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Abstract—Numerous real-time applications are currently de-
ployed over mobile networks - ranging from multimedia stream-
ing, to real-time online games, to video conferences/chat, to
real-time stock exchanges, etc. Supporting such applications is
challenging because they have very stringent Quality of Service
(QoS) requirements in terms of both throughput and delay. To
address this challenge, in this paper, we propose to assist such mo-
bile applications by a cloud-based network environment, which
consists of multiple servers and clients (users). In cloud networks,
servers can create multiple replica of the popular content in order
to provide the needed QoS for the various service requests of the
users. However, in order to efficiently provide services to the
potentially large amount of service requests, it is essential for
servers to strategically respond to the requests from users. Since
the strategic response involves the resource management of the
servers, we design a strategy which explicitly considers the service
requests (e.g., service types, data priorities, delay constraints)
as well as the servers’ resource usages (e.g., current loads of
servers, contributions of servers). Since the servers are strategic,
they will aim to maximize their own utilities. Simulation results
verify that the proposed approach enables servers to manage
their resources more efficiently compared to existing approaches,
thereby providing prioritized data processing and operating in a
desired range and leading also to an improved performance for
the users.

Index Terms—Cloud networks, server utility, data priority,
server contribution

I. INTRODUCTION

A plethora of emerging mobile devices has been recently
exploding and various mobile applications such as multimedia
streaming, real-time online games, video conferences/chat,
real-time stock exchanges, etc. have been widely serviced
over networks. This leads to an extremely large volume of
data exchanges in networks. In order to guarantee Quality
of Service (QoS) requirements for such services, one of key
features is to efficiently store and deliver data in timely
manner [1]. Moreover, cloud networks have been considered
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as a promising solution that provide a variety of services in
forms of software, storage, servers, etc.

Cloud networks consist of multiple servers that are designed
to provide services to users. Servers can create several replica
of content and exchange them to support various service
requests from users. Practical examples include Google File
System (GFS) [2] and Hadoop [3]. In these systems, if
arbitrary data is entered as an input, the data is divided
into several pieces, and a Central Management Server (CMS)
stores the pieces in a distributed manner based on the server
status. When the data is needed, several pieces of the data
are downloaded simultaneously from the distributed servers.
Therefore, monitoring resources in the cloud networks is es-
pecially important in order to guarantee the QoS. A survey on
cloud monitoring and its related issues can be found in [4], and
several approaches of guaranteeing system performance are
studied in [5]. The major problem associated with CMS is in
the lack of scalability that the entire system can be vulnerable
when significant amount of data is requested simultaneously,
or when the CMS fails to operate.

Distributed approaches have been widely studied as a so-
lution to these problems In [6], a network resource aware
strategy that minimizes the latency between numerous data
centers is proposed. For better data exchanges among servers
in cloud networks, a file exchange strategy deployed in peer-
to-peer (P2P) networks is adopted [7], [8]. In [7], servers in
cloud networks can interact with each other by exchanging
their resource autonomously based on the tit-for-tat strategy.
The tit-for-tat strategy is used as a data exchange rule and
is actually deployed in BitTorrent systems [9]. While the
resource exchange strategy based on tit-for-tat can significantly
improve the overall download rates, its focus is rather on the
efficient delivery of delay-insensitive data, but not the delivery
of delay-constrained data. As a consequence, only limited
performance is guaranteed for delay-constrained data.

Moreover, there has been efforts to minimize the en-
ergy consumption for cloud systems and cloud data centers
(e.g., [10]–[12]). In [10], a packet-level simulator is designed
to capture energy consumption from several components such
as servers, switches, links, etc. Power consumption can be
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minimized based on virtualized backbone topology [11] and
QoS requirements are additionally considered [12]. Since these
works mainly focus on minimizing energy consumption in
cloud systems, performance in service quality may be limited
to real-time applications.

In this paper, we propose a utility-based resource manage-
ment strategy for servers in cloud networks that can address
the limitations discussed earlier. Unlike prior utility-based
approach in [13], where only QoS and operating costs are
considered, we design a utility function that can capture
serviced data priority, contribution of other servers, and the
level of CPU utilization. More specifically, if higher priority
data packets that have stringent delay deadlines are serviced, or
if servers can operate in a desired region of CPU utilization,
or if more contributions of previous resource exchanges are
recorded, higher utility can be achieved. Therefore, servers can
make their decisions such that their utilities are maximized.
Our simulations show that the proposed utility-based resource
management strategy enables the system (i.e., servers in cloud
networks) to support different levels of services based on
the data priorities and to provide incentives to other servers’
contributions while operating in a desired level of CPU uti-
lization. Thus, delay-constrained data that has higher priority
can be serviced faster while servers in the cloud networks can
manage their loads efficiently, in particular, in networks with
high congestions.

This paper is organized as follows. In Section II, several
key features in cloud networks are discussed. In Section III,
we propose algorithms that servers can deploy for requesting
data packets or responding to the requests based on utility in
cloud networks in Section III. The evaluation of the proposed
approach is presented in Section IV and conclusions are drawn
in Section V.

II. SYSTEM SETUP

In this paper, we consider an overlay cloud network that
consists of multiple interconnected servers, where users are
connected to the servers for services. We denote a server i
as S

i

and a set of servers as S, i.e., S
i

2 S. Servers in
a network can exchange data by requesting and responding
to the requests. In this section, we present the three features
included in the proposed utility function, i.e., data priority,
server contributions, and CPU utilization.

A. Prioritized Data

We assume that input data can have various classes accord-
ing priorities (e.g., real-time multimedia has higher priority
than general file data). More specifically, there are N

d

different
data types and data n can be divided into K

n

packets having
a fixed size. The kth packet in data n requested by server
j, S

j

, is denoted by d
Sj (n, k). The priority of kth packet of

data n in server S
j

is denoted by ⇢(d
Sj (n, k)) and each of

priority can be determined by its characteristics. For example,
multimedia data is in general delay-constrained compared to
general file data, meaning that multimedia data packets have

higher priorities. The priority is specified by ↵
p

, i.e.,

⇢(d
Sj (n, k)) 2 {↵1, . . . ,↵p

, . . . ,↵
P

} (1)

where 0  ↵1 < · · · < ↵
p

< · · · < ↵
P

. The total number
of priorities is P which can be determined based on the data
characteristics, network conditions, etc. A data packet with
priority ↵

p

has higher priority than a data packet with ↵0
p

if
↵
p

> ↵0
p

.

B. Contribution of Servers

In the proposed approach, the contribution of associated
servers (i.e., servers that responded to requests from a server)
is explicitly considered. In order for efficient data exchange
among servers, it is important for individual servers to retrieve
necessary data packets from the other servers. Thus, the
cooperation among servers is essential, and in particular, we
adopt tit-for-tat strategy from game theory [14], [15] in order
to promote their cooperation in this paper. It has been shown
that tit-for-tat strategy is very efficient for data exchange and
has been widely used in practice (e.g., in P2P networks [9]).
Since tit-for-tat strategy exploits contributions of agents in
the system (in our case, servers), we define a measure of
contribution of server S

j

to server S
i

at time (decision cycle)
t as

c
ji

(t� 1) 2 {↵1, . . . ,↵p

, . . . ,↵
P

}. (2)

This means that the contribution of S
j

to S
i

is basically
determined by the data priority serviced by S

j

for S
i

. More
specifically, the contribution of server S

j

to server S
i

is
determined by 1) whether server S

j

is responded to the
previous request from server S

i

and by 2) the data priority that
server S

j

provided. If server S
j

does not respond to a request
from server S

i

, c
ji

(t � 1) = 0. Hence, it is reasonable that
a server with higher contribution can be considered as more
cooperative. Consequently, individual servers can efficiently
exchange necessary data packets by requesting necessary data
packets from servers that have higher contribution, which is
discussed in detail in Section III.

C. CPU Utilization of Servers

For each server, responding to the requests from other
servers becomes loads for its CPU. In this paper, the CPU
loads are represented by CPU utilization and it is assumed that
the CPU utilization proportionally increases as the amount of
CPU loads increases, i.e., the number of responses increases.
Unlike general approaches of resource optimization, where
available resources should be allocated entirely, CPU utiliza-
tion needs to be limited below a certain level. For example,
in [16], if the CPU utilization is 50%, 70% and 90%, then it
takes 2 seconds, 3 seconds and more than 10 seconds for CPU
to complete a given task, respectively. While lower levels of
CPU utilization can guarantee a short delay of service time,
it may not be energy efficient. Energy efficiency in general
increases as CPU utilization becomes high – the energy
efficiency of a server can reach 90% when the CPU load is
more than 50% [17]. Therefore, servers need to consider these
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Fig. 1: Proposed cloud networks

tradeoffs when they respond to requests from the other servers.
More specifically, it is important that servers need to maintain
their CPU utilization levels in a desired operating region. In
this paper, CPU utilization is measured by ⌘

Li(t) based on
CPU load L

i

of server S
i

at time (decision cycle) t. The CPU
loads are divided into M sub-regions that are specified by
thresholds ✓

m

(%), expressed as

⌘
Li(t) =

8
>>><

>>>:

�1, if ✓1  L
i

< ✓2
�2, if ✓2  L

i

< ✓3
...

...
�
M

, if ✓
M

 L
i

< ✓
M+1

(3)

The optimal region of CPU utilization level can be determined
based on target applications, tasks, etc. The system setup is
depicted in Fig. 1.

III. UTILITY-BASED RESOURCE MANAGEMENT STRATEGY
IN CLOUD NETWORKS

In this section, we propose a utility-base resource manage-
ment strategy in cloud networks. We define a utility function
that can capture the key features discussed in Section II and
then propose algorithms that servers can deploy for requesting
data packets and responding to requests.

A. Utility Function of Servers
As mentioned, servers in cloud networks can have either

the entire data packets or a part of data packets. Therefore,
for a user’s data requests, 1) if servers have the entire data,
they can directly provide the data that they have, or 2) if they
have only a part of data, they provide the part of data while
forwarding the other part of data by retrieving them from the
other servers. Thus, it is essential for servers to efficiently

exchange data packets. Moreover, it is also important for
servers to process data packets having higher priorities such
that QoS requirements can be satisfied.

These are captured by a utility in the proposed approach,
where each server makes decisions how to request necessary
data packets or how to respond to data packet requests based
on its utility. The utility function of a server includes data
priority, contributions of servers and CPU utilization. More
specifically, the utility of server S

i

, denoted by U
Si(t), is

expressed as a weighted sum of data priority, the measure
of contribution and the measure of CPU utilization, i.e.,

U
Si(t) =

NSSi (t)X

j=1

{!
⇢

· ⇢(d
Sj (n, k))

+ !
c

· c
ji

(t� 1) + !
⌘

· ⌘
Li(t)} (4)

where N
SSi(t) denotes the number of data that server S

i

responds to requests from other servers. The utility function
in (4) consists of three terms that represent data priority
⇢(d

Sj (n, k)), contributions of servers c
ji

(t � 1) and CPU
utilization ⌘

Li(t). The corresponding weights are respectively
denoted by !

⇢

, !
c

and !
⌘

which can be appropriately de-
termined based on target services of cloud networks. Then,
each server makes its decisions such that its utility can be
maximized. Therefore, data priority, contributions and CPU
utilization included in the utility function can be indirectly
controlled.

The ultimate goal of deploying the utility function is to
prevent servers from overload and enable servers to operate
strategically, leading to high quality services to end users in
cloud networks.

B. Algorithms of Data Exchanges
Based on the tasks of servers, servers need to respond to

the requests from other servers or need to request necessary
data packets to other servers. In Section III-A, since utility
function is defined such that maximizing the utility can lead
to 1) delivering data packets having higher priority faster,
2) providing incentives for contributions and 3) maintaining
CPU utilization levels in a desired operating region, we design
two algorithms for responding to the requests and requesting
necessary data packets that can be deployed in servers.

1) Algorithm for Responses: When responding to data
packet requests from other servers, server S

i

selects requests
of higher priority data packets from servers with higher
contributions. Then, the requests can be eventually accepted by
the server if its CPU utilization is in a desired operating range.
This process repeats until accepting additional data packet
requests results in utility decrease. Hence, server S

i

selects
server S

j

at time (decision cycle) t that can improve its utility
the most, i.e.,

S⇤
j

= arg max

Sj2S
U
Si(t) (5)

where utility function is defined in (4). The set of servers
selected by server S

i

is denoted by S⇤
i

. The block diagram for
the algorithm is shown in Fig. 2.
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Fig. 2: Block diagram for proposed algorithm of response

2) Algorithm of Data Request: Motivated by tit-for-tat
strategy, the algorithm of data request aims to maximize the
probability that a server S

i

requesting necessary data packets
to other servers is serviced. Since other servers deploy the
algorithm of response discussed in Section III-B, server S

i

can
expect that the other servers that were serviced by server S

i

respond to its request with higher probability. This is because
c
ij

(t� 1) is contributed to the utility of server S
j

. Moreover,
if the data priority that server S

i

processed is higher, its
contribution to the utility of S

j

is also larger. Thus, server
S
i

requests data packets from servers S⇤
j

such that

S⇤
j

= arg max

Sj2S
c
ij

(t� 1). (6)

If multiple requests are allowed, several servers can be selected
and multiple requests can be sent.

IV. SIMULATION RESULTS

In this section, we quantitatively evaluate the proposed
resource management strategy based on our simulation results
and show that it outperforms conventional algorithms such
as random-based and tit-for-tat-based approaches. Servers de-
ploying random-based approach randomly choose the other
servers when they request data packets or respond to in-
coming requests. Alternatively, tit-for-tat-based approach only
considers the previous action of associated severs, i.e., the
contribution of the associated servers. In order to highlight
the proposed utility function, we focus on the impact of the
three features on the system performance.

A. Simulation Setup
In our simulations, there are 100 servers in the network,

i.e., |S| = 100. Every request and respond from each server is
performed in each decision cycle. For illustration, we assume
that there are 100 different types of data (N

d

= 100) and
10 different priorities (P = 10). Moreover, we assume that
data priorities are set by ↵

p

= p for p = 1, . . . , 10, which
is an illustrative realization of the condition in (1). 40% of
the entire data N

d

is initially distributed to servers. In order
for more realistic scenario, we set up a request probability in
each server, meaning that each server can either request or
not in every decision cycle with a predetermined probability.

The request probability is set by 40% (i.e., P
req

= 40) in the
following illustrative simulations. For CPU utilization levels,
we assume that there are five levels, which are specified as

⌘
Li(t) =

8
>>>><

>>>>:

�1 = 0.5↵
max

, if 0%  L
i

< 50%

�2 = ↵
max

, if 50%  L
i

< 70%

�3 = �0.5↵
max

, if 70%  L
i

< 80%

�4 = �↵
max

, if 80%  L
i

< 90%

�5 = �1.5↵
max

, if 90%  L
i

< 100%

(7)

These illustrative levels and thresholds can be adaptively
redesigned in different scenarios or network conditions. In the
operating regions given in (7), the measure of CPU utilization
is the largest, �2, which means that the best range of CPU
utilization in this example is determined between 50%⇠70%
of CPU loads. If CPU loads are below 50%, CPU utilization
needs to be boosted up, so that the corresponding measure
�1 is determined such that 0 < �1 < �2. If CPU loads are
above 70%, however, the response time to provide services
may become significantly slow. Thus, in order to prevent CPU
from operating in this region, the measure of CPU utilization
is set as negative values.

The degrees of network congestions in the simulations
are emulated by changing the number of simultaneous data
packet requests from each server. In particular, the number
of simultaneous data requests is 10, 30, and 80 for low,
medium, and high congestions, respectively. The experiments
are independently performed 100 times and the average data
are used for evaluation of performance.

B. Server Utility
We first evaluate the performance of the proposed algorithm

in the perspective of the utility. In our simulation, we consider
that the impact of data priority, server contribution and CPU
utilization on the utility is the same, meaning that !

⇢

= !
c

=

!
⌘

= 1. However, the weights can be appropriately adjusted.
Fig. 3 shows the utilities achieved by the three algorithms

for different conditions of network congestion. It is observed
that higher utility can be achieved as network conditions
become congested for all strategies. This is because the utility
defined in (4) increases as more data packets are processed.
More importantly, it is observed that smarter strategies (i.e.,
tit-for-tat and proposed approach) can play an important role
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Fig. 3: Server utilities in different network congestions.

(a) Medium Congestion (b) High Congestion

Fig. 4: The number of data packet requests until they are finally accepted over different priorities and network conditions.

in cases where resources are scarce. For example, if there are
smaller number of data requests (i.e., low congestion), cooper-
ation between servers become important. Thus, tit-for-tat or the
proposed approach that explicitly consider the contributions
of servers can achieve higher utility. Alternatively, if there
are excessive number of data requests (i.e., high congestion),
servers that selectively process data packets having higher
impact on server utility (i.e., higher priority data packets) can
achieve higher utility. Thus, the proposed approach can achieve
the highest utility.

C. Prioritized Data Processing

In order to confirm that data packets with higher priority
are processed (i.e., delivered or transmitted) faster than those
with lower priority, the number of requests until they are
finally accepted and processed is measured. As discussed in
Section III, each server accepts or responds to the requests if it
improves its own utility. Thus, if a data packet request from a
server S

i

does not improve the utility of server S
j

, the request
is rejected by S

j

so that server S
i

needs to find other servers
that can accept its request. Therefore, if the number of data
packet requests until they are finally responded is smaller, it
can be considered that it takes less time to be serviced.

Fig. 4 shows the number of data packet requests until they
are responded based on data priority in different network

conditions. It is obvious that it takes longer and shorter time to
process data packets with lower and higher priorities, respec-
tively, if the proposed approach is deployed. This is because
the proposed approach explicitly considers the data priorities.
However, the processing time is almost constant when random-
based or tit-for-tat-based approaches are deployed, as they do
not consider the data priority. It can also be observed that
overall processing time increases as the network condition
becomes congested.

D. CPU Utilization

We finally evaluate the proposed approach in terms of the
CPU utilization. The CPU utilizations achieved in different
network conditions are presented in Fig. 5.

In Fig. 5(a), it is shown that overall CPU utilization levels
increase as network conditions become congested. This is
because there are more loads that CPU need to process as
more data packets are requested in the network. While overall
CPU utilization levels increase, only the proposed approach
can prevent CPU loads from being over 70%, which is clearly
shown in Fig. 5(a). This is because of the utility function is
defined such that the measure of CPU utilization is negative
in the range of 70%⇠100% for CPU loads and is the highest
in the range of 50%⇠70% for CPU loads. Similar to the
results discussed in Section IV-B, it is again observed that
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smarter strategies (i.e., tit-for-tat and proposed approach) can
play an important role in the cases where resources are scarce.
For more realistic scenario, we adopt a time-varying request
probability of servers on each decision cycle, which is shown
in Fig. 5(b). The request probabilities are set by 70%, 20%
and 40% for the decision cycles in 0  t  20, 20  t  30,
and 30  t  50, in order to emulate high (congested), low
and medium network conditions, respectively. In summary,
our experiment results confirm that servers that adopt the
proposed approach can achieve the highest server utility. They
can correspondingly provide better services by processing data
with higher priorities faster and can maintain in a desired
operating range.

V. CONCLUSION

In this paper, we consider cloud networks where multiple
servers are trying to provide services to end users. In order
to guarantee QoS requirements, we propose a strategy how
servers exchange data packets based on several constraints
induced from service requests (e.g., service types, data pri-
orities, delay constraints) and servers’ resource usages (e.g.,
current loads of servers, contributions of servers). We define
a utility that can capture the performance of servers and the
servers can make their decisions such that their utilities are
maximized. Our experiment results show that the servers that
deploy the proposed approach can achieve the highest server
utility. They can correspondingly provide better services by
processing data with higher priorities faster and can maintain
in a desired operating range.
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