier can be a software system
or a radiologist. Since the learner follows the prediction of
one of the experts based on the context of the image, we
call this learning problem a contextual experts problem. As
we mentioned, medical imaging is just one application of the
proposed methodology.

As a performance measure for our active image stream
mining method, we use the regret, which is defined as the
difference between the expected total reward (number of cor-
rect predictions minus active learning costs) of the best mining
scheme given complete knowledge about the accuracies of the
available classifiers for all possible contexts and the expected
total reward of the proposed algorithm. We then show that
our proposed mining algorithms achieve regret sublinear in the
number of images observed so far, which implies that the best
classifier to choose for each possible context can be learned
without any loss in terms of the average reward.

To summarize, the proposed active image stream mining
methodology exhibits the following key features:
• Image streams are gathered and need to be mined con-

tinuously, online, rather then being stored in a database
for offline processing.

• The IMS cannot control the sequence of arrivals.
• Our active stream mining algorithms are general and

can be used in conjunction with any available set of
classifiers.

• Classifier selection is based on the context of images,
hence mining performance is maximized by learning
contextual specialization of the classifiers.

• Learning speed is boosted by learning together for a
group of similar contexts, instead of learning individually
for each context.

• Our proposed algorithms achieve sublinear learning re-
gret, which implies that the average loss due to learning
and actively asking for the labels converges to zero.

Besides providing theoretical bounds for our proposed
methods, we also illustrate the performance of our methods
using a real world breast cancer diagnosis dataset obtained
from UCI repository [14].

The remainder of the paper is organized as follows. In
Section II, we describe the related work. In Section III,
we formalize the active image stream mining problem, the
benchmarks, and the regret. Then, we propose active learning
algorithms for the IMS, and prove sublinear regret bounds.
Application of the proposed methods for breast cancer diag-
nosis is given in Section VI. Discussion and several extensions
are proposed in Section VII. Concluding remarks are given in
Section VIII.

II. RELATED WORK

A. Related Work on Classifier Design

Previous works on image mining focus mainly on the design
of classifiers [16]–[19] using supervised methods with training
images or unsupervised clustering methods [20], [21] by
grouping images based on their features. Other works consider
association rules [19], [22] or neural networks [23] to identify
patterns and trends in large image sets.

For example, [20] considers an unsupervised learning prob-
lem in high dimensional data sets using generalized Dirichlet
distribution to form clusters. The parameters of the distri-
bution are estimated using a hybrid stochastic expectation
maximization algorithm. This algorithm is offline and requires
a batch of samples to form the clusters of data. In [16], an
evolutionary artificial neural network is proposed to predict
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Fig. 2. Active image stream mining performed by the IMS by direct context
based predictions.

breast cancer, while in [24], a selective Bayesian classifier that
chooses which features to use in trainings is designed. In [25],
an artificial neural network is proposed to classify the fundus
of the eye of a patient for detection of diabetic retinopathy.

All the abovementioned literature either requires a certain
number of training images, or works in a completely unsuper-
vised way [21], without requiring any labels.

Our active image stream mining system operates at a
different level: it builds on the existing work by assuming
that the system has access to many classifiers (with unknown
accuracies), and learns online which classifier’s prediction
to follow based on the contexts of the images. The main
motivation of this paper is to use the diversity of the base
classifiers along with learning their contextual specializations
to boost the prediction accuracy. Hence, all the proposed
methods above can be used to design the base classifiers that
are used by our learning algorithms. In addition to employing
pretrained base classifiers that make predictions about the im-
age using the features extracted from the image, our proposed
mining methods can also directly use the extracted features as
context information to make context based predictions about
the image. This system is illustrated for the breast cancer
diagnosis application in Fig. 2.

B. Related Work on Active Learning

Since the past performance can only be assessed through
the labels, and since obtaining the labels is costly, actively
learning when to ask for the label becomes an important
challenge. The literature on active learning can be divided into
three categories. In stream-based active learning [26]–[29], the
learner is provided with a stream of unlabeled instances. When
an instances arrives, the learner decides to obtain the label or
not. In pool-based active learning [9]–[12], there is a pool of
unlabeled instances that the learner can choose from. At each
time slot the learner can pick an instance from the pool and
obtain its label. In active learning with membership queries
[13], the learner has access to every possible instance, and at
each time slot chooses an instance and obtain its label. In all
of these active learning problems, the goal is to obtain only the
labels of the instances that have the highest label uncertainty
based on the labels obtained so far.

Unlike pool-based and membership queries methods, in
this paper the IMS does not have control over image arrival

process, and we do not need to store the images in a database.
Hence, the most closely related active learning category to our
work is stream-based active learning.

C. Related Work on Ensemble Learning

In our model, the learner has access to many classifiers
and follows the prediction of a single classifier based on the
context. Our method can be seen as a deterministic ensemble
learning method where the IMS learns to follow the best
(expert) classifier for a given context. There are other types
of ensemble learning methods which combine the predictions
of classifiers (e.g., by weights), and produce a final prediction
based on the predictions of the classifiers in the ensemble. For
example, [30]–[36] use techniques such as bagging, boosting,
stacked generalization and cascading. However, most of them
provides algorithms which are asymptotically converging to
an optimal or locally-optimal solution without providing any
rates of convergence. On the contrary, we do not only prove
convergence results, but we are also able to explicitly char-
acterize the performance loss incurred at each time step with
respect to the complete knowledge benchmark which knows
the accuracies of all classifiers.

Some other ensemble learning methods use the weights
assigned to the classifiers to build a randomized algorithm that
chooses a prediction [37]–[41]. These weights can be updated
online [39] based on the past performance of the classifiers.
These papers also prove strong theoretical guarantees on the
performance of the ensemble. Our difference is that, we
focus on how contextual specializations of classifiers can be
discovered over time to create a strong (high overall prediction
accuracy) predictor from many weak (low overall prediction
accuracy) classifiers.

D. Related Work on Experts and Contextual Bandits

The most closely related theoretical approaches to ours are
the ones on prediction with expert advice [27]–[29], [42] and
contextual bandits [43]–[48].

In the experts problem [42], the learner observes predic-
tions of N experts at each time slot, and comes up with a
final prediction using this information. The goal is to design
algorithms that perform as good as the best expert for a
sequence of labels generated by an adversary. To do this,
the authors propose a randomized learning algorithm with
exponential weights. [27] proposes the active learning version
of the experts problem called label efficient learning. They
derive conditions on the number of required label queries
such that the regret of the learning algorithm is sublinear with
respect to the best classifier in a given set of classifiers. The
variation in [29] considers costs associated with obtaining the
features as well as the label, while [28] studies a slightly
different problem, where labels are generated by a set of
teachers according to some unknown noisy linear function of
the features. Instead of actively learning the ground truth, the
learner learns actively from the labels generated by different
teachers depending on their expertise. In contrast, in our paper
labels are generated according to an arbitrary joint distribution
over features, contexts and labels, and active stream mining
reveals the ground truth. In all of the work described above,
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the benchmark of regret is the best fixed classifier in a given
set of classifiers as opposed to our benchmark which is the best
context-dependent classifier, which can be significantly better
in terms of accuracy. Another difference is that we propose a
deterministic learning approach as opposed to the randomized
learning approach proposed in above works.

In the contextual bandit framework [43], [44], [48], the
learner can only observe the reward of the selected action
(classifier), but observes it every time that action is selected.
This results in an exploration-exploitation tradeoff which
needs to be carefully balanced to achieve good performance.
In contrast, in this paper, reward observation is not always
possible.

III. PROBLEM FORMULATION

In this section we present the system model, define the data
and context arrival process, classifier accuracies and the regret.
Frequently used notations are given in Appendix A.

A. System Model

The system model is shown in Fig. 3. The IMS is equipped
with nc classifiers indexed by the set F := {1, 2, . . . , nc}.
The system operates in a discrete time setting t = 1, 2, . . . , T ,
where the following events happen sequentially, in each time
slot t: (i) An image arrives to the IMS and its features s(t)
are extracted by some preprocessing method. As we discussed
in the Introduction Section, this extraction can be performed
by applying readily available feature extraction techniques [5],
[6]. The context x(t) of the image is either given externally
together with the image or includes some of the extracted
features or both. (ii) Each classifier f ∈ F produces a
prediction ŷf (t) based on s(t). (iii) The IMS follows the
prediction of one of its classifiers, which is denoted by ŷ(t).
(iv) The true label is revealed only when it is asked for, by a
supervisor such as a human operator, and there is a constant
cost c > 0, i.e., active learning cost, associated with asking
for the true label. (v) If the true label y(t) is obtained, the
IMS updates the estimated accuracy of its classifiers.

Let apr(t) ∈ F be the prediction action of the IMS at time
t. It is the classifier whose prediction is followed by the IMS
at time t. We also call F as the set of arms of the IMS. Hence
we use the term classifier and arm interchangeably. Let alr(t)
be the learning action of the IMS at time t. For alr(t) = 0,
the IMS does not ask for the label, while for alr(t) = 1, it
asks for the label and pays cost c. Clearly, ŷ(t) = ŷapr(t)(t).

B. Context, Label and Classifiers

Let X = [0, 1]D be the set of contexts,1 where D is the
dimension of the context space, S be the set of images and
Y = {0, 1} be the set of labels.2 Each classifier f is endowed
with a prediction rule Qf : S → ∆(Y), where ∆(Y) denotes
the set of probability distributions over Y . Let Ŷf (s) be the
random variable which denotes the label produced by classifier
f when input image is s.

1In general, our results will hold for any bounded subspace of RD .
2Considering only binary labels/classifiers is not restrictive since in general,

ensembles of binary classifiers can be used to accomplish more complex
classification tasks [49], [50].

Fig. 3. Operation of the IMS during a time slot.

At each time slot t, s(t), x(t) and y(t) are drawn from
an unknown but fixed joint distribution J over S × X × Y .
We call J the image distribution. Let Jx denote the condi-
tional distribution of image and label given context x. Then,
classifier f ’s accuracy for context x is given by πf (x) :=
EJx,Qf [I(Ŷf (S) = Y )], where S and Y are the random
variables corresponding to image and label whose conditional
distribution is given by Jx. We assume that each classifier has
similar accuracies for similar contexts; we formalize this in
terms of a Hölder condition.

Assumption 1: There exists L > 0, α > 0 such that for all
x, x′ ∈ X and f ∈ F , we have |πf (x)−πf (x′)| ≤ L||x−x′||α.

Assumption 1 indicates that the accuracy of a classifier
for similar contexts is similar to each other. We assume that
the IMS knows α, while L is not required to be known. An
unknown α can be estimated online using the sample mean
estimates of accuracies for similar contexts, and our proposed
algorithms can be modified to include the estimation of α.

The image input s(t) is high dimensional and its dimension
is greater than D (in most of the cases its much larger than
D). For example, in the breast cancer dataset 10 features
are extracted from the image by preprocessing. However, in
one of our simulations we only use one of the features as
contexts. In such a setting, exploiting the low dimensional
context information may significantly improve the learning
speed.

The goal of the IMS is to minimize the number of incorrect
predictions and costs of asking for the label. Hence, it should
learn well the accuracies of the classifiers while minimizing
the number of times it actively asks for the label. We model
the IMS’s problem as a contextual experts problem, where the
accuracies translate into rewards.

C. The Complete Knowledge Benchmark

Our benchmark when evaluating the performance of the
learning algorithms is the optimal solution in which the IMS
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follows the prediction of the best classifier in F , i.e., the
classifier with the highest accuracy for context x(t), at time
t. Given context x, the classifier followed by the complete
knowledge benchmark is

f∗(x) := arg max
f∈F

πf (x). (1)

D. The Regret of Learning

Simply, the regret is the loss incurred due to the unknown
system dynamics. The regret of the IMS by time T is

R(T ):=

T∑
t=1

πf∗(x(t))(x(t))−E

[
T∑
t=1

(I(ŷ(t) = y(t))− calr(t))

]
where the expectation is taken with respect to the randomness
of the prediction, label and the actions. Regret gives the
convergence rate of the total expected reward of the learning
algorithm to the value of the optimal solution given in (1).
Any algorithm whose regret is sublinear, i.e., R(T ) = O(T γ)
such that γ < 1, will converge to the optimal solution in terms
of the average reward.

IV. UNIFORMLY PARTITIONED CONTEXTUAL EXPERTS

In this section we propose a learning algorithm for the IMS
which achieves sublinear regret for the active image stream
mining problem that creates a uniform partition of the context
space and learns the best classifier (expert) for each set in
the partition. The algorithm is called Uniformly Partitioned
Contextual Experts (UPCE) and its pseudocode is given in
Fig. 4.

Uniformly Partitioned Contextual Experts (UPCE):
1: Input: D(t), T , mT

2: Initialize: Form PT , the partition of [0, 1]D into (mT )
D

hypercubes. For each p ∈ PT set Np = 0, π̂f,p = 0,
∀f ∈ F

3: while t ≥ 1 do
4: Find the set in PT that x(t) belongs to, i.e., p(t)
5: Set p = p(t)
6: Set apr(t) = argmaxf∈F π̂f,p
7: Set ŷ(t) be the prediction of classifier apr(t)
8: if Np ≤ D(t) then
9: Obtain the true label y(t) by paying cost c, i.e.,

alr(t) = 1
10: for f ∈ F do
11: π̂f,p =

π̂f,pNp+I(ŷf (t)=y(t))

Np+1

12: Np ++
13: end for
14: else
15: Do not ask for the true label, i.e., alr(t) = 0
16: end if
17: t = t+ 1
18: end while

Fig. 4. Pseudocode for UPCE.
We would like to note that our contextual experts algorithm

is significantly different from prior works [43]–[48], which
design index-based learning algorithms for contextual bandits.
The main difference is that UPCE must actively control when
to ask for the true label, and hence, when to update the
accuracy of the classifiers, while in prior work in contextual
bandits the reward is always observed after an action is taken.
However, in contextual bandits only the reward of the selected
action is observed, while in contextual experts, reward of all
the actions are observed when the label is obtained. At each
time slot UPCE follows the prediction of the expert with

the highest estimated accuracy, while in contextual bandits,
exploration of suboptimal classifiers are needed occasionally.
This difference between contextual experts and bandits is very
important from the application point of view, since in many
applications including the medical applications, explorations
are not desirable to promote fairness and equally treat all
patients.

Basically, UPCE forms a uniform partition PT of the
context space consisting of (mT )D, D dimensional hyper-
cubes, and estimates the accuracy of each classifier for each
hypercube based only on the history of observations in that
hypercube. The essence behind UPCE is that if a set p ∈ PT
is small enough, then the variation of the classifier accuracies
in this set is small due to Assumption 1, hence the average
of the rewards observed in p at times when classifier f
is selected approximates well the accuracy of classifier f .
Thus, there is a tradeoff between the number of hypercubes
and the approximation mentioned above, which needs to be
carefully balanced. Moreover, since asking for the true label
is costly, UPCE should also balance the tradeoff between the
cost incurred due to active learning and reward loss due to
inaccurate classifier accuracy estimates.

In order to balance this tradeoff, UPCE keeps a deterministic
control function D(t) that is a non-decreasing function of t.
For each p ∈ PT UPCE keeps a counter Np(t) which counts
the number of times a context in set p arrived to the IMS
by time t and the IMS obtained its true label. Also for each
classifier f in this set, it keeps the estimated accuracy π̂f,p(t).
π̂f,p(t) is the sample mean of the rewards (correct predictions)
obtained from classifier f for contexts in set p at time slots
for which the true label is obtained by time t.

The IMS does the following at time t. It first finds to which
set in PT the context x(t) belongs to. Denote this set by p(t).
Then, it observes the predictions of the classifiers for s(t), i.e.,
ŷf (t), f ∈ F . It follows the prediction of the (estimated) best
classifier, i.e., apr(t) = arg maxf∈F π̂f,p(t). If the classifier
accuracies for set p are under-explored, i.e., if Np(t) ≤ D(t),
the IMS asks for the true label y(t) and pays cost c. Otherwise
it does not ask for y(t). If y(t) is obtained, the IMS updates
the estimated accuracy of classifier f ∈ F as follows:

π̂f,p(t+ 1) = (π̂f,p(t)Np(t) + I(ŷf (t) = y(t)))/(Np(t) + 1).

In the following subsection we will derive the values of
mT and D(t) that will lead to optimal tradeoff between active
learning cost and prediction accuracy.
A. Regret Bound for UPCE

Let βa :=
∑∞
t=1 1/ta, and let log(.) denote logarithm

in base e. For each set (hypercube) p ∈ PT let πf,p :=
supx∈p πf (x) and πf,p := infx∈p πf (x), for f ∈ F . Let x∗p be
the context at the center (center of symmetry) of the hypercube
p. We define the optimal classifier for set p as

f∗(p) := arg max
f∈F

πf (x∗p).

When the set p is clear from the context, we will simply denote
the optimal classifier for set p with f∗. Let

Lp(t) :=
{
f ∈ F such that πf∗(p),p − πf,p > Atθ

}
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be the set of suboptimal classifiers at time t, where θ < 0,
A > 0 are parameters that are only used in the analysis of the
regret and do not need to be known by the IMS. First, we will
give regret bounds that depend on values of θ and A and then
we will optimize over these values to find the best bound. Let
W(t) := {Np(t) > D(t)} be the event that there is adequate
number of samples to form accurate accuracy estimates for the
set the context belongs to at time t. We call time t for which
Np(t) > D(t), a good time. All other times are bad times.

The regret given in (1) can be written as a sum of three
components: R(T ) = E[Ra(T )] + E[Rs(T )] + E[Rn(T )],
where Ra(T ) is the active learning regret, which is the regret
due to costs of obtaining the true label by time T plus the
regret due to inaccurate estimates in bad times, Rs(T ) is the
regret due to suboptimal classifier selections in good times by
time T and Rn(T ) is the regret due to near optimal classifier
selections in good times by time T , which are all random
variables. In the following lemmas we will bound each of these
terms separately. The following lemma bounds E[Ra(T )]. Due
to space limitations, the some of the proofs are given in our
online technical report [51].

Lemma 1: When the IMS runs UPCE with parameters
D(t) = cηtz log t and mT = dT γe, where 0 < z < 1, η < 0
and 0 < γ < 1/D, we have

E[Ra(T )] ≤ (c+ 1)

(mT )
D∑

p=1

dcηT z log T e

≤ (cη+1 + cη)2DT z+γD log T + (c+ 1)2DT γD .

Proof: See [51].
We would like to note that this is the worst-case regret due

to active learning. In practice, some regions of the context
space (some hypercubes) may have only a few context arrivals,
hence active learning is not required to be performed for those
hypercubes for dcηT z log T e times. From Lemma 1, we see
that the regret due to active learning is linear in the number of
hypercubes (mT )D, hence exponential in parameter γ and z.
We conclude that z and γ should be small enough to achieve
sublinear regret in active learning steps. Moreover, since η <
0, this part of regret only sublinearly depends on c. We will
show later that our algorithms can achieve regret that only
scales with cubic rot of c, hence the performance scales well
when the active learning cost is high.

Let Ef,p(t) denote the set of (realized) rewards (1 for correct
prediction, 0 for incorrect prediction) obtained from classifier
f for contexts in p for time slots the true label is obtained
by time t. Clearly we have π̂f,p(t) =

∑
r∈Ef,p(t) r/|Ef,p(t)|.

Each of the realized rewards are sampled from a context de-
pendent distribution. Hence, those rewards are not identically
distributed. In order to facilitate our analysis of the regret,
we generate two different artificial i.i.d. processes to bound
the deviation probability of π̂f,p(t) from πf (x), x ∈ p. The
first one is the best process in which rewards are generated
according to a bounded i.i.d. process with expected reward
πf,p, the other one is the worst process in which the rewards
are generated according to a bounded i.i.d. process with
expected reward πf,p. Let π̂b

f,p(z) denote the sample mean
of the z samples from the best process and π̂w

f,p(z) denote the

sample mean of the z samples from the worst process. We
will bound the terms E[Rn(T )] and E[Rs(T )] by using these
artificial processes along with the similarity information given
in Assumption 1. Details are given in the proofs.

The following lemma bounds E[Rs(T )].
Lemma 2: When the IMS runs UPCE with parameters

D(t) = tz log t and mT = dcηT γe, where 0 < z < 1, η < 0
and 0 < γ < 1/D, given that 2L(

√
D)αt−γα+2c−η/2t−z/2 ≤

Atθ for t = 1, . . . , T , we have E[Rs(T )] ≤ ncβ22D+1T γD.
Proof: See [51].

From Lemma 2, we see that the regret increases exponen-
tially with parameter γ. These two lemmas suggest that γ
and z should be as small as possible, given the condition
2L(
√
D)αt−γα + 2c−η/2t−z/2 ≤ Atθ, is satisfied.

The following lemma bounds E[Rn(T )].
Lemma 3: When the IMS runs UPCE, we have

E[Rn(T )] ≤ AT 1+θ

1+θ + 3LDα/2T 1−αγ .
Proof: See [51].

From Lemma 3, we see that the regret due to near optimal
choices depends exponentially on θ which is related to nega-
tive of γ and z. Therefore γ and z should be chosen as large
as possible to minimize the regret due to near optimal arms.

In the next theorem we bound the regret of the IMS by
combining the above lemmas.

Theorem 1: When the IMS runs UPCE with parameters
D(t) = c−2/3t2α/(3α+D) log t and mT =

⌈
T 1/(3α+D)

⌉
, we

have

R(T ) ≤ T
D

3α+D
(
ncβ22D+1 + (c+ 1)2D

)
+ T

2α+D
3α+D

(
(2LDα/2 + 2c1/3)

(2α+D)/(3α+D)
+ 3LDα/2

+(c1/3 + c−2/3)2D log T
)

i.e., R(T ) = Õ
(
c1/3T

2α+D
3α+D

)
.

Proof: The highest time orders of regret come from active
learning and near optimal classifiers which are Õ(T γD+z),
O(T 1−αγ) and O(T 1+θ) respectively. We need to opti-
mize them with respect to the constraint 2LDα/2t−γα +
2c−η/2t−z/2 ≤ Atθ, which is assumed in Lemma 2. The
values that minimize the regret for which this constraint hold
are θ = −z/2, γ = z/(2α), A = 2LDα/2 + 2c−η/2 and
z = 2α/(3α+D). With these choices, the order of regret for
near optimal classifier in c becomes O(c−η/2). Since the order
of regret in c is O(c1+η) for active learning, these two terms
are balanced for η = −2/3, making the order of total regret in
c equal to O(c1/3). Result follows from summing the bounds
in Lemmas 1, 2 and 3.

Remark 1: Although the parameter mT of UPCE depends
on T , we can make UPCE run independently of the final time
T and achieve the same regret bound by using a well known
doubling trick (see, e.g., [44]). Consider phases τ ∈ {1, 2, . . .},
where each phase has length 2τ . We run a new instance
of algorithm UPCE at the beginning of each phase with
time parameter 2τ . Then, the regret of this algorithm up to
any time T will be Õ

(
T (2α+D)/(3α+D)

)
. Although doubling

trick works well in theory, UPCE can suffer from cold-start
problems. The algorithm we will define in the next section
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will not require T as an input parameter.
Remark 2: The learning algorithms proposed in this paper

have the goal of minimizing the regret, which is defined in
terms of prediction accuracies. However, in certain deployment
scenarios, one might also be interested in minimizing false
alarms, misdetections or a weighted sum of them. For example,
in order to minimize misdetections, the IMS needs to learn the
classifier with the lowest misdetection rate for each context.
Since a misdetection can happen only if the prediction is 0
but the true label is 1, then the IMS does active learning only
at time slots when it predicted 0. If the obtained true label is
1, then it updates the estimated misdetection probabilities of
all classifiers. Note that, a misdetection in an active learning
slot will not cause harm because the true label is recovered.

Remark 3: In this work we take the approach to have c
as a design parameter which is set by the learner based on
the tradeoff it assumes between the active learning cost and
classification accuracy. For instance, such an approach is also
taken in [29] in which the regret is written as a weighted
sum of prediction accuracy and label observation cost. As can
be seen from Theorem 1, although we write the regret due to
active learning and regret due to incorrect predictions together
as a single term, the active learning part of the regret only
comes from Lemma 1. Since the costs due to active learning
and near-optimal classifier selections are balanced in Theorem
1, UPCE achieves the optimal growth rate (in terms of the
time order) both for the active learning regret and the regret
due to near-optimal and suboptimal classifier selections. It
is also possible to interpret c as the absolute cost of active
learning with fixed budget. Recall that Lemma 1 gives the
active learning cost of UPCE when using a control function
D(t) = cηtz log t. If the learner has a final time horizon T
and a budget C with an absolute active learning cost c, then
it can optimize the η and z parameters in order to satisfy the
budget constraint. However, the regret bound given in Theorem
1 would be different since η or z are set according to the active
learning budget in this case.

The regret bound proved in Theorem 1 is sublinear in time
which guarantees convergence in terms of the average reward,
i.e., limT→∞R(T )/T = 0. For a fixed α, the regret becomes
linear in the limit as D goes to infinity. On the contrary,
when D is fixed, the regret decreases, and in the limit, as
α goes to infinity, it becomes O(T 2/3). This is intuitive since
increasing D means that the dimension of the context increases
and therefore the number of hypercubes to explore increases.
While increasing α means that the level of similarity between
any two pairs of contexts increases, i.e., knowing the accuracy
of classifier f in one context yields more information about its
accuracy in another context. Also as for large c, we see that
the number of times active learning is performed decreases.
This changes the estimated accuracies, and the tradeoff is
captured by choosing a larger A, i.e., defining a coarser near
optimality.

V. ADAPTIVELY PARTITIONED CONTEXTUAL EXPERTS

In real-world image stream mining applications, based on
the temporal correlations between the images, the image
arrival patterns can be non-uniform. Intuitively it seems that

the loss due to partitioning the context space into different
sets and learning independently for each of them can be
further minimized when the learning algorithm inspects the
regions of the context space with large number of context
arrivals more carefully. In this section we propose such an
algorithm called Adaptively Partitioned Contextual Experts
(APCE), whose pseudocode is given in Fig. 5. In the previous
section the finite partition of hypercubes PT is formed by
UPCE at the beginning by choosing the slicing parameter
mT . Differently, APCE adaptively generates the partition by
learning from the context arrivals. Similar to UPCE, APCE
independently estimates the accuracies of the classifiers for
each set in the partition.

Adaptively Partitioned Contextual Experts (APCE):
1: Input: α, ρ, η, B
2: Initialization: P(1) = {[0, 1]D}, Run Initialize(P(1))
3: while t ≥ 1 do
4: Find the set in P(t) that x(t) belongs to, i.e., p(t)
5: Set p = p(t)
6: Set apr(t) = argmaxf∈F π̂f,p
7: Set ŷ(t) be the prediction of classifier apr(t)
8: if Np ≤ D(p, t) then
9: Obtain the true label y(t) by paying cost c, i.e.,

alr(t) = 1
10: for f ∈ F do
11: π̂f,p =

π̂f,pNp+I(ŷf (t)=y(t))

Np+1

12: Np ++
13: end for
14: else
15: Do not ask for the true label, i.e., alr(t) = 0
16: end if
17: N ttl

p ++
18: if N ttl

p ≥ B2ρl(p) then
19: Create 2D level l(p) + 1 child hypercubes denoted by

Al(p)+1
p

20: Run Initialize(Al(p)+1
p )

21: P(t+ 1) = P(t) ∪ Al(p)+1
p − {p}

22: end if
23: t = t+ 1
24: end while
Initialize(B):
1: for p ∈ B do
2: Set N ttl

p = 0, Np = 0, π̂f,p = 0 for f ∈ F
3: end for

Fig. 5. Pseudocode for APCE and its initialization module.

Let P(t) be the IMS’s partition of X at time t and p(t)
denote the set in P(t) that contains x(t). Using APCE, the
IMS starts with P(1) = {X}, then divides X into sets with
smaller sizes as time goes on and more contexts arrive. Hence
the cardinality of P(t) increases with t. This division is done in
a systematic way to ensure that the tradeoff between the vari-
ation of classifier accuracies inside each set and the number of
past observations that are used in accuracy estimation for each
set is balanced. As a result, the regions of the context space
with a lot of context arrivals are covered with sets of smaller
sizes than regions of contexts space with few context arrivals.
In other words, APCE zooms into the regions of context
space with large number of arrivals. An illustration that shows
partition of UPCE and APCE is given in Fig. 6 for D = 1.
As we discussed in the Section II the zooming idea have been
used in a variety of multi-armed bandit problems [44]–[47],
[52]. However, the creation of hypercubes and the time spent
in active learning in each hypercube is different from these
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Fig. 6. An illustration showing how the partition of APCE differs from the
partition of UPCE for D = 1. As contexts arrive, APCE zooms into regions
of high number of context arrivals.

works, which do not consider the problem of actively asking
the labels. Instead, they use index-based policies in which the
index of each arm is updated at the end of every time slot, since
the reward feedback for the selected arm is always received
at the end of the time slot.

The sets in the adaptive partition of the IMS are chosen
from hypercubes with edge lengths coming from the set
{1, 1/2, 1/22, . . .}. We call a D dimensional hypercube which
has edges of length 2−l a level l hypercube (or level l set).
For a hypercube p, let l(p) denote its level. For p ∈ P(t) let
τi(p) be the time p is activated and τf (p) be the time p is
deactivated by the IMS. We will describe the activation and
deactivation process of hypercubes after defining the counters
of APCE which are initialized and updated differently than
UPCE. For p ∈ P(t), Np(t) counts the number of context
arrivals in set p from times {τi(p), . . . , t − 1} for which the
IMS obtained the true label, and N ttl

p (t) counts the number of
all context arrivals in set p from times {τi(p), . . . , t− 1}.

The IMS updates its partition P(t) as follows. At the end
of each time slot t, the IMS checks if N ttl

p (t + 1) exceeds a
threshold B2ρl(p(t)), where B > 0 and ρ > 0 are parameters
of APCE. If N ttl

p (t+1) ≥ B2ρl(p(t)), the IMS divides p(t) into
2D level l(p(t))+1 hypercubes, activates these hypercubes by
initializing their counters to zero and adding them to P(t+1),
and deactivates p(t) by removing it from P(t+ 1).

The IMS keeps a control function D(p, t) for each p ∈ P(t)
to decide when to obtain the true label. We set D(p, t) =
cη22αl(p) log t, η < 0 and will prove that it is the optimal
value to balance the cost of active learning with estimation
accuracy. At time t, if the number of times the IMS obtained
the true label for contexts in p(t) is less than or equal to
D(p(t), t), i.e., Np(t)(t) ≤ cη22αl(p(t)) log t, then, the IMS
asks for the true label, otherwise it does not ask for the true
label. For p ∈ P(t), let Ef,p(t) denote the set of rewards
(realized accuracy) obtained from classifier f for contexts
in p at times in {τi(p), . . . , t − 1} when the true label is
obtained. Clearly we have π̂f,p(t) =

∑
r∈Ef,p(t) r/|Ef,p(t)|.

The classifier whose prediction is followed by the IMS at time
t is apr(t) = arg maxf∈F π̂f,p(t)(t). We will analyze the regret
of APCE in the next subsection.

A. Analysis of the Regret of APCE

Our analysis for UPCE in Section IV was for worst-case
context arrivals. In this section we analyze the regret of APCE
under different types of context arrivals. To do this we will
bound the regret of APCE in a level l hypercube, and then give

the bound in terms of the total number of level l hypercubes
activated by time T .

We start with a simple lemma which gives an upper bound
on the highest level hypercube that is active at any time t.

Lemma 4: When the IMS runs APCE, all the active hy-
percubes p ∈ P(t) at time t have at most a level of
d(log2 t)/ρe+ 1.

Proof: See [51].
For a set p, πf,p, πf,p, x∗p and f∗(p) are defined the same

way as in Section IV-A. Let

Lp :=
{
f ∈ F such that πf∗(p),p − πf,p > A2−αl(p)

}
be the set of suboptimal classifiers at time t, where A > 0 is
a parameter that is just used in the analysis and not an input
to the algorithm. Let W(t) := {Np(t) > cη22αl(p(t)) log t},
be the event that there is adequate number of samples to form
accurate accuracy estimates for the set p(t) the context belongs
to at time t. Similar to Section IV-A, we call time t for which
Np(t) > cη22αl(p(t)), a good time. All other times are bad
times.

For a hypercube p, the regret incurred from its activation to
time T can be written as a sum of three components: Rp(T ) =
E[Rap(T )]+E[Rsp(T )]+E[Rnp (T )]. where Rap(T ) is the regret
due to costs of obtaining the true label plus the regret due to
inaccurate estimates in bad times , Rsp(T ) is the regret due to
suboptimal classifier selections in good times and Rnp (T ) is the
regret due to near optimal classifier selections in good times,
from the activation of hypercube p till time T . In the following
lemmas we will bound each of these terms separately. The
following lemma bounds E[Rap(T )].

Lemma 5: When the IMS runs APCE, for a level l hyper-
cube p, we have E[Rap(T )] ≤ (c1+η + cη)22αl log T + (c+ 1).

Proof: See [51].
The following lemma bounds E[Rsp(T )].
Lemma 6: When the IMS runs APCE, for a level l hyper-

cube p, given that, 2L
(√

D/2−l
)α

+ 2c−η/22−αl−A2−αl ≤
0, we have E[Rsp(T )] ≤ 2ncβ2.

Proof: See [51].
In the next lemma we bound E[Rnp (T )].
Lemma 7: When the IMS runs APCE, for a level l hyper-

cube p, we have E[Rnp (T )] ≤ (3LDα/2 +A)B2l(ρ−α).
Proof: See [51].

Next, we combine the results from Lemmas 5, 6 and 7 to
obtain our regret bound. Let Kl(T ) be the number of level
l hypercubes that are activated by time T . We know that
Kl(T ) ≤ 2Dl for any l and T . Moreover, from the result of
Lemma 4, we know that Kl(T ) = 0 for l > d(log2 t)/ρe+ 1.
Although, these bounds give an idea about the range of values
that Kl(T ) can take, the actual values of Kl(T ) depends on the
context arrival process, α and B, and can be exactly computed
for a sample path of context arrivals.

Theorem 2: When the IMS runs APCE with parameters
ρ = 3α, η = −2/3 and B = 1, we have

R(T ) ≤
d(log2 t)/ρe+1∑

l=1

Kl(T )
(

22αl(A∗ + (c1/3 + c−2/3) log T )

+2ncβ2 + c+ 1)



9

where A∗ = 5LDα/2 + 2c1/3.
Proof: Consider a hypercube p. The highest orders of re-

gret come from E[Rap(T )] and E[Rnp (T )]. The former is in the
order of Õ(22αl) and the latter is in the order of O(2(ρ−α)l).
These two are balanced for ρ = 3α. Although, choosing ρ
smaller than 3α will not make the regret in hypercube p larger,
it will increase the number of hypercubes activated by time
T , causing an increase in the regret. Therefore, since we sum
over all activated hypercubes, it is best to choose ρ as large
as possible, while balancing the regrets due to E[Rap(T )] and
E[Rnp (T )]. In order for condition in Lemma 6 to hold we set
A = 2LDα/2 + 2c−η/2 and optimize over η.

The regret bound derived for APCE in Theorem 2 is
quite different from the regret bound of UPCE in Theorem
1. APCE’s bound is a more general form of bound whose
exact value depends on how the contexts arrive, hence Kl(T ),
l = 1, . . . , d(log2 t)/ρe+1. We will show in the next corollary
that for the worst-case context arrivals in which the arrivals are
uniformly distributed over the context space, the time order of
the regret bound reduces to the bound in Theorem 1.

Corollary 1: When APCE is run with parameters ρ = 3α,
η = −2/3 and B = 1, if the context arrivals by time T is
uniformly distributed over the context space, we have

R(T ) ≤ T
2α+D
3α+D 2D+2α(A+ (c1/3 + c−2/3) log T )

+ T
D

3α+D 2D(2ncβ2 + c+ 1)

where A∗ = 5LDα/2 + 2c1/3. Hence R(T ) =

Õ
(
c1/3T

2α+D
3α+D

)
.

Proof: See [51].

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
algorithms in a breast cancer diagnosis application. In general,
our proposed algorithms can be used in any image stream
mining application.

A. Description of the Dataset

The breast cancer dataset is taken from UCI repository [14].
The dataset consists of features extracted from the images of
FNA of breast mass, that gives information about size, shape,
uniformity, etc., of the cells. Each case is labeled either as
malignant or benign. We assume that images arrive to the
IMS in an online fashion. At each time slot, our learning
algorithms operate on a subset of the features extracted from
the images to make a prediction about the tumor type. We
assume that the actual outcome can only be observed when
the true label is asked (surgical biopsy) by paying an active
learning cost c > 0. The number of instances is 50000.
About 69% of the images represent benign cases while the
rest represent malignant cases. We say that an error happens
when the prediction is wrong, a misdetection happens when
a malignant case is predicted as benign, and a false alarm
happens when a benign case is predicted as malignant.

B. Simulations with Pre-trained Base Classifiers

For the numerical results in this subsection, 6 logistic
regression classifiers, each trained with a different set of 10

c α ρ D(t) for UPCE mT

D(p, t) for APCE (B = 1)
U1 (UPCE) 1 1 N/A t1/2 log t/32 dT 1/4e
U2 (UPCE) 5 1 N/A 5−2/3t1/2 log t/32 dT 1/4e
A1 (APCE) 1 1 3 22l(p) log t/64 N/A
A2 (APCE) 5 1 3 5−2/322l(p) log t/64 N/A
S1 (UPCE) 1 1 N/A t

2α
3α+D log t/16 dT

1
3α+D e

S2 (UPCE) 1 1 N/A t1/4 log t/16 dT 1/8e
TABLE I

INPUT PARAMETERS FOR UPCE AND APCE USED IN THE SIMULATIONS.

images are used as base classifiers both by UPCE and APCE.
These trainings are done by using 6 features extracted from
each image. The error rate of these classifiers on test data
are 15.6, 10.8, 68.6, 31.5, 14 and 16.3 percent. It is obvious
that none of these classifiers work well for all instances. Our
goal in this subsection is to show how UPCE and APCE can
achieve much higher prediction accuracy (lower error rate)
than each individual classifier, by exploiting the contexts of
the images when deciding the prediction of which classifier
to follow. Essentially, UPCE and APCE learns the context
dependent accuracies of the classifiers. For each image, we
take one of the extracted features as context, hence D = 1.
We use the same type of feature as context for all the images.
This feature is also present in the training set of the logistic
regression classifiers (it is one of the 6 features).

One of our benchmarks is the No Context Experts (NCE)
algorithm which uses the control function of UPCE for active
learning, but does not exploit the context information in
selecting the classifier to follow. NCE learns the classifier
accuracies by keeping and updating a single sample mean
accuracy estimate for each of them, not taking into account
the context provided along with an image.

Our other benchmarks are ensemble learning methods in-
cluding Average Majority (AM) [37], Adaboost (Ada) [38],
Fan’s Online Adaboost (OnAda) [39], the Weighted Majority
(WM) [40] and Blum’s variant of WM (Blum) [41]. The
goal of these methods is to create a strong (high accuracy)
classifier by combining predictions of weak (low accuracy)
classifiers, which are the base classifiers in our simulations.
These are different than UPCE and APCE, which exploit
contextual information to learn context based specialization
of weak classifiers to create a strong predictor.

AM simply follows the prediction of the majority of the
classifiers, hence it does not perform active learning. Ada
is trained a priori with 1500 images, in which the labels of
these images are used to update the weight vector. Its weight
vector is fixed during the test phase (it is not learning online),
hence no active learning is performed during the test phase. In
contrast, OnAda always receives the true label at the end of
each time slot. It uses a time window of 1000 past observations
to retrain its weight vector. WM and Blum uses a control
function similar to the control function of UPCE to decide
when to ask for the label. The control function we use for
other methods is D(t) = t1/2 log t. Assuming α = 1, this
gives the optimal order of active learning in Theorem 1 for
D = 1.

The parameter values used for UPCE and APCE for the
simulations in this subsection are given in the first four
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Abbreviation Name of the Scheme Reference
Performance

error % missed % false % active learning number of
cost active learnings

AM Average Majority [37] 8.22 17.20 4.09 N/A N/A
Ada Adaboost [38] 4.60 (3) 3,82 (1) 4.97 1500 1500

OnAda Fan’s Online Adaboost [39] 4.68 (4) 4.07 (2) 4.95 N/A N/A
WM Weighted Majority algorithm [40] 21.46 12.16 (5) 25.74 2470 2470
Blum Blum’s variant of WM [41] 11.18 27.12 3.86 (4) 2470 2470
NCE No Context Experts benchmark 12.33 32.45 3.09 (3) 2470 2470

UPCE (U1) Uniformly Partitioned Contextual Experts our work 3.35 (1, 27% ) 6.08 (4) 2.1 (1, 32%) 1140 1140
UPCE (U2) ” our work 4.11 7.71 2.46 1950 390
APCE (A1) Adaptively Partitioned Contextual Experts our work 3.44 (2, 25%) 5.48 (3) 2.5 (2, 19%) 1341 1341
APCE (A2) ” our work 4.46 8.21 2.74 2465 493

TABLE II
COMPARISON OF UPCE AND APCE WITH ENSEMBLE LEARNING METHODS AND NCE FOR PARAMETER SETTINGS U1, U2, A1 AND A2 AT T = 50000.

rows of Table I. Simulation results are given in Table II. In
order to have a fair comparison of our algorithms and other
methods, we compare for active learning cost c = 1. For
each simulation criteria, the first number in the parenthesis
shows the rank of the algorithm over all algorithms. For UPCE
and APCE, the second number in the parenthesis shows the
percent improvement over the best algorithm among the other
algorithms. We see that in terms of the error rate UPCE and
APCE are significantly better than NCE (about at least 70%
reduction in the error rate). They also outperform the best
logistic regression classifier by at least 68% in terms of the
reduction in the error rate. UPCE and APCE are also better
than all the ensemble learning methods (about at least 25%
reduction in error rate). Although Ada and online OnAda are
better than UPCE and APCE in terms of the misdetection
rates, they have significantly higher false alarm rates. The
disadvantage of Ada is that it does not learn online, it performs
active learning only for the samples at the beginning. Although
it works well for this particular dataset, its performance will
be poor when the initial samples do not represent the general
population well. OnAda can deal with this, but it constantly
retrains its weights by actively asking for the labels, hence its
active learning rate cannot decrease over time. The number
of times active learning is performed by UPCE and APCE is
1140 and 1341 respectively, which is lower than the number
of true labels used by all ensemble learning methods to train
their weights (2470 WM and Blum).

Finally we compare the performance of UPCE and APCE
for different values of active learning costs, c = 1 (U1 and
A1) and c = 5 (U2 and A2). The results in Table II show that
UPCE and APCE adaptively decrease their active learning rate
to compensate for the increase in the cost of obtaining the
label. Although the cost of obtaining the label increases by
500%, the total cost of active learning for UPCE and APCE
increases less than 100% due to this adaptation. This results
in a significant reduction in the number of active learnings
performed by UPCE and APCE, however, the increase in error
rates due to this is less than 30% for both algorithms.

Remark 4: On the choice of base classifiers: Although we
used logistic regression classifiers as our base classifiers in this
section, our algorithms will work with any base classifier. In
order to obtain theoretical performance guarantees, the only
assumption we require on classifiers concerns their accuracies
for images with different contexts, which is formalized in
Assumption 1. Under this assumption, our algorithms are
guaranteed to converge to the performance of the best context-

specialized classifier f∗(x) for all x ∈ X . Hence, using our
algorithms, the learner is guaranteed to perform as good as the
best context-specialized classifier in the long run. As a rule of
thumb, in order to get a good prediction accuracy for every
context x ∈ X , there must exist at least one base classifier
(fixed or learned) which has a high prediction accuracy for x.
Therefore, it is good to have a diverse set of classifiers with
a diverse set of parameters, since our algorithms can adap-
tively learn their contextual specializations. Creating context-
specialized classifiers can be done by learning without base
classifiers (Section VII-A) and/or re-training base classifiers
on different parts of the context space (Section VII-B).

C. Simulations for UPCE without Base Classifiers

Different from the previous subsection, where UPCE learns
which classifier to follow given a context, in this subsection
UPCE directly learns which prediction to make given a con-
text. Due to this, UPCE can be seen as an online learning
classifier, which updates itself based on the context arrivals
and the labels that have been obtained so far. Equivalently, we
can view this scenario as UPCE having two base classifiers,
one which always predicts benign and the other which always
predicts malignant.

We simulate UPCE for two different sets of parameter
values S1 and S2 that are given in Table I. In S1, the control
function and the size of hypercubes are adjusted according to
the optimal values given in Theorem 1 for similarity exponent
α = 1. In S2, the control function and the size of hypercubes
are chosen independently from the dimension of the context
space and the similarity exponent. While APCE and UPCE
takes the similarity exponent as given, the similarity constant
L is not required to be known by the algorithms. Given any
similarity metric with exponent α > 0 and constant L > 0, it is
possible to generate a relaxed similarity metric with exponent
1 and constant L̃ > 0 such that

|πf (x)− πf (x′)| ≤ L||x− x′||α

⇒ |πf (x)− πf (x′)| ≤ L̃||x− x′||

for all x, x′ ∈ X and f ∈ F . Therefore, if no prior information
exists about the similarity metric both UPCE and APCE can
set α = 1.

As we discussed in Section IV and V, there is a tradeoff
between active learning cost and prediction accuracy in setting
D(t) and mT for UPCE and D(p, t) and ρ for APCE.
For instance, by choosing a larger D(t) UPCE increases its
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err % alrn % mis % false % mis-na % false-na % ncube
S1 (D = 3) 2.96 7.95 5.40 1.84 4.70 1.31 73

S1 (D = 6) 0.77 5.19 0.66 0.82 0.60 0.45 212

S2 (D = 3) 4.14 1 6.12 3.23 6.03 3.13 26

S2 (D = 6) 0.82 7 0.74 0.85 0.64 0.46 210

TABLE III
SIMULATION RESULTS FOR UPCE FOR PARAMETER SETS S1 AND S2 AT
T = 50000. ERR = ERROR RATE, ALRN = ACTIVE LEARNING RATE, MIS =
RATE OF MISSED DETECTIONS, FALSE = RATE OF FALSE ALARMS, MIS-NA
(FALSE-NA) = RATE OF MISDETECTIONS (FALSE ALARMS) AT TIME SLOTS
EXCEPT ACTIVE LEARNING SLOTS, NCUBE = NUMBER OF HYPERCUBES.

probability of choosing the optimal classifier at time steps it
exploits, while it incurs larger active learning cost. Similarly,
by choosing a larger mT it decreases the errors in accuracy
estimates due to the variation of the classifier accuracies for
different context values (due to Assumption 1), while the
number of past context observations that can be used to form
these estimates decreases since the size of each hypercube
is inversely proportional to mT . Recall that the parameter
choice in Theorem 1 yields the optimal tradeoff between these
events for an arbitrary context arrival process. In practice, if
the time horizon of interest is large, it is better to choose
D(t) and mT according to the theoretical values, since it
guarantees the optimal tradeoff between the active learning
cost and classification accuracy under any possible context
arrival process. However, if the learner aims to maximize the
performance at the very early stages, it may set D(t) to a
higher value (which lets it observe more labels) and mT to a
smaller value (which lets it use a larger set of past observations
for each hypercube).

The active learning rate (percentage of time when the true
label is asked), number of hypercubes, error, misdetection and
false alarm rates for UPCE are given in Table III as a function
of the dimension of the context D. It is observed that the
computational complexity of UPCE increases exponentially
with D, due to the increase in the number of hypercubes.
We can see that the prediction accuracy significantly increases
with D. This is due to the fact that the information UPCE gets
about each image increases with D, hence UPCE learns to
make better predictions. For S2, when 6 features are used as
contexts, the error rate is 0.82%, which is significantly lower
than using 3 features as contexts, that results in an error rate
of 4.14%. However, the number of hypercubes for D = 3
is 1/64th of the number of hypercubes for D = 6, and the
total cost of active learning for D = 3 is only about 13% of
the total cost of active learning for D = 6. Hence, there is
a clear tradeoff between active learning cost and prediction
accuracy. Another observation is the fact that the misdetection
and false alarm rates at time slots which are not active learning
slots are lower than the total misdetection and false alarm
rates. This means that UPCE is more accurate on time slots
when it does not need to perform active learning compared
to time slots that it needs to perform active learning. For this
application, since the true label is observed at the time slots
when active learning is performed (surgical biopsy), number
of false alarms and misdetections in these slots do not have a
negative consequence on the patient’s health.

Comparing the results for S1 and S2, we see that for all
types of contexts the error rate is lower for S1. Since the order
of active learning constant is kept fixed in S2 independent of

Fig. 7. The error, active learning, misdetection and false alarm rates of UPCE
for D = 6 and for the parameter values given in S1, as a function of time.

D, the total active learning cost increases with D. In contrast,
for S1, the active learning cost has a non-uniform behavior as
a function of D, and is much lower compared to S2 when the
context dimension is high (D = 6). This is due to the fact that
the rate of active learning for each hypercube is in the order
of Õ(t

2α
3α+D ).

So far we have talked about the performance of UPCE at
the final time. Fig. 7 shows the average active learning cost,
error, misdetection and false alarm rates of UPCE over time.
We see that the performance of UPCE improves over time,
and the largest improvement is in the first 5000 time slots. As
more images arrive, both the rate of actively asked labels and
error decrease.

VII. DISCUSSION

A. Learning without Base Classifiers

Both UPCE and APCE can directly learn to make the best
prediction corresponding to each set in the partition of the
context space that they generate. In order to do this, they
need to form two classifiers for each partition, one that always
predicts 1 and the other that always predicts 0. Then, they will
actively learn the accuracy of these classifiers in order to find
out the best prediction to make for that region of the context
space. In this case, the feature vector can be taken as the
context vector to learn the best prediction for each region of
the feature space (as shown in the numerical results of Section
VI-C). One limitation of this approach is that, the dimension
of the feature space can be large, which will result in slow
but asymptotically optimal learning as shown in the regret
bounds in Theorem 1 and Theorem 2. An interesting research
direction is to learn a low dimensional set of features that are
relevant to the prediction (given that such low dimensional
representations exist) in order to increase the learning speed.
This is discussed in Section VII-D.

B. Re-training Classifiers

As opposed to UPCE, APCE generates its partition of
the context space on-the-fly, based on the history of context
arrivals. As described in the pseudocode of APCE in Fig. 5,
whenever the number of arrivals to a particular level p in
the context partition of APCE exceeds the specified threshold
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Fig. 8. APCE re-training classifier f based on the past arrivals to the newly
created sets. Red dots indicate the contexts that are used in the re-training
phase of classifier f for sets p4 and p12 respectively.

(N ttl
p ≥ B2ρl(p)), p is divided into 2D level l(p) + 1 hyper-

cubes. When this division is performed, classifier accuracy
estimates π̂f,p are destroyed and for every new hypercube
p′ in set Al(p)+1

p , accuracy of f needs to be re-estimated.
This structure of APCE allows a classifier f to be re-trained
within region p, without altering its operation in other parts
of the context space. Recall from Section III-B that the
prediction rule of classifier f is given by Qf (·). With the new
modification, we can denote the prediction rule of classifier
f in the region p ∈ P(t) of the context space by Qf,p(·).
For instance, Qf,p(·) can be determined by using the history
of past context arrivals to p at the time p was created. The
snapshots given in Fig. 8 show the prediction rules of classifier
f at three different points in time. As can be seen from this
figure, classifier f is re-trained at each newly created set in
the partition, hence, it can specialize as more contexts arrive.
This type of re-trainings will not change the regret bound
derived in Theorem 2. Because, when deriving that regret
bound, we first bounded the regret within each hypercube p
that is generated by APCE, and then summed over all the
possible hypercubes that can be generated by APCE. Due to
this separation technique that is used in the proof, it also holds
when the classifiers are re-trained.

C. Dynamic Control Functions

Recall that the control functions used by UPCE and APCE
are deterministic, which implies that a prefixed maximum
amount of active learning will be applied up to a certain point
in time in each hypercube.

Intuitively, the number of active learning steps can be
adjusted according to the estimated suboptimality gap between
the classifier with the highest accuracy and the other classifiers.
In this subsection we will show how this can be done for
APCE. Let A∗pr(t) := arg maxf∈F π̂f,p(t)(t) be the set of
estimated optimal classifier(s) at time t, where p(t) is the set
in learner i’s partition that contains x(t). Let

Ûp(t) := {f ∈ F : π̂f∗,p(t)− π̂f,p(t) ≤ A2−αl(p)}

where f∗ ∈ A∗pr(t) and the value of A is given in Theorem
2. The estimated suboptimality of a classifier f ∈ F −A∗pr(t)

at time t is defined as ∆̂f,p(t)(t) := π̂f∗,p(t)(t) − π̂f,p(t)(t).
Let the estimated minimum suboptimality gap at time t
be ∆̂min,p(t)(t) := minf∈F−Ûp(t)(t) ∆̂f,p(t)(t) , when F −
Ûp(t)(t) 6= ∅, and ∆̂min,p(t)(t) := 2−αl(p) when F−Ûp(t)(t) =

∅. Instead of keeping a deterministic control function, APCE
can be modified to keep separate control functions for each
hypercube p, based on ∆̂min,p(t)(t). The idea is to adjust the
number of times true label is obtained within each hypercube
in a way that is inversely proportional to ∆̂min,p(t)(t) such
that there will not be any suboptimal classifier selections at
exploitations with a high probability (although near-optimal
classifier selections are allowed). For instance, by letting
D(p, t) = O(log t/∆̂2

min,p(t)), the number of active learning
steps can be made dependent on the suboptimality gap between
the optimal classifiers and suboptimal classifiers, instead of the
original D(p, t) = O(log t/(2−αl(p))2), which only depends
on the variation of classifier accuracies within p due to
Assumption 1. This will result in much smaller number of
active learning steps when ∆̂min,p(t)(t) >> 2−αl(p) for most
of the time steps, which will hold when the (true) difference
between the accuracy of the optimal classifier and suboptimal
classifiers is much larger than 2−αl(p).

D. Learning the Relevant Contexts

Since both UPCE and APCE form a partition of the context
space, the number of sets in the partitions they form grows
exponentially with the dimension of the context space. While
this curse of dimensionality is unavoidable for an arbitrary
(worst-case) context arrival process, it is possible to achieve
much faster convergence when the dataset under consideration
has additional structure such that a low dimensional repre-
sentation is possible. In our recent work [53], we solved the
curse of dimensionality problem for datasets in which the
true label depends only on a subset of (unknown) relevant
contexts. The method we developed solves a slightly different
problem which falls under the class of sequential decision
making under uncertainty problems, but can easily be adapted
to work with UPCE and APCE.

VIII. CONCLUSION

In this paper we proposed online active image stream mining
algorithms that use the context information that comes along
with an image to guide its classifier selection. Our learning
methods estimate classifier accuracies for similar contexts
using the past labels for images with similar contexts. We
prove sublinear regret bounds for our algorithms under mild
assumptions on the images, classifiers and contexts. While our
illustrative image stream mining application in this paper is a
medical one, our framework can also be applied to other image
stream mining problems such as video surveillance and video
traffic monitoring.

APPENDIX A
NOTATION

Unless noted otherwise, sets are denoted by calligraphic
letters. P(·) is the probability operator. EF (·) is the expectation
operator with respect to distribution F . The subscript is
dropped whenever the distribution is clear from the context.
I(ω) is the indicator function which is equal to 1 if event ω
happens and 0 else. For a set A, |A| denotes its cardinality.
For a real number r, dre denotes the smallest integer that is
greater than or equal to r. Standard Euclidian norm is denoted
by ||·||. Index f denotes a classifier. O(·) is the standard Big O
notation and Õ(·) also hides terms that grow logarithmically.
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