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ABSTRACT
Cognitive radio is an enabling technology that allows un-
licensed users to opportunistically access the spectrum in
order to enhance the spectrum efficiency. In this paper,
we consider a cognitive system wherein there exists a pri-
mary relay network and a secondary network. In order to
efficiently exploit the available spectrum and gain revenues
whenever the primary relay infrastructure is not utilized,
the primary network leases its unused bandwidth and the
idle relay node to the secondary users. As a reimburse-
ment, the secondary users make payments to the primary
network based on the service they receive. We first charac-
terize the interactions between the primary and secondary
users using a buyer/seller model. Specifically, the price is
determined by the primary network such that the revenue is
maximized. On the buyer side, given the specified price, the
secondary users competitively access the spectrum and em-
ploy the primary relay node to forward their packets. Then,
we model each secondary user as a selfish player, which aims
at maximizing its own benefit through power allocation, and
analyze the competition among the secondary users within
the framework of non-cooperative game theory. It is shown
that, in the game played by the secondary network, there
always exists a unique Nash equilibrium point that can be
achieved through distributed iterations. Next, we propose
a low-complexity algorithm, in which the primary network
charges the secondary users at a sub-optimal price and gains
close-to-optimal revenues. Extensive simulations are con-
ducted to verify the performance of the proposed methods
from both a primary as well as a secondary network per-
spective.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design–Wireless Communications
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1. INTRODUCTION
The increasing demand for wireless applications has driven

significant development of wireless technologies over the past
few years. However, the continuing growth of wireless net-
works is largely hindered by the spectrum scarcity. As a
promising approach to exploit the under-utilized spectrum,
cognitive radio technology defines a new wireless paradigm
that allows the unlicensed users to opportunistically access
the spectrum [5]. Generally speaking, cognitive radio sys-
tems can be further categorized into three classes, i.e., un-
derlay, overlay and interweave [5]. In this paper, an in-
terweave cognitive system is considered wherein the spec-
trum is initially allocated to the licensed users which are
also referred to as primary users. The unlicensed users, or
secondary users, are permitted to occupy the spectrum pro-
vided that the licensed spectrum is unused, i.e., when the
primary users are idle, and hence, the spectrum resource is
more efficiently utilized from the system perspective.

Pricing-based resource allocation has been advocated as
an effective and flexible mechanism to share the system re-
sources among users in a communication network. In partic-
ular, given a network of selfish users whose selfishness nature
can be well captured and modeled by the non-cooperative
game theory [10, 13], it has been demonstrated in the liter-
ature that the introduction of an appropriate pricing tech-
nique can create various resource allocation policies includ-
ing, but not limited to, system-wide optimization [7], user
fairness guarantee [8] and revenue maximization [2]. Inter-
ested readers are referred to [1] for a good survey on the
game-theoretic resource allocation and pricing mechanisms.
In a cognitive radio system without a proper compensation
framework, the primary network may have no incentives to
accommodate the secondary users in its licensed spectrum.
Hence, pricing becomes a useful and efficient mechanism
that reimburses the primary network in the form of revenue
and spurs it to lease its unused spectrum to the secondary
users [2].

For many wireless networks, the transmission between two
distant users may have to be accomplished with the help of



an intermediate node, i.e., relay, due to transmit power or
other constraints [11]. In this paper, we consider a cognitive
system wherein there exists a primary relay network and a
secondary network. In the absence of primary transmission
activities, the unused bandwidth and the idle relay can be
leased to the secondary users, who will then make payments
to the primary network as a reimbursement, such that the
spectrum is more efficiently utilized. By adopting a pricing
mechanism, we first characterize the interactions between
the primary and secondary users using a buyer/seller model.
In particular, the price is first determined by the primary
network, and on the buyer side, the secondary users com-
petitively access the spectrum and employ the primary re-
lay node to forward their packets, and correspondingly, make
payments to the primary network based on the receive signal
to interference plus noise ratio (SINR) and the the specified
price. Then, the price is adjusted such that the revenue of
the primary network is further increased. To take into ac-
count the selfishness nature, we model each secondary user
as a selfish player, which aims at maximizing its own ben-
efit through power allocation, and analyze the competition
among the secondary users using the non-cooperative game
theory. Specifically, with the knowledge of its local chan-
nel state information (CSI), each secondary user myopically
maximizes its utility by optimally choosing its power level in
response to the power allocation strategies of the other users.
This process iterates until convergence. It is shown that, in
the non-cooperative game played by the secondary network,
there always exists a unique Nash equilibrium point (NEP)
that can be achieved through the distributed iterative power
allocation process. Next, in order to reduce the communi-
cation overheads of the pricing mechanism, we propose a
low-complexity algorithm, using which the primary network
charges the secondary users at a sub-optimal price and gains
close-to-optimal revenues. Finally, extensive simulations are
conducted to verify the performance of the proposed meth-
ods from both a primary as well as a secondary network
perspective.

The rest of this paper is organized as follows. Section II
describes the system model and problem formulation. In
Section III, a distributed power allocation algorithm along
with a low-complexity pricing algorithm are developed for
the considered cognitive network. Simulation results are
shown in Section IV and literature review is provided in
V. Finally, concluding remarks are offered in Section VI.

2. SYSTEM MODEL
Consider a cognitive system consisting of a primary relay

network and a secondary network, as illustrated in Fig. 1.
The secondary network contains Q source-destination pairs1,
indexed by Si and Di, respectively, for i = 1, 2 · · ·Q. The
primary relay node is represented by R.

2.1 Network Model
We mainly focus on the distributed transmissions of the

secondary users with the help of the primary relay node
when the other primary users are idle and the licensed spec-
trum becomes available. The channel coefficients for the
Si −R and the R−Di channels are denoted by gi and hi,

1Throughout this paper, we interchangeably use the term
“secondary user i”to represent the the i-th secondary source-
destination pair.
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Figure 1: Network model

respectively, for i = 1, 2 · · ·Q. The transmit powers of Si

and R are pi and pR, respectively. Local CSI, i.e., gi and
hi, is accurately obtained by secondary user i, and neither
gj nor hj is known to secondary user i, if j 6= i, due to the
distributed nature of the considered communication prob-
lem. Furthermore, we assume the zero-mean complex addi-
tive white Gaussian noise (AWGN) at each node to have a
variance2 of N0. Due to the half-duplex constraint, we con-
sider orthogonal relaying transmissions, e.g., the secondary
source nodes and the primary relay node transmit in two
non-overlapping time slots. The direct link between Si and
Di is neglected due to, for instance, the shadowing effects
[11]. To forward the data from the source to the destina-
tion, we adopt the classical amplify-and-forward strategy [9]
as the relaying operation, which has been shown to be an
appealing technique due to its low cost and easy implemen-
tation as compared to the decode-and-forward protocol [3].

When the licensed spectrum is unused by the primary
network (e.g., the primary users become idle), the secondary
source nodes are activated to transmit simultaneously to the
primary relay node which then forwards its received signal to
the secondary destination nodes. Hence, the signals received
at R and Di can be written, respectively, as

yR =

Q∑
j=1

gj
√

pjxj + nR and yi = αhiyR + ni, (1)

where xi is the unit-variance transmit signal from Si to
Di, α is the amplification factor of R, nR and ni are the
statistically-independent AWGN terms at R and Di, re-
spectively. The amplification factor α, which is public in-
formation available to all the secondary users, is chosen
to satisfy the power constraint at the primary relay, i.e.,
α =

√
pR∑Q

j=1 |gj |2pj+N0
. Assuming that Di is only interested

in the signal xi and treats the multiuser interference as noise,
we can then express the receive SINR at Di as

γi =
|gi|2|hi|2pRpi

|gi|2N0pi + (|hi|2pR + N0) ·
(∑Q

j=1,j 6=i |gj |2pj + N0

) .

(2)

In general, the utility function is increasing and concave in
the receive SINR [6]. Particularly, we adopt in the sequel the

2This assumption is imposed only for the convenience of
notation, as in [15], and can be relaxed without affecting
the analysis in this paper.



following achievable rate3 as the utility function of secondary
user i

Ri(pi; p−i) =
1

2
log (1 + γi) (3)

where the scaling factor 1/2 is due to the fact that Si trans-
mits xi only for half of the frame, γi is given in (2), and
p−i = (p1 · · · pi−1, pi+1 · · · pQ) is the vector of power alloca-
tion strategies of all the users except for user i.

2.2 Problem Formulation
It is clear from (2) that the receive SINR is partially deter-

mined by the primary relay’s power. Furthermore, it is the
SINR that measures the quality of the received signal and
thus influences the utility of each secondary user. Hence,
it is reasonable to assume that the payment made to the
primary network is a function of the receive SINR which re-
flects, in an indirect manner, both the quality of services the
secondary users enjoy and the power level of the primary
relay. Mathematically, the payment that secondary user i
needs to make to the primary system, which sets the price
π, is determined by πγi. This payment rule charges each
secondary user in proportion to its receive SINR, which was
similarly referred to as “SINR auction” in [6]. Other similar
payment rules can be found in [2, 4]. Given the payment
rule, the net utility function of secondary user i can there-
fore be expressed as the following surplus

ui(pi; p−i) =
1

2
log (1 + γi)− πγi, (4)

where the first term is the achievable rate that represents the
quality of services provided to user i. Now, at the secondary-
user level, we mathematically capture the competition and
user selfishness using the following the non-cooperative game

Gs = {Ω, {Pi}i∈Ω, {ui(pi; p−i)}i∈Ω} (5)

where Ω , {1, 2 · · ·Q} is the set of active secondary users
(i.e., Si−Di pair), Pi is the set of admissible power allocation
strategies of secondary user i defined as {pi : 0 ≤ pi ≤ pmax

i }
and ui(pi; p−i) is the net utility function of user i given in
(4). The optimal power of secondary user i in response to
the power levels of all the other secondary users is referred
to as the best response function denoted by Bi(p−i). In the
non-cooperative game played by the secondary users, the
NEP is achieved when secondary user i, given p−i, cannot
increase its net utility ui(pi; p−i) by unilaterally changing
its own power pi, for all i ∈ Ω. Mathematically, the NEP,
denoted by p∗ = (p∗1, p

∗
2 · · · p∗Q), of the secondary user game

Gs in (5) is formally defined as follows [10]

ui(p
∗
i ; p

∗
−i) ≥ ui(pi; p

∗
−i), ∀ pi ∈ Pi, ∀ i ∈ Ω . (6)

From the primary network perspective, in order to maximize
the revenue collected from the secondary users when the
game Gs reaches the NEP, the primary network needs to set
an optimal price π∗ such that

π∗ = arg max
π≥0

(
π

Q∑
i

γi(p
∗
i ; p

∗
−i)

)
. (7)

3Note that the achievable rate is a widely-used utility func-
tion (see, e.g., [2]) and the analysis herein can be applied,
after minor modifications, to other forms of utility functions
as well.

3. JOINT SECONDARY NETWORK AND PRI-
MARY NETWORK OPTIMIZATION

In this section, we jointly consider the problem of dis-
tributed power allocation in the secondary network and rev-
enue maximization in the primary network.

3.1 Distributed Power Allocation
In a non-cooperative game, NEP is a critical operating

point at which no user can improve its utility by unilaterally
changing its strategy and the outcome of the game becomes
stabilized. In particular, we have the following theorem re-
garding the existence of NEP in the secondary user game.

Theorem 1. Given any price π ≥ 0 set by the primary
network, there always exists at least one NEP in the non-
cooperative game Guser played by the secondary users.

Proof. By showing that, given any π, there always exists
a unique Bi(p−i) for all i ∈ Ω, we prove the quasi-concavity
of the net utility function ui(pi; p−i) with respect to pi. In
particular, the best response function Bi(p−i) can be ex-
pressed in a compact form as

Bi(p−i) =


δi(π)

(|hi|2pR + N0

) (∑Q
j=1,j 6=i |gj |2pj + N0

)

|gi|2 · [|hi|2pR −N0 · δi(π)]




pmax
i

0

(8)

where [ · ]ba = max{min{ · , b }, a } and δi(π) is a non-
negative and continuously non-increasing function of π de-
fined as

δi(π) =





0, if 1
2

< π,
1
2π
− 1, if (1 + γi(p

max
i ;0))−1 < 2π ≤ 1,

γi(p
max
i ;0), 0 ≤ 2π ≤ (1 + γi(p

max
i ;0))−1 ,

(9)
in which γi(p

max
i ;0) is obtained by plugging (pi; p−i) =

(pmax
i ;0) into (2). Then, following the equilibrium existence

theorem [10], the existence of NEP in Gs is proved. The
detailed proof can be found in a longer version of this paper
[12]. ¤

In addition to the existence of NEP in the game Gs, whether
and how the non-cooperative game can eventually arrive at
the NEP is another question we have yet to answer. To this
end, we present an iterative distributed algorithm that re-
quires only limited information at each secondary user and
reaches the unique NEP of Gs, given any price set by the
primary network. The distributed algorithm generates, at
each iteration, the best response of each secondary user to
the power strategies of the others and can be formally de-
scribed as follows.

Algorithm: Iterative Distributed Power Allocation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 1: n = 0; choose any feasible p0 =
(
p0
1, p

0
2 · · · p0

Q

)

Step 2: p
(n+1)
i = Bi(p

n
−i), for i = 1, 2 · · ·Q

Step 3: n = n + 1; go to Step 2 until convergence
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To complete the algorithm description, we give Theorem
2 as follows regarding the convergence of the proposed algo-
rithm.

Theorem 2. Given any price π ≥ 0 set by the primary
network and starting from any initial point p0 ∈ P , P1 ×



P2 · · · × PQ, the iteration specified by p
(n+1)
i = Bi(p

n
−i), for

i ∈ Ω, always converges to the unique NEP of the secondary
user game Gs as n →∞.

Proof. The proof is mainly based on the standard in-
terference function that was first proposed for distributed
power control in cellular networks [14]. The details are omit-
ted due to space limitations and can be found in [12]. ¤

Before concluding this section, we note that the distributed
nature of the algorithm stems from the fact that the infor-
mation required to compute Bi(p−i) at secondary user i can
be locally observed. Specifically, as shown in (8), the infor-
mation needed by secondary user i includes the local CSI
(i.e., gi and hi), the relay’s transmit power pR, the price π
set by the primary network and the multi-user interference
plus noise

∑Q
j=1,j 6=i |gj |2pj+N0. The primary relay node can

broadcast to the secondary network its amplification factor
α such that secondary user i, for i ∈ Ω, acquires the value
of

∑Q
j=1,j 6=i |gj |2pj + N0 by computing pR

α2 − |gi|2pi. There-
fore, the proposed algorithm can be applied in a distributed
manner.

3.2 Revenue Maximization
From the primary network perspective, it aims at maxi-

mizing the revenue by leasing the unused spectrum and the
idle relay node to the secondary users. Nevertheless, due to
the lack of private information of the secondary users, e.g.,
power strategy space, the primary network cannot analyti-
cally compute the NEP of the game Gs and directly set an op-

timal price such that π∗ = arg maxπ≥0

(
π

∑Q
i γi(p

∗
i ; p

∗
−i)

)
.

Hence, an iterative process that adjusts the price is needed
to identify the optimal price. A naive idea is that the pri-
mary network exhaustively searches for the optimal price
over the (quantized) interval of all the feasible prices and,
for each candidate price, computes the revenue when the
secondary users iteratively reach the NEP of the game Gs.
Unfortunately, the average total number of iterations re-
quired by this method is mN̄ , where m is the number of
quantized candidate prices and is typically a large value,
and N̄ is the average number of iterations needed by the
distributed power allocation algorithm to converge. Given
that it is computationally prohibitive and mathematically
involved to find the optimal price through the exhaustive
search, we alternatively propose a low-complexity algorithm
that can yield a close-to-optimal price. Before stating the
algorithm, we first define π1 = 1

2
mini∈Ω {1 + γi (pmax)}−1

and π2 = 1
2

maxi∈Ω {1 + γi (pmax)}−1, and summarize some

instrumental properties of the revenue function4, i.e., ρ(π) =

π
∑Q

i=1 γi(π), in the following theorem.

Theorem 3. The revenue function has the following prop-
erties5:

1. ρ(π) ≥ 0;
2. ρ(π) = 0 if π = 0 or π ≥ 1

2
;

3. ρ(π) < ∞ if the number of users, Q, is finite.

4. ρ(π) = π
∑Q

i=1 γi(p
max) when 0 ≤ π ≤ π1;

5. There exists a certain value of price π̂ satisfying
{

π̂ < π2, ∃i, j ∈ Ω s.t. γi (pmax) 6= γj (pmax)
π̂ = π2, ∀i, j ∈ Ω s.t. γi (pmax) = γj (pmax)

, (10)

4The SINR is an explicit function of the price π which affects
the net utility and the power allocation of secondary users.
5 γi(p

max) is obtained by plugging pmax into (2).

such that ρ(π) = Q · ( 1
2
− π

)
;

Proof. Property 1–3 directly follows the best response
function in (8). The lengthy proof of Property 4 and 5 is
available in [12]. ¤

Theorem 3 can be simply interpreted as follows: <1> The
receive SINR is always non-negative and thus, the revenue is
also non-negative; <2> The revenue of the primary network
becomes vanishing when the service of the primary network,
i.e., spectrum lease and packet forwarding, is free or the
price is too high; <3> The maximum revenue of the primary
network is finite as long as the number of secondary users
is finite; <4> and <5> The optimal price of the primary
network lies in a certain interval that depends on the channel
conditions and transmit power constraints. Based on these
desirable properties of the revenue function, we conclude the
following statement.

Corollary 1. There exists an optimal finite price π∗

such that π1 ≤ π∗ ≤ π̂ ≤ π2, and the corresponding maxi-
mum revenue ρ(π) is finite and positive. The equalities are
activated simultaneously if and only if γi (pmax) = γj (pmax)
for i, j ∈ Ω. ¤

Corollary 1 states that the optimal price is upper and
lower bounded by π̂ and π1, respectively. As a special case, if
π̂ = π1 holds, the optimal price π∗ is then clearly π1. Based
on this fact, we propose a low-complexity algorithm that
gives the primary network a sub-optimal price. Specifically,
if we artificially increase π1 and decrease π̂ simultaneously
until they meet at π and assume that

ρ(π) =

{
π ·∑Q

i=1 γi(p
max), if 0 ≤ π ≤ π

Q · ( 1
2
− ·π)

, if π < π ≤ 1
2

, (11)

we can easily obtain the “optimal” price as

π∗ = π =
Q

2
[∑Q

i=1 γi(pmax) + Q
] . (12)

Generally speaking, setting (12) as the price can only result
in a sub-optimal revenue for the primary network. Never-
theless, the high computational complexity incurred by the
exhaustive search is avoided and only limited information
is needed to calculate (12): the number of active users in

the network, i.e., Q, and the value of
∑Q

i=1 γi(p
max). The

primary network can set two different and sufficiently low
prices πa and πb, given which the NEPs are both pmax, and

find
∑Q

i=1 γi(p
max) by computing ρ(πa)−ρ(πb)

πa−πb
. Moreover,

we shall show in numerical results that the loss of revenue
is not significant when the primary network chooses (12),
rather than the optimal one, as its price. It should also be
noted that the proposed sub-optimal pricing algorithm is
re-executed only when the network condition changes, e.g.,
channel coefficients vary or additional secondary users enter
the system.

When the number of users in the secondary network is
large, the sub-optimality of (12) can be further explained
as follows. It is natural that the level of interference ob-
served by secondary user i, i.e.,

∑Q
j=1,j 6=i |gj |2pj , increases

when there are more active secondary users. Hence, given
a large value of Q, maxi=1,2···Q γi(p

max) becomes a small
non-negative number due to the strong interference caused
by the other secondary users. Correspondingly, the differ-
ence between the lower bound and the upper bound on the
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Figure 2: Sub-optimal Pricing and Convergence

optimal price is not significant, i.e., π̂−π1 is a small number.
Thus, the sub-optimal price (12), which lies between π1 and
π̂, is close to the optimal one. Similar statements can also
be made when the secondary network operates in low SINR
regions.

4. NUMERICAL RESULTS
For the convenience of illustration, gi and hi are mod-

eled as independently and identically Rayleigh distributed
random variables, for i ∈ Ω. The transmit power of the pri-
mary relay node and the maximum transmit power of each
secondary source node are normalized to one6.

First, considering a simple four-user secondary network,
we randomly generate the channel gains and illustrate in
Fig. 2 the convergence of the proposed distributed power
allocation algorithm and the sub-optimal pricing algorithm.
The upper plot shows that the sub-optimal price (dashed
line) is reasonably close to the optimal price (solid line) ob-
tained through exhaustive search, which validates the use of
(12) as the price by the primary network.

4.1 Effects of Channel Gains
We consider a ten-user secondary network and examine

the effects of channel gains on the performance in Fig. 3.
As intuitively expected, the revenue of the primary network
and the average sum rate of the secondary network increases
as the channel condition becomes better. However, the aver-
age sum net utility may not always increase with the channel
gain. This is because when the channel gain increases, the
SINR also increases, and so does the payment made to the
primary network. As a result, the net utility does not neces-
sarily increase even when the channel becomes better. The
upper left plot demonstrates that the revenue loss due to
the sub-optimality of the price is negligible. The bottom
right plot indicates that the gap between the sub-optimal
price and the optimal one is sufficiently small, which again
verifies the proposed pricing algorithm.

4.2 Effects of Number of Secondary Users
6Note that the analysis can be applied to any other param-
eters as well.

0 10 20 30
0.1

0.2

0.3

0.4

0.5

E{|g
1
|2} (dB)

A
ve

ra
ge

 R
ev

en
ue

 

 

Opt
Sub−opt

0 10 20 30
0.01

0.02

0.03

0.04

E{|g
1
|2} (dB)

A
ve

ra
ge

 S
um

 N
et

 U
til

ity

 

 

Opt
Sub−opt

0 10 20 30
0

0.2

0.4

0.6

0.8

E{|g
1
|2} (dB)

A
ve

ra
ge

 S
um

 R
at

e 
(n

at
s/

s/
H

z)

 

 

Opt
Sub−opt

0 10 20 30
0.4

0.45

0.5

E{|g
1
|2} (dB)

A
ve

ra
ge

 P
ric

e

 

 
Opt
Sub−opt

Figure 3: Effects of Channel Gains
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Figure 4: Effects of Number of Secondary Users

In Fig. 4, we fix the average channel gain as 25dB and vary
the number of active secondary users. It shows that, when
there are more secondary users competing for the spectrum
usage, strong interferences limit the receive SINR of each
secondary user and thus, the average sum rate decreases.
However, both the average optimal and sub-optimal prices
are increasing in the number of secondary users, which can
also be observed from (12). Therefore, the average revenue
of the primary network remain relatively stable even though
the receive SINR decreases as the number of secondary users
becomes large. Fig. 4 also indicates that the sub-optimal
revenue of the primary network gained by setting (12) is
sufficiently close to the optimal one.

5. RELATED WORKS
Power allocation, both with and without pricing, has been

extensively studied in wireless networks. Before concluding
this paper, we list a few related works as follows.

Following a joint user-centric and network-centric opti-
mization approach, the authors in [4] propose a distributed
power control and revenue optimization framework in con-
ventional cellular networks. Specifically, the network con-
troller, e.g., base station, charges each user in accordance



with its throughput while the users transmit over an inter-
ference channel and maximize the energy efficiency. In [6],
an auction-based spectrum sharing protocol is proposed such
that the each user submits an optimal bid to the network
manager to maximize the utility minus the payment. Two
payment rules, i.e., SINR and power, are considered and it
is shown that, with logarithmic utilities, the power auction
outperforms the SINR auction in terms of the revenue from
the network perspective. Focusing on the classic Gaussian
interference channel, [15] introduces the notion of “taxation”
which summarizes the effect of one user’s power allocation
on the others’, and presents a modified iterative water-filling
algorithm to maximize the sum capacity.

In the context of a cognitive wide-band uplink network,
[2] proposes a differentiated pricing algorithm that charges
different secondary users at different prices to maximize the
revenue of the service provider. The authors in [16] adopt
the hierarchical Stackelberg game-theoretic framework wherein
the primary user, as the leader, selects some secondary users
as the cooperative relay nodes and in return, grants the spec-
trum usage to the participating secondary users for their
own data transmissions. As followers, the secondary users
decide the payment made to the primary user to gain the
channel access time and maximize their own utilities. In
contrast with the existing literature, we propose that the
secondary users competitively utilize the primary relay in-
frastructure to accomplish their own transmissions whenever
the primary users are idle and, for the sake of fairness, the
primary network charges all the active secondary users at
a unified price. Furthermore, both the competition among
the secondary users and the revenue maximization at the
primary network are addressed.

6. CONCLUSION
In this paper, we considered a cognitive system consist-

ing of a primary relay network and a secondary network.
First, using a buyer/seller model, the interactions between
the primary and secondary users were appropriately cap-
tured. We then modeled each secondary user as a selfish
player, which aims at maximizing its own benefit by choos-
ing the optimal transmit power, and analyzed the compe-
tition among the secondary users using the notion of non-
cooperative game theory. It was proved that, in the non-
cooperative game played by the secondary network, there
always exists a unique desirable operating point, i.e., NEP,
which can be achieved in a distributed manner. Next, we
proposed a low-complexity algorithm, in which the primary
network charges the secondary users at a sub-optimal price
and yet gains close-to-optimal revenues. Extensive simula-
tions were finally conducted to verify the analysis from both
a primary as well as a secondary network perspective.
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Breaking spectrum gridlock with cognitive radios: An
information theoretic perspective. Proc. IEEE,
97(5):894–914, May 2009.

[6] J. Huang, R. Berry, and M. Honig. Auction-based
spectrum sharing. ACM/Springer J. Mobile Networks
and Applications, 11(3):405–418, June 2006.

[7] F. P. Kelly. Charging and rate control for elastic
traffic. European Trans. Telecommun., 8(1):33–37,
January-February 1997.

[8] F. P. Kelly, A. Mauloo, and D. Tan. Rate control in
communication networks: Shadow prices, proportional
fairness, and stability. J. of the Operational Research
Society, 49:237–252, 1998.

[9] J. N. Laneman, D. N. C. Tse, and G. W. Wornell.
Cooperative diversity in wireless networks: Efficient
protocols and outage behavior. IEEE Trans. Inform.
Theory, 50(12):3062–3080, December 2004.

[10] M. J. Osborne and A. Rubinstein. A Course in Game
Thoeory. MIT Press, Cambridge, MA, 1994.

[11] B. Rankov and A. Wittneben. Spectral efficient
protocols for half-duplex fading relay channels. IEEE
J. Sel. Areas Commun., 25(2):379–389, February 2007.

[12] S. Ren and M. van der Schaar. Revenue maximization
and distributed power control in cognitive networks.
http://www.ee.ucla.edu/∼rsl/files/revenue.pdf, 2009.

[13] M. van der Schaar and F. Fu. Spectrum access games
and strategic learning in cognitive radio networks for
delay-critical applications. Proc. IEEE, 97(4):720–740,
April 2009.

[14] R. Yates. A framework for uplink power control in
cellular radio systems. IEEE J. Sel. Areas Commun.,
13(7):1341–1347, September 1995.

[15] W. Yu. Multiuser water-filling in the presence of
crosstalk. In Inform. Theory and Applications
Workshop, February 2007.

[16] J. Zhang and Q. Zhang. Stackelberg game for
utility-based cooperative cognitive radio networks. In
ACM MobiHoc, May 2009.


