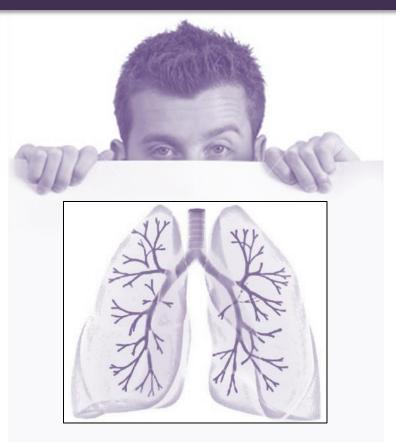
Cracking the Code for Cystic Fibrosis using Machine Learning

Mihaela van der Schaar Ahmed Alaa



The Alan Turing Institute

July 18, 2017

The Alan Turing Institute

Overview

Section A: Vision

Section B: CF Registry Data Analysis

Section C: Research Agenda

Section D: Preliminary Results

This presentation provides a comprehensive research agenda and preliminary results for the project: "Personalized risk scoring and monitoring for cystic fibrosis patients", a partnership between Alan Turing Institute and the UK CF Trust The Alan Turing Institute

Section A: Vision

Alan Turing Institute: Mission and Vision

Partnership with the UK CF Trust

July 18, 2017

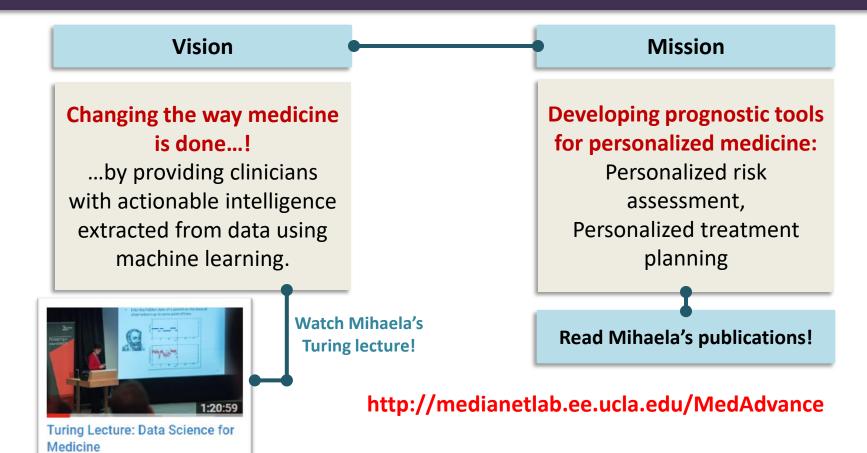
Alan Turing Institute: Mission and Vision

- Making great leaps in data science research in order to change the world for the better.
- Data-centric healthcare is one of the main areas of research interest in Alan Turing Institute.

This combination of data science techniques and human decision making is an excellent example of augmented intelligence. This opens the way to personalised intelligent medicine, which is set to have a transformative effect on healthcare

Sir. Alan Wilson CEO of Alan Turing Institute

Alan Turing Institute: Mission and Vision



Prof. Mihaela van der Schaar Faculty Fellow, Alan Turing Institute MAN Professor, University of Oxford

This Presentation...

• The objective of this presentation is to:

- Present to the collaborators at the Trust our understanding of the data and the clinical set up (Section B)
- Propose a detailed research agenda including the research questions we are planning to answer, in addition to our action plan and timeline (Section C)
- Present some preliminary results for the potentiality of our methods applied to the CF registry data (Section D)

Section B: Analysis of the CF Registry Data

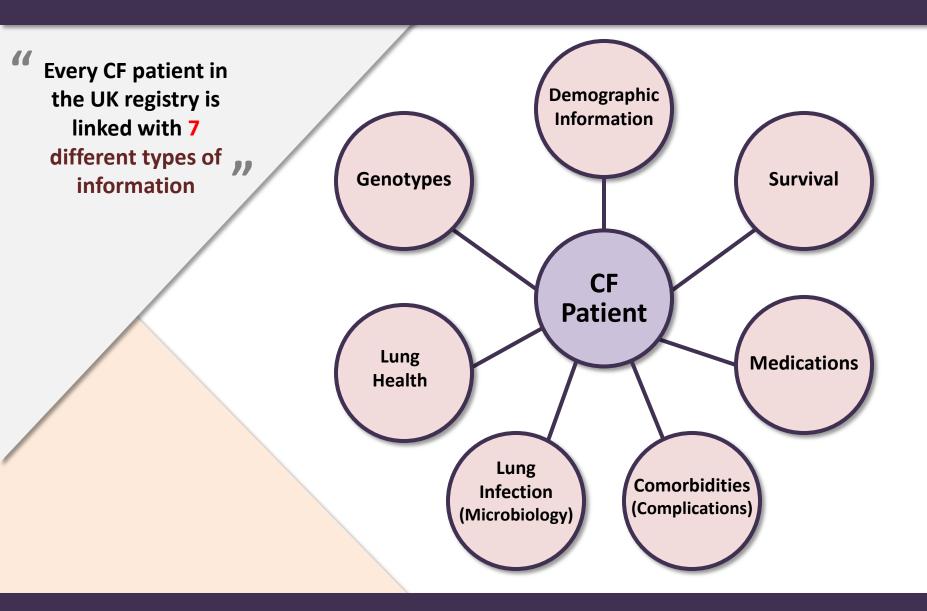
The Structure of the Data

Detailed Data Analysis

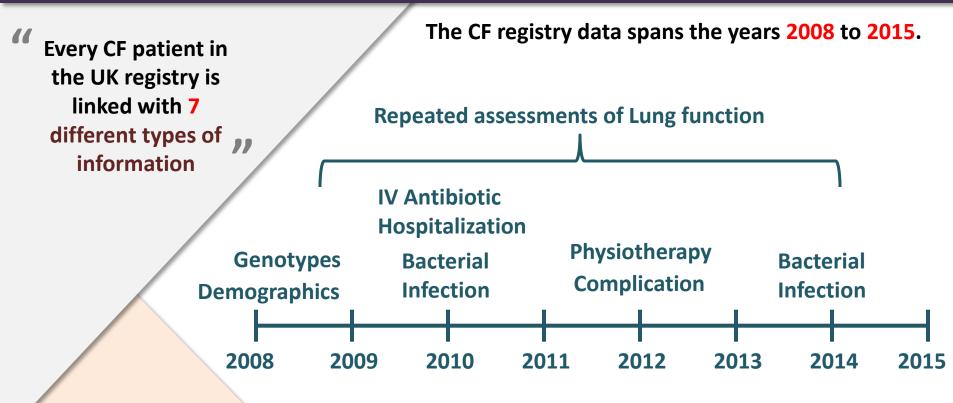
Data-induced Hypotheses

July 2017

The Structure of the Data (I)



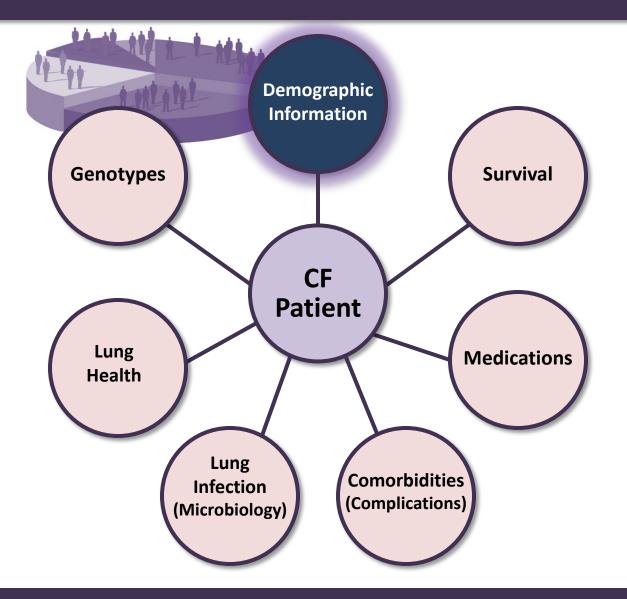
The Structure of the Data (II)



An exemplary trajectory for a CF patient.

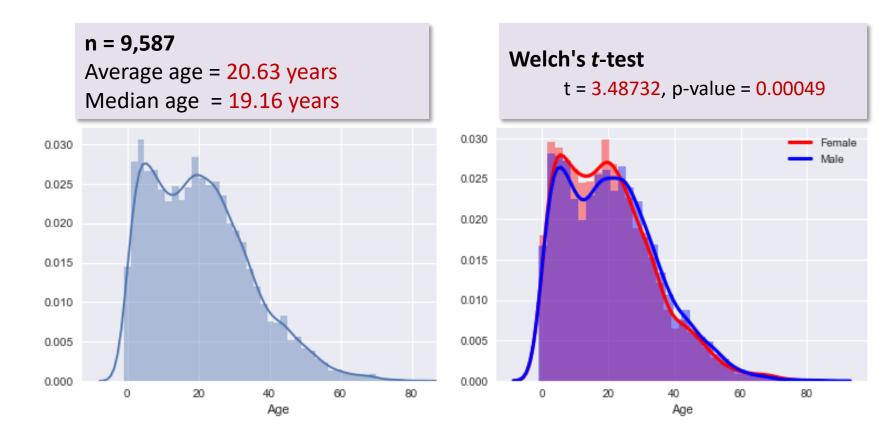
Every patient's temporal trajectory is formed via annual follow-ups

Data Analysis: Demographic Information



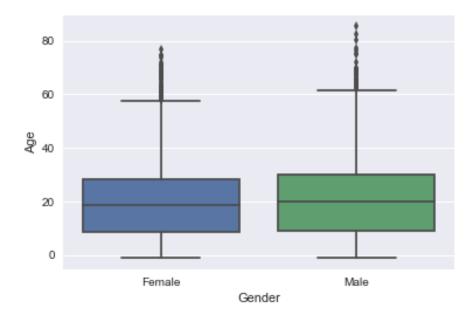
Demographic Information: Age

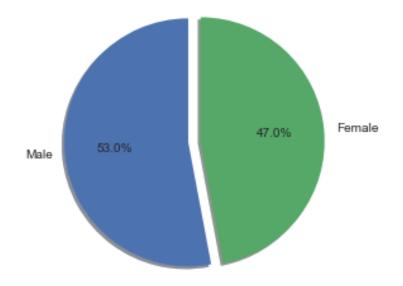
- Average age in 2015: male (21.1 years), female (20.1 years).
- Male patients are **1 year older** on average.



Demographic Information: Gender

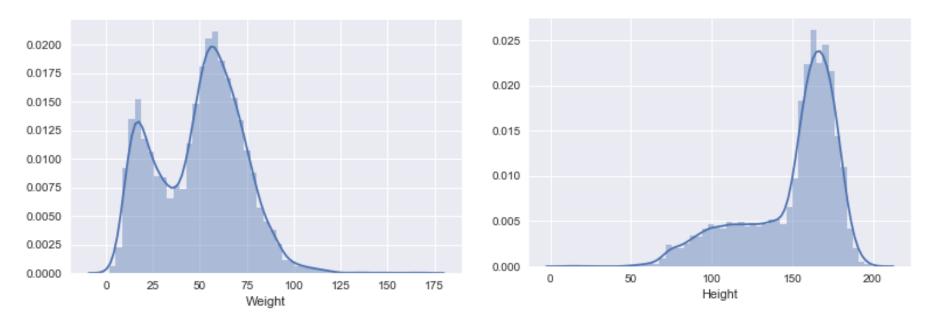
• Gender distribution (2015): male (53%), female (47%).





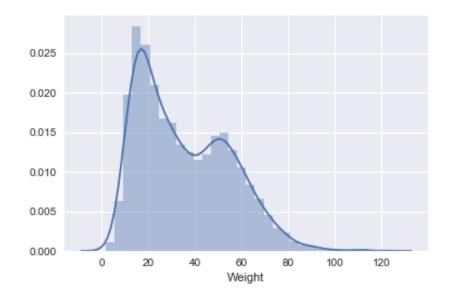
Demographic Information: Weight and Height (I)

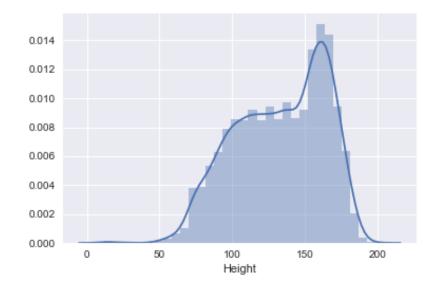
 Distribution of weights and heights of all patients in the UK CF registry in 2015.



Demographic Information: Weight and Height (II)

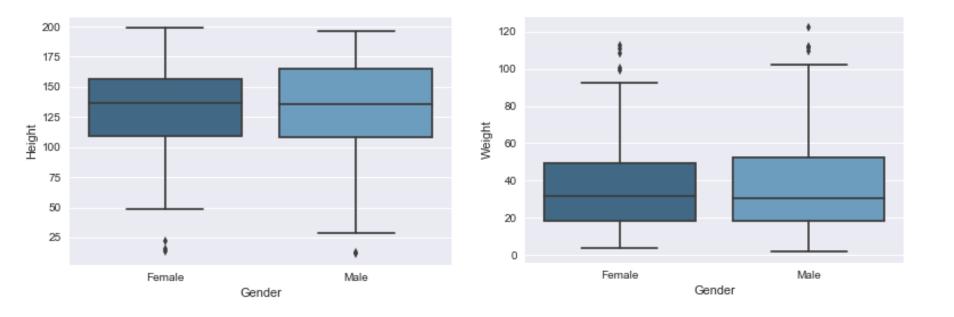
 Distribution of weights and heights for children and young people (< 20 years, n = 4,481) in 2015.





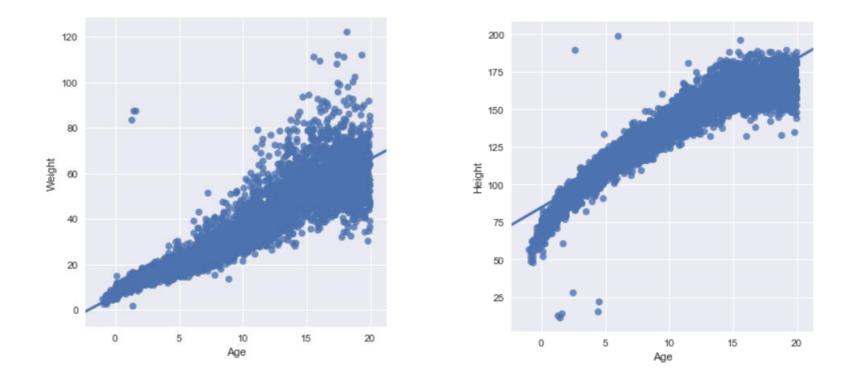
Demographic Information: Weight and Height (III)

 Boxplots for weights and heights for children and young people (< 20 years, n = 4,481) stratified by gender.



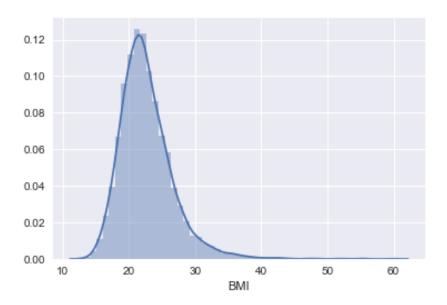
Demographic Information: Weight and Height (IV)

• Growth trajectory (weight and height) for CF patients.



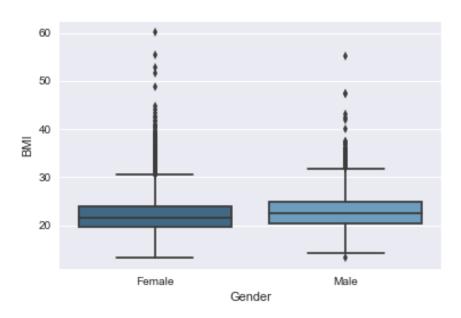
Demographic Information: Body Mass Index (I)

• Distribution of the **BMI** for patients in the registry (2015)



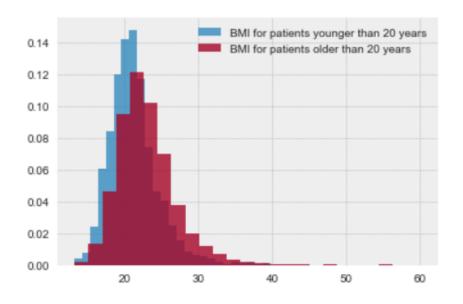
n = 9,587 Average BMI = 22.67 kg/m² Median BMI = 22.08 kg/m²

 Boxplots for the BMI of CF patients stratified by gender

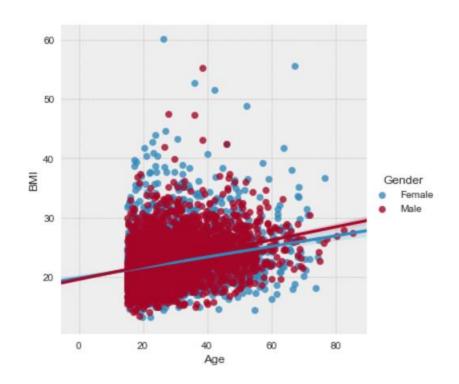


Demographic Information: Body Mass Index (II)

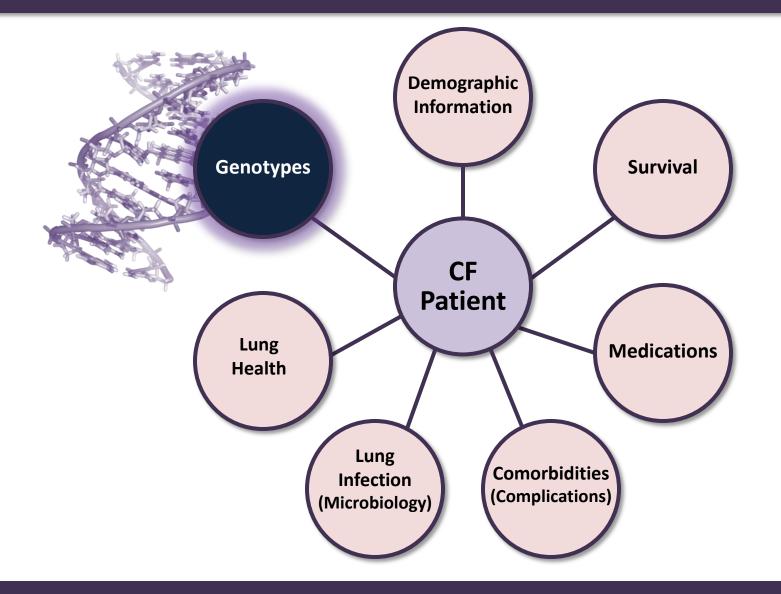
• Distribution of the **BMI** for the adults and young patient groups



• BMI trajectories stratified by gender



Genotyping and Genetic Mutations



Cystic Fibrosis: An Epidemiological Perspective

 Cystic fibrosis is the most common life-limiting autosomal recessive disease among <u>Caucasians</u>. [Tobias, 2011]

• Incidence:

UK: 1/2,500 live births and one in every 25 people is a carrier.

USA: one in every 30 people is a carrier.

- □ Much less prevalent in people with African and Asian descent.
- For reasons that remain unclear: males tend to have a longer life expectancy than females. [Rosenfeld et. al, 1997], [Coakley, 2008]
- CF is caused by the malfunctioning of the **Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).**

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

The gene encoding the CFTR protein is on chromosome
 7 (position q31.2).

p22.3 p22.1

p21.3 p21.1

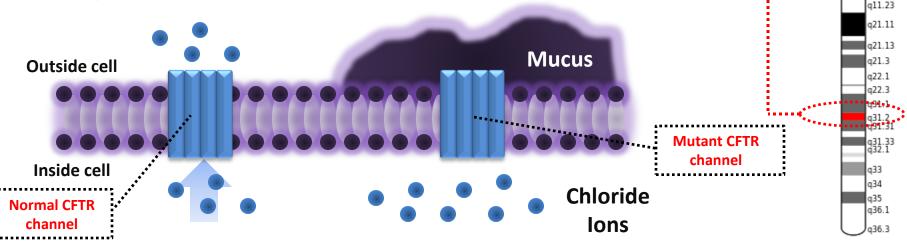
p15.3 p15.4 p14.3

p14.1 p13 p12.3

p12.1 p11.2 q11.21

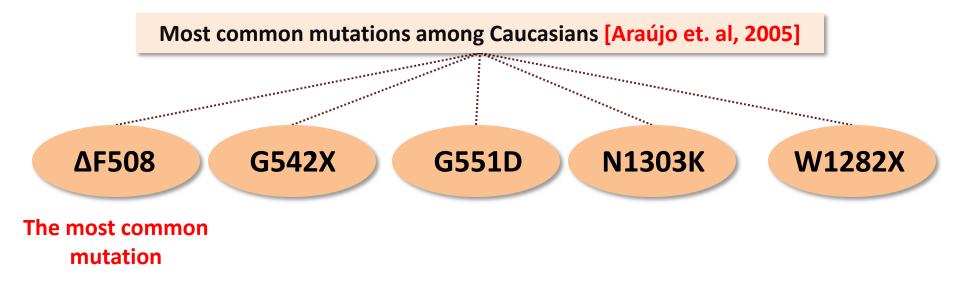
a11.22

 <u>Mutations</u> of the CFTR gene may affect the functionality of the chloride ion channel. This can lead to dysregulation of epithelial fluid transport in the lung, pancreas and other organs, resulting in cystic fibrosis.



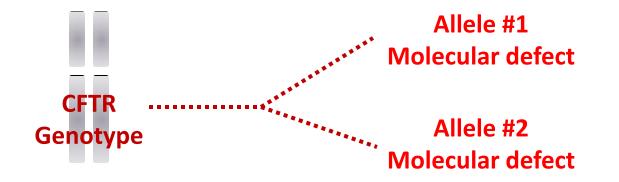
Mutations of the CFTR Gene

- Mutations of the CFTR gene may affect the functionality of the chloride ion channel. This can lead to dysregulation of epithelial fluid transport in the lung, pancreas and other organs, resulting in cystic fibrosis.
- 2,019 mutations can cause CF. [CFMDB Statistics, 2014]

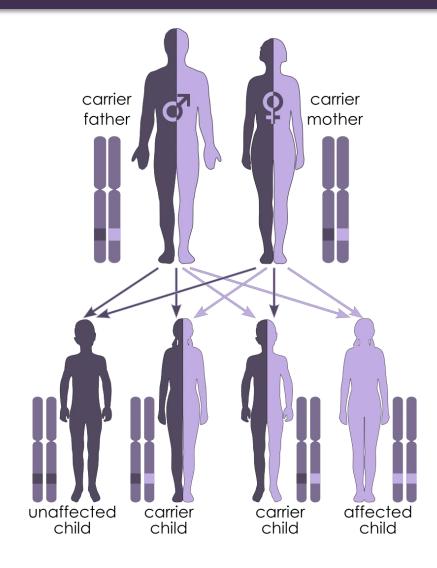


Genotypes and Genetic Mutations (I)

- **Genotypes** control the CF phenotypic characteristics.
- Genotypes reveal which mutations of the CF genes caused CF for a particular patient.
- Every CF patient has two mutations of the gene for CFTR: one on each allele (one inherited from the mother and one from the father).



Genotypes and Genetic Mutations (II)



CF follows a simple Mendelian (autosomal recessive) inheritance model.

A CF patient is **homozygous** if both mutations are the <u>same</u>.

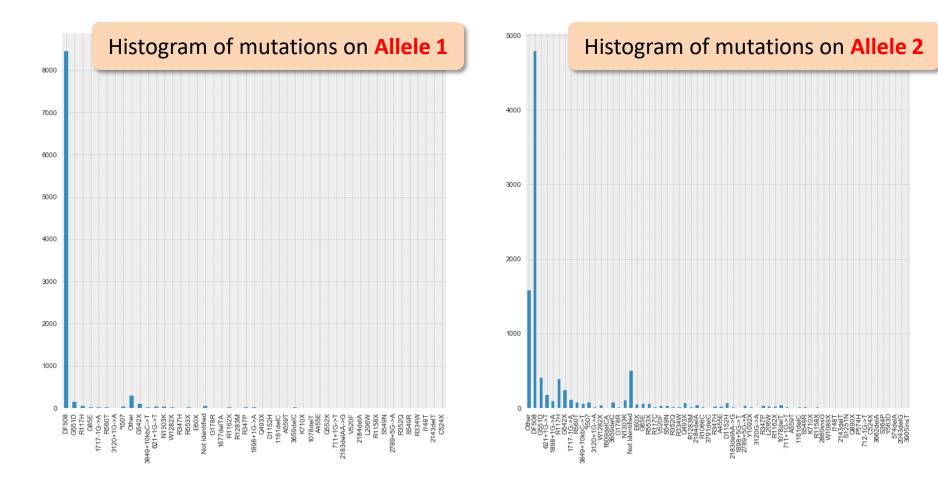
A CF patient is **heterozygous** if she/he has two <u>different</u> mutations.

Genetic Mutations Data Analysis (I)

- A total of **9,401** Cystic Fibrosis patients in the registry are genotyped (98.05%).
- A total of 8,507 patients had ΔF508 mutations (90.49%):
 Homozygous ΔF508 mutations: 4,728 patients (50.29%)
 Heterozygous ΔF508 mutations: 3,779 patients (40.19%)
- Among the **2,019** mutations that are known to cause CF, only **66** mutations were frequent in the registry.

Genetic Mutations Data Analysis (II)

• A total of 8,507 patients had ΔF508 mutations (90.49%).



Genetic Mutations Data Analysis (III)

• Genetic mutation counts (in both Alleles) for CF patients in the registry. (counts are for the 20 most frequent mutations.)

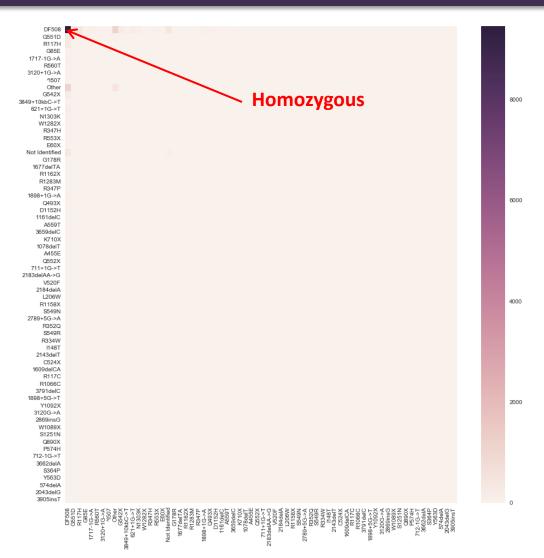
Mutation	Count	Mutation	Count
ΔF508	13,235	3659delC	85
G551D	552	3849+10kbC->T	80
R117H	438	R553X	79
G542X	329	D1152H	75
621+1G->T	213	G853	73
N1303K	135	Q493X	69
1717-1G->A	119	E60X	56
1898+1G->A	112	W1282X	52
Δ1507	102	1078delT	46
R560T	89	2184delA	35

Genetic Mutations Data Analysis (IV)

Co-occurence counts for mutations on alleles 1 and 2.

Most common mutation pairs

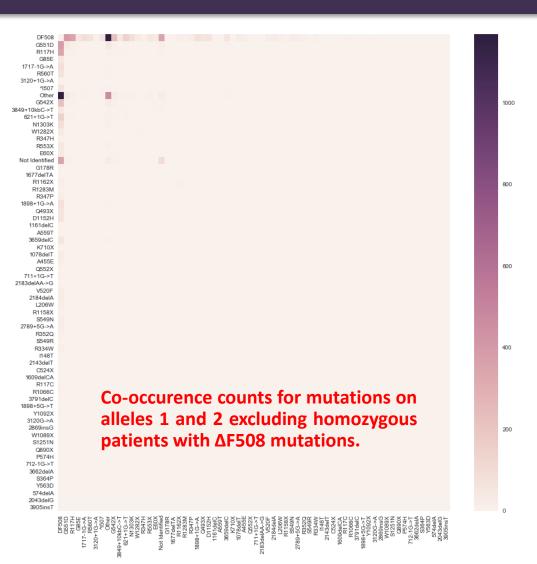
Allele 1	Allele 2	Count
ΔF508	ΔF508	4,728
ΔF508	G551D	392
ΔF508	R117H	359
ΔF508	G542X	226
ΔF508	621+1G->T	148
ΔF508	1717-1G->A	119



Genetic Mutations Data Analysis (V)

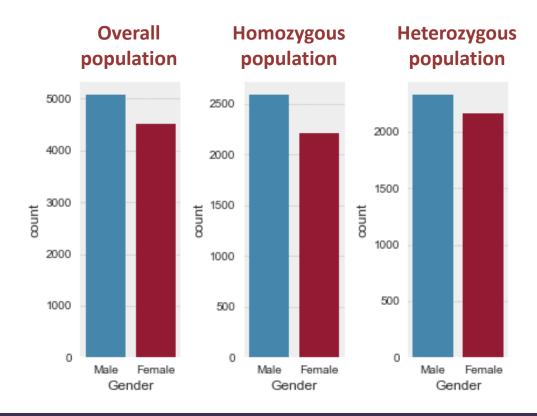
Most common mutation pairs

Allele 1	Allele 2	Count
ΔF508	ΔF508	4,728
ΔF508	G551D	392
ΔF508	R117H	359
ΔF508	G542X	226
ΔF508	621+1G->T	148
ΔF508	1717-1G->A	119



Genetic Mutations Data Analysis (VI)

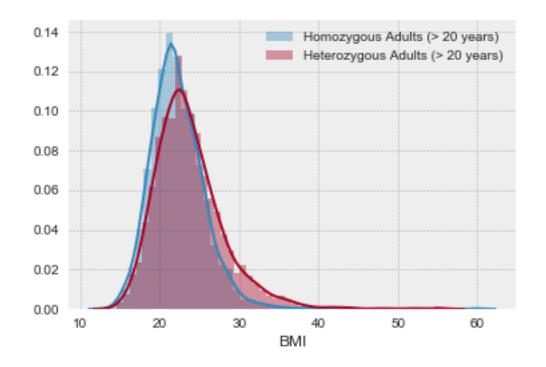
Among the 9,587 CF patients registered in 2015:
 4,801 are known to be homozygous
 4,500 are known to be heterozygous



The females' share in the heterozygous population is significantly larger than their share in the homozygous population

Genetic Mutations Data Analysis (VII)

There is a statistically significant difference in the average BMI of adults (> 20 years) in the homozygous and heterozygous populations. (p-value < 0.0001 for a Welch test.)

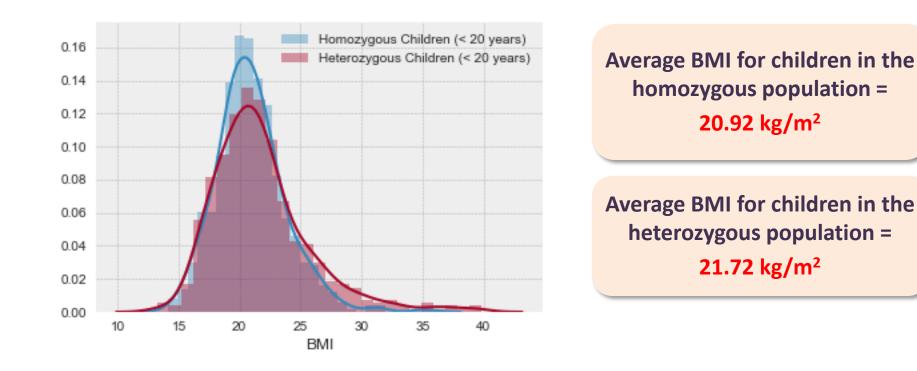


Average BMI for adults in the homozygous population = 22.24 kg/m²

Average BMI for adults in the heterozygous population = 23.74 kg/m²

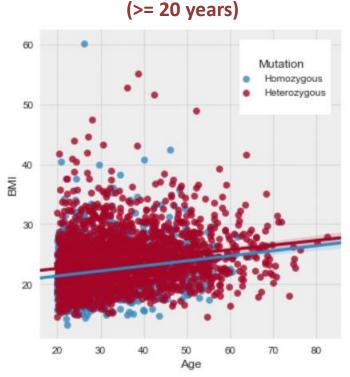
Genetic Mutations Data Analysis (VIII)

There is a statistically significant difference in the average BMI of children (< 20 years) in the homozygous and heterozygous populations. (p-value < 0.0001 for a Welch test.)



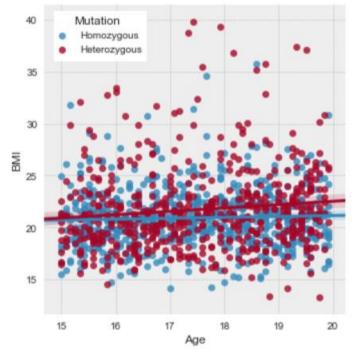
Genetic Mutations Data Analysis (IX)

• The growth (BMI) trajectories for **heterozygous** CF patients are faster than those of **homozygous** CF patients.

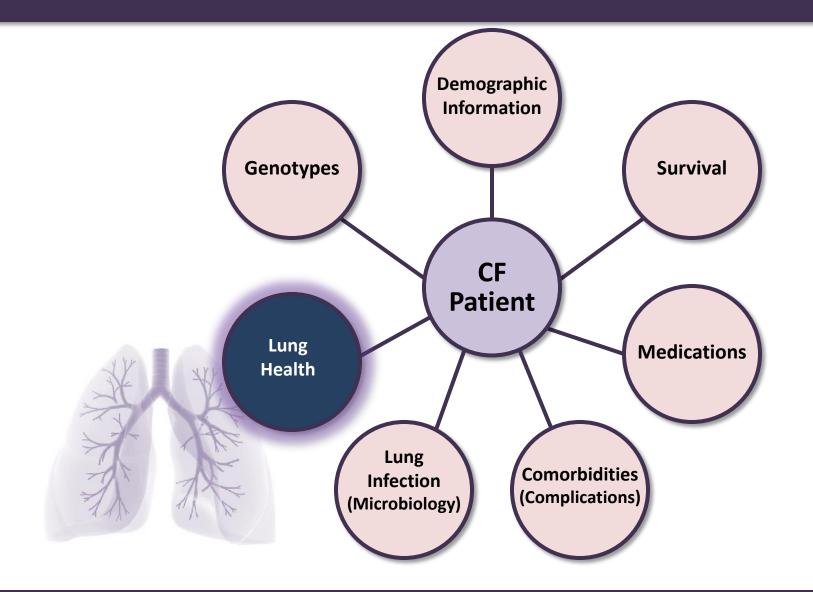


Adult CF Patients (>= 20 years)

Children and Young CF Patients (< 20 years)

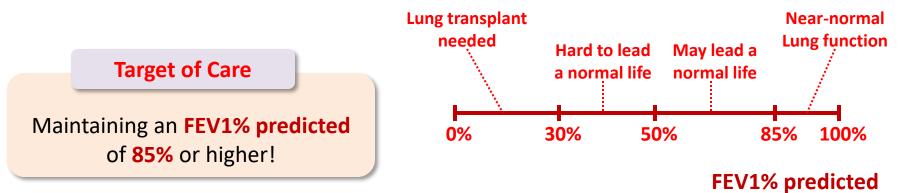


Data Analysis: Lung Health



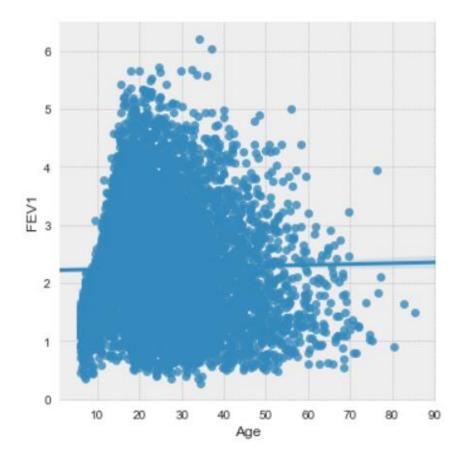
FEV1 as a Measure of Lung Function

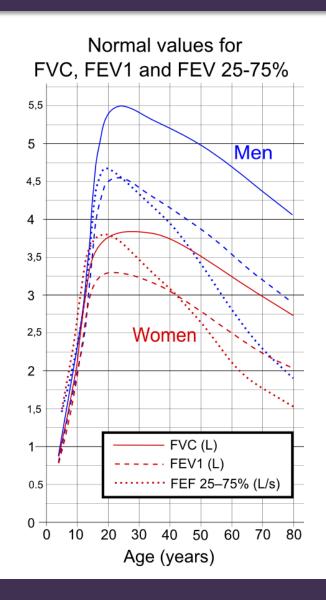
- Condition of the lungs is measured using **FEV1** (Forced Expiratory Volume of air in the first second of an exhaled breath).
- FEV1% predicted is based on the FEV1 expected for a person without CF of the same age, gender, height, and ethnicity.
 - □ FEV1% predicted of 50% means the CF patient breathes out half the volume of air as a comparable person without CF.
 - □ FEV1% predicted is calculated using the Global Lung function Initiative equation (GLI).



FEV1 Data Analysis (I)

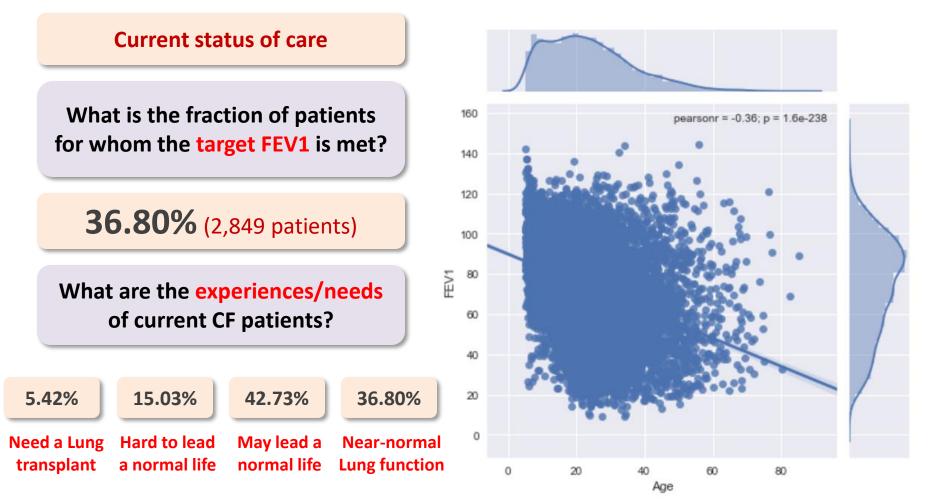
 Scatterplot for the raw FEV1 values for patients aged 6 years and over.





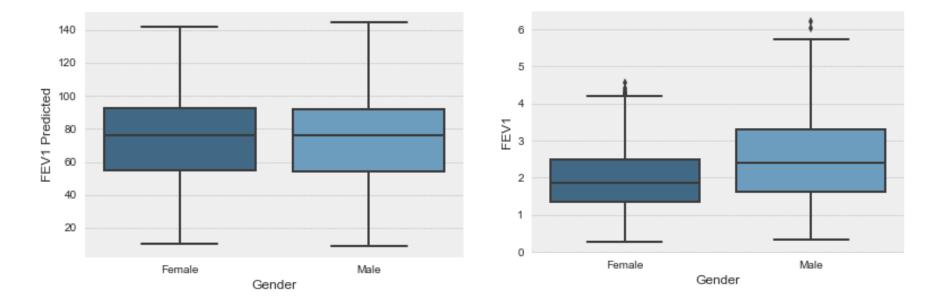
FEV1 Data Analysis (II)

• **General trend:** FEV1 % predicted deteriorates with age.



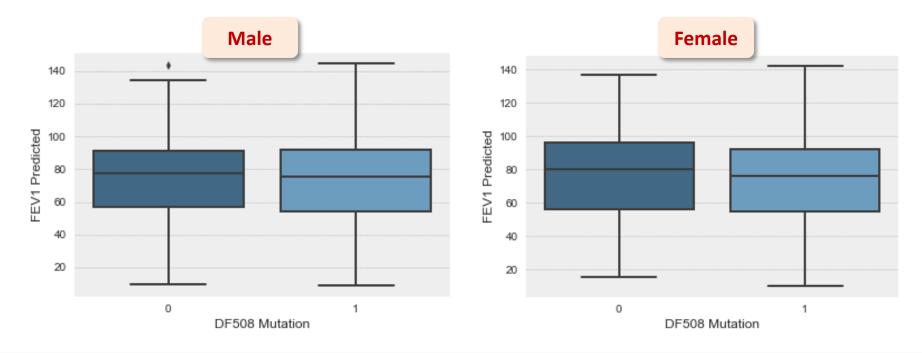
FEV1 Data Analysis (III)

- <u>Raw FEV1</u> and <u>FEV1 % predicted</u> stratified by gender.
- No evidence that either genders experience a better FEV1 outcomes.
 - Longer male survival is inexplicable via FEV1 markers alone.



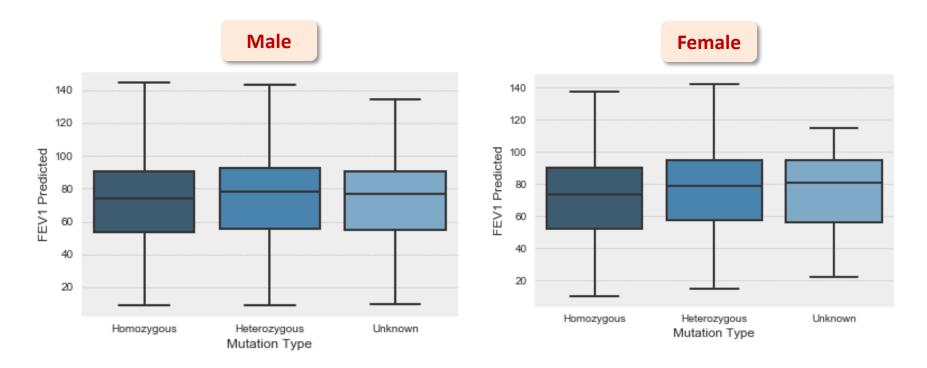
FEV1 Data Analysis (IV)

- <u>FEV1 % predicted</u> stratified by gender and ΔF508 mutation.
 - No evidence that existence of ΔF508 mutation is relevant for lung function in males.
 - Thin evidence that $\Delta F508$ mutation leads to worse outcomes for females.
 - Longer male survival may have a genetic explanation.



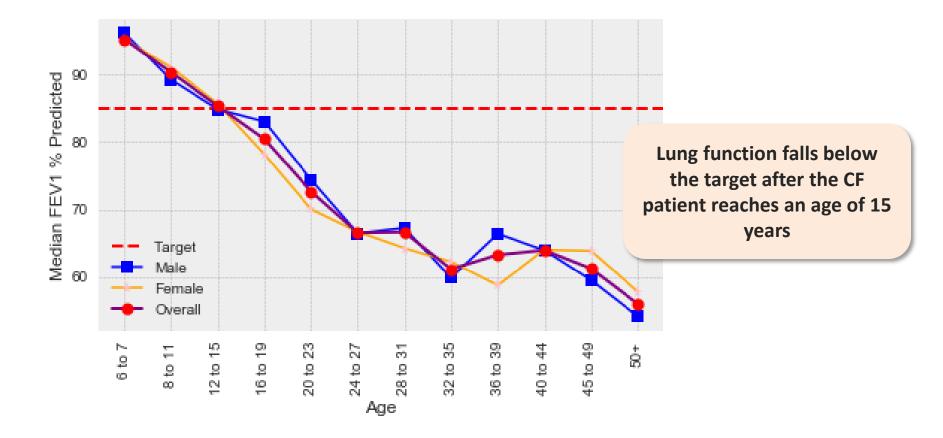
FEV1 Data Analysis (V)

- <u>FEV1 % predicted</u> for homozygous and heterozygous patient groups stratified by gender.
 - Thin evidence that heterozygous mutations are advantageous for both male and female CF patient groups.

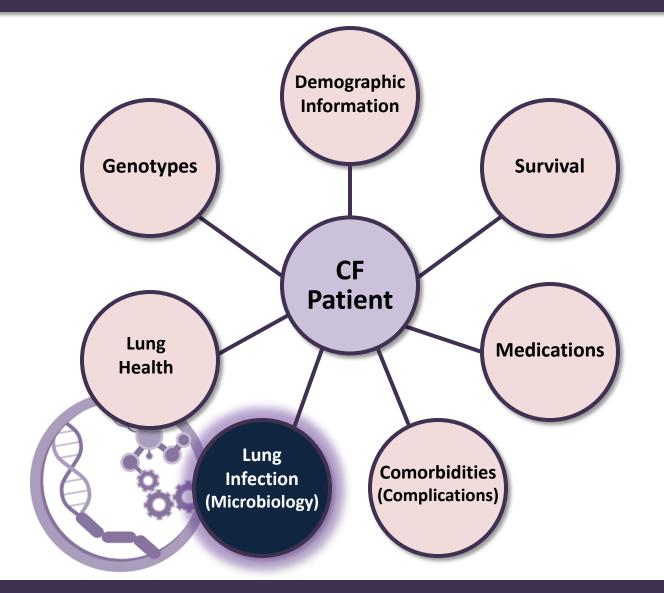


FEV1 Data Analysis (VI)

 <u>FEV1 % predicted</u> among CF patients aged 6 years and over. (patients who had lung transplants are excluded, n= 7,689.)



Data Analysis: Microbiology



Data Analysis: Microbiology (Lung Infections)

- CF patients are susceptible to bacterial and fungal infections which can reduce lung function.
- CF patients receive regular courses of intravenous antibiotics, usually delivered in hospital.
- A large proportion of patients with CF succumb to respiratory failure brought on by chronic bacterial infection!

Interplay between Genetic and Microbiological Data

Lyczak et. al, "Lung Infections Associated with Cystic Fibrosis," Clinical Microbiology Reviews, 2002

List of Prevalent Lung Infections

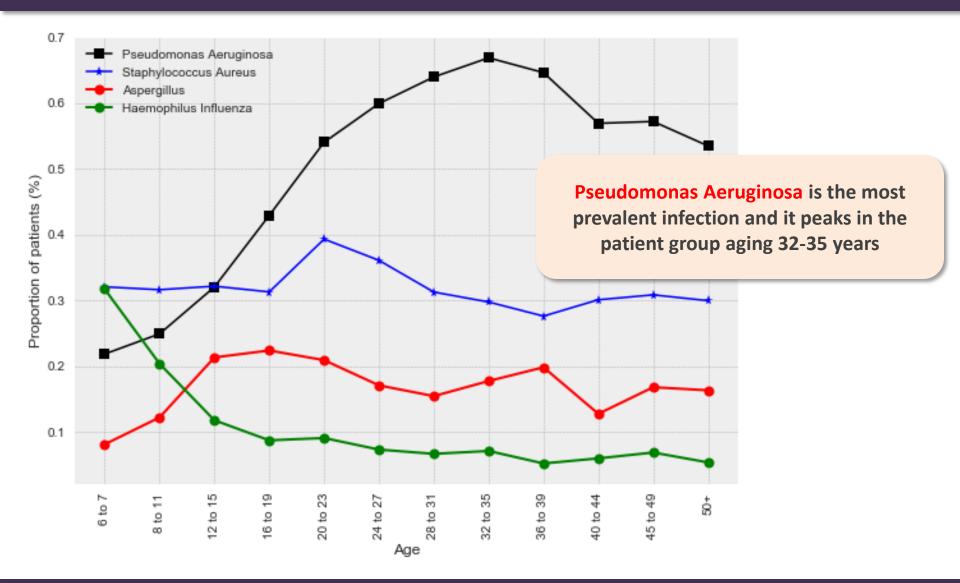
Lung Infection		Lung Infection	
Burkholderia Cepacia	80	Aspergillus	
Pseudomonas Aeruginosa		Gram-Negative	<u>. 007</u>
Xanthomonas		E.coli	
Staphylococcus Aureus		Klebsiella Pneumoniae	
Methicillin-Resistant Staphylococcus Aureus (MRSA)		Nontuberculous Mycobacteria (NTM)	
Haemophilus Influenza		Burkholderia Multivorans	

Prevalence of Lung Infections

• Proportions of patients with different lung infections in **2015**.

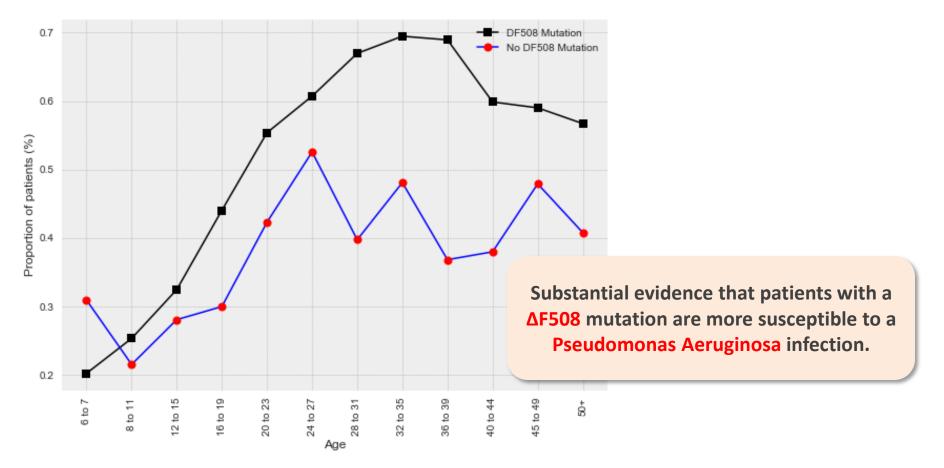
Lung Infection		Lung Infection	
Burkholderia Cepacia	3.56%	Aspergillus	14.99%
Pseudomonas Aeruginosa	44.05%	Gram-Negative	1.47%
Xanthomonas	5.94%	E.coli	2.11%
Staphylococcus Aureus	30.43%	Klebsiella Pneumoniae	1.88%
Methicillin-Resistant Staphylococcus Aureus (MRSA)	2.57%	Nontuberculous Mycobacteria (NTM)	Insignificant
Haemophilus Influenza	13.49%	Burkholderia Multivorans	1.84%

Lung Infections Over Time



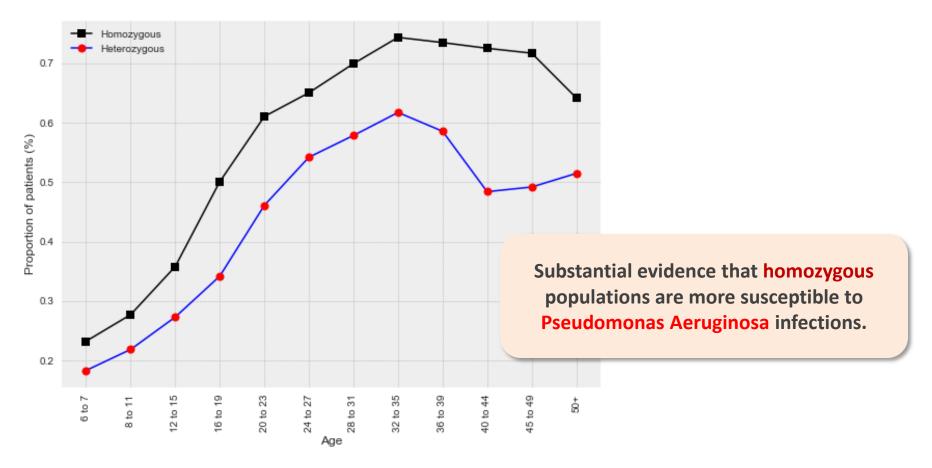
Lung Infections and Genetic Mutations (I)

 Proportion of CF patients with Pseudomonas Aeruginosa stratified by the existence of a ΔF508 mutation.



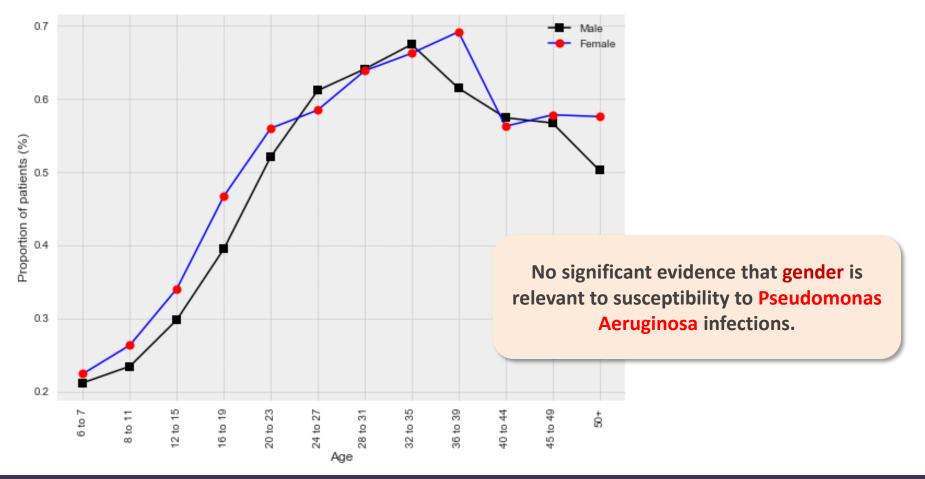
Lung Infections and Genetic Mutations (II)

 Proportion of CF patients with Pseudomonas Aeruginosa in homozygous and heterozygous populations.

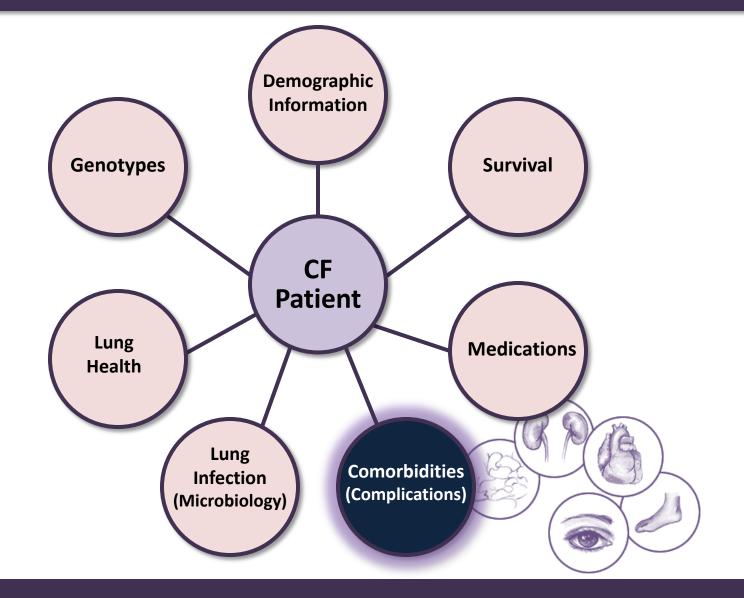


Lung Infections and Genetic Mutations (III)

 Proportion of CF patients with Pseudomonas Aeruginosa in stratified by gender.

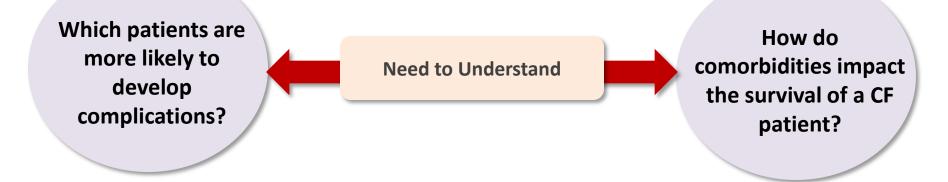


Data Analysis: Comorbidities

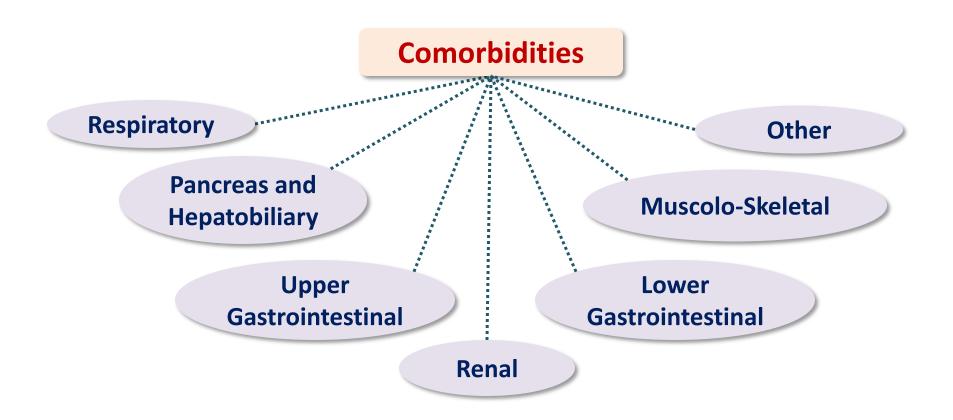


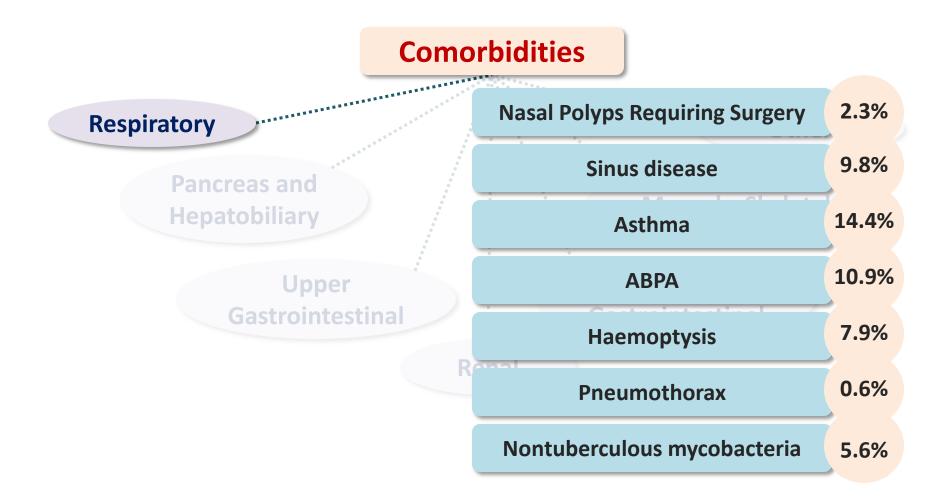
Data Analysis: Comorbidities

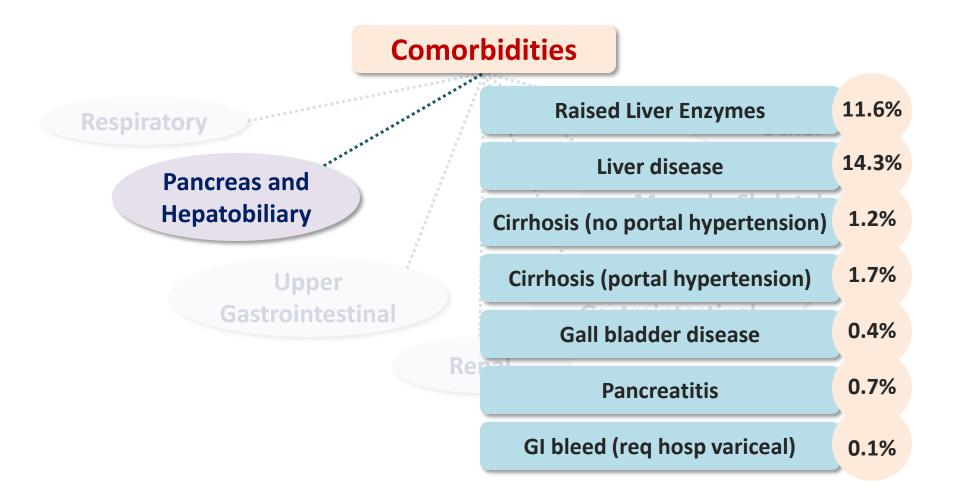
- Improvement in the age profile of CF patients in the last two decades: more CF patients are now adults!
- Comorbidities are more likely in adult CF patients: pulmonary disease, CF-related diabetes, renal disease, metabolic bone disease, cancers, etc.
- CF-related diabetes (CFRD) is common in adults because CF affects the pancreatic sufficiency.

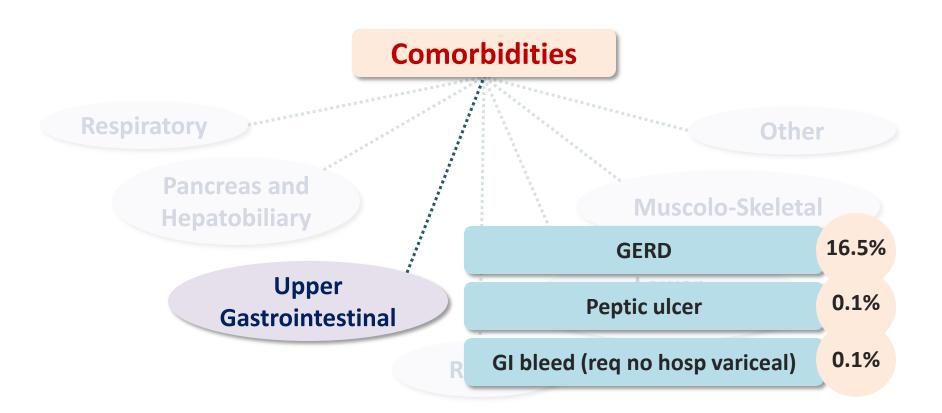


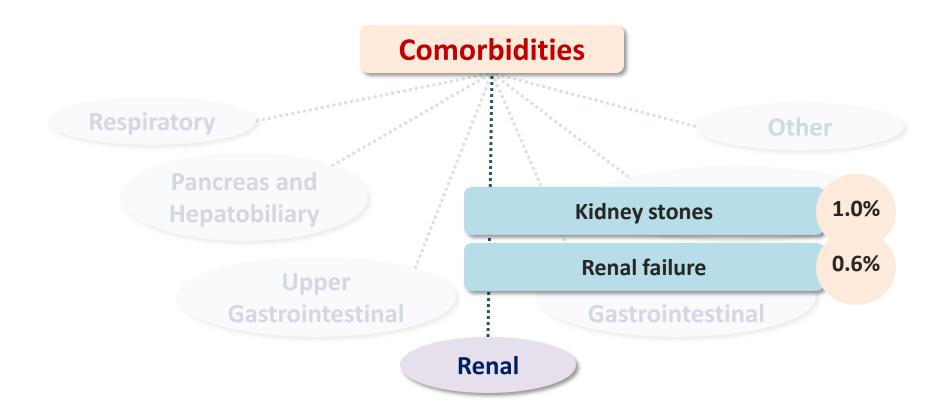
Broad Categories of Comorbidities Prevalent in CF Patients

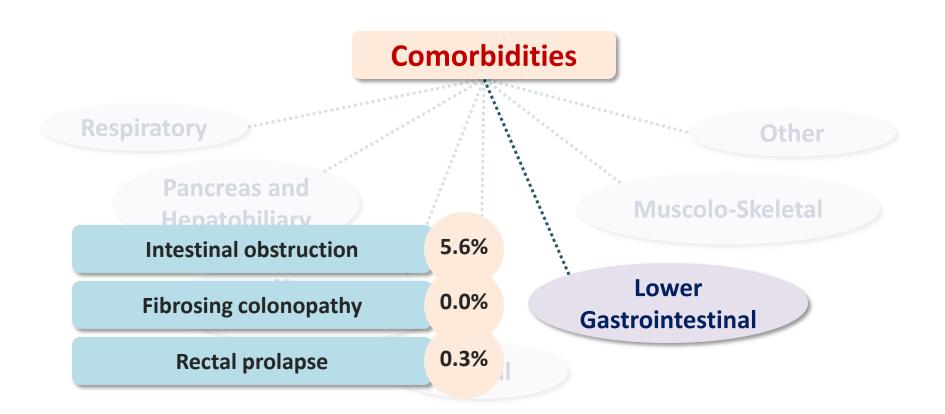


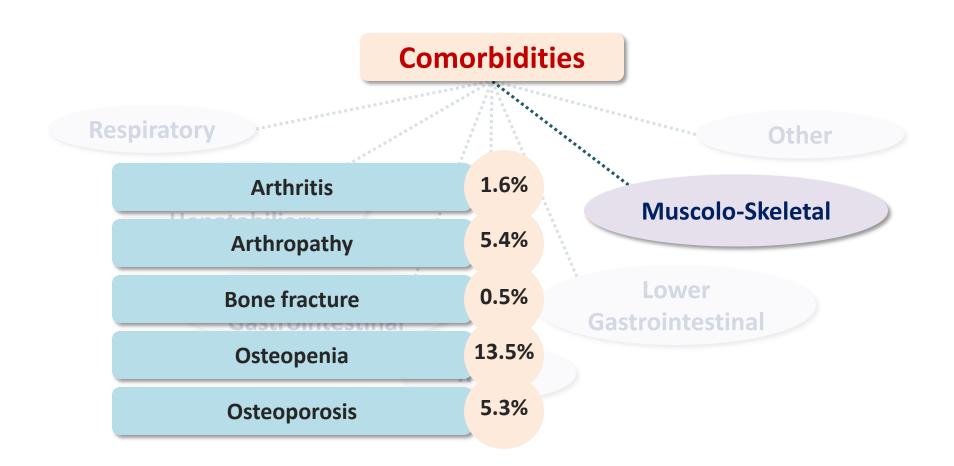


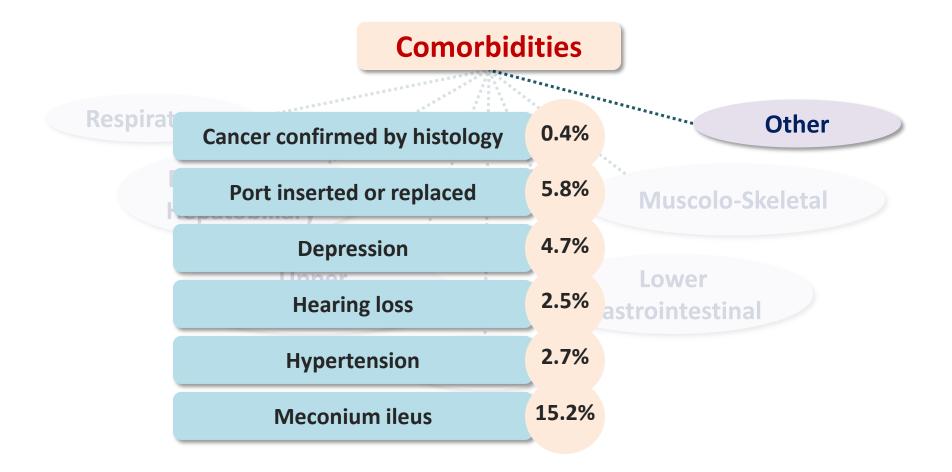




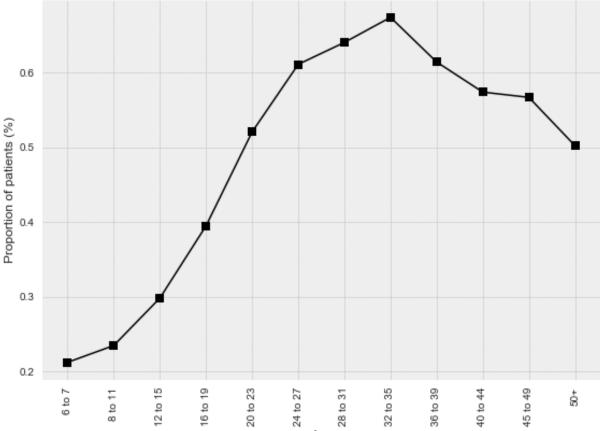






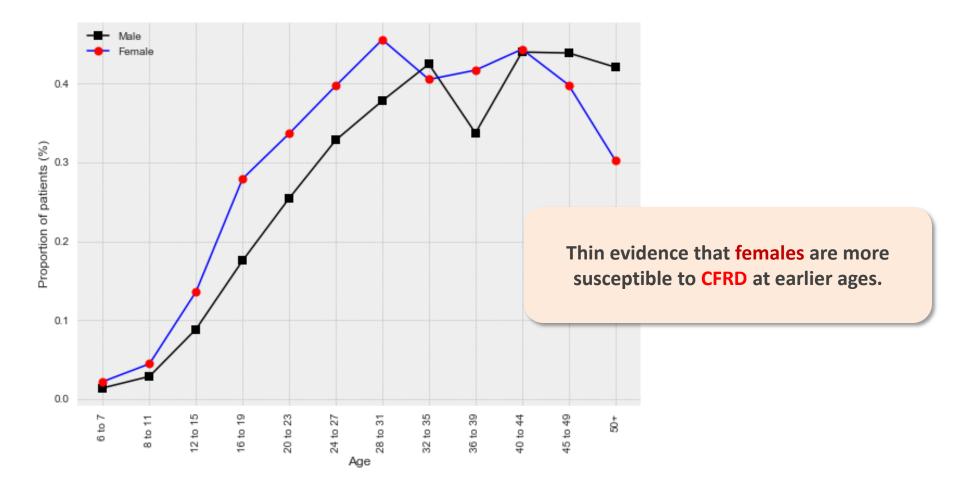


• Incidences of **CFRD** peak in the patient group aged **32-35 years**.

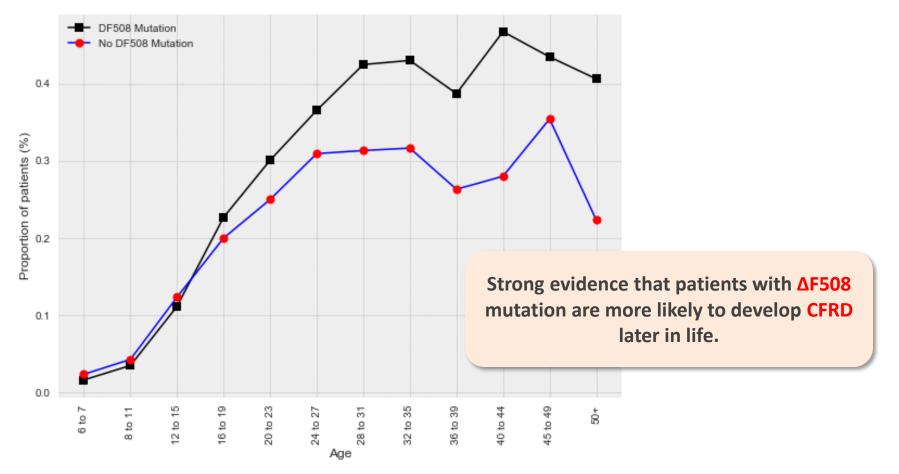


Age

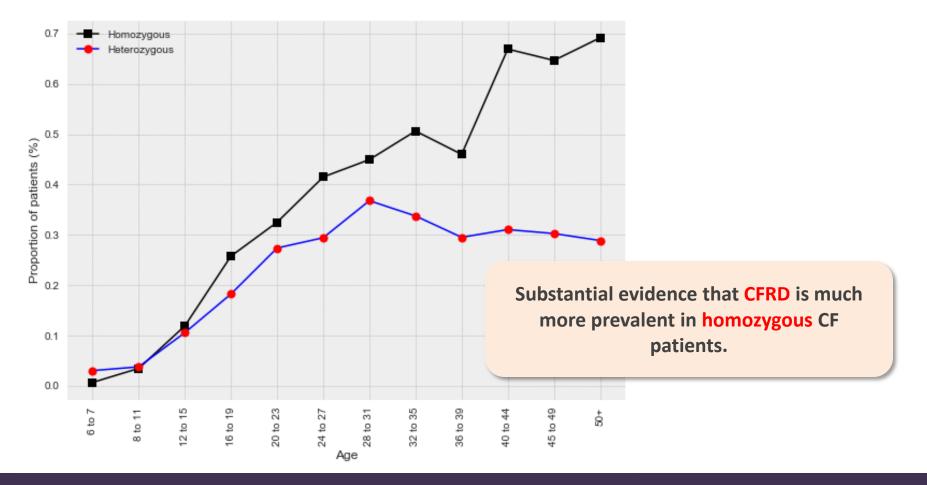
Incidences of CFRD over time stratified by gender.



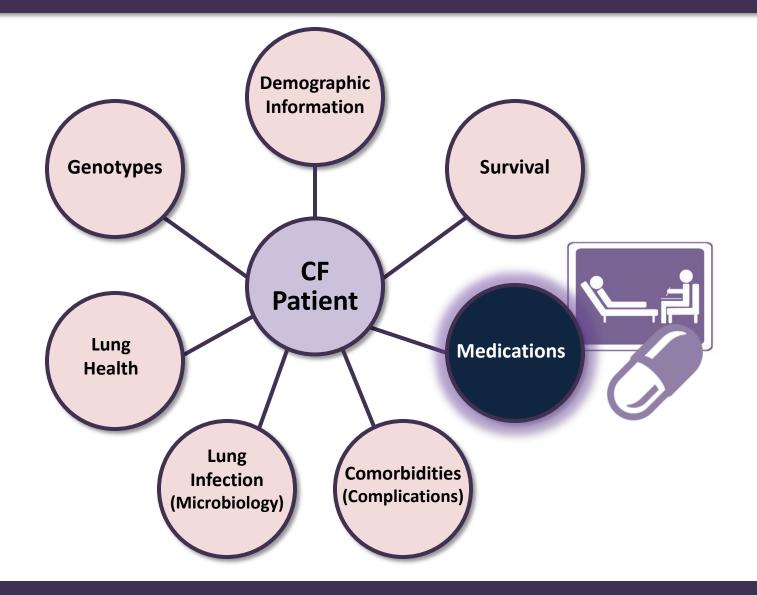
 Incidences of CFRD over time stratified by the existence of a ΔF508 mutation.



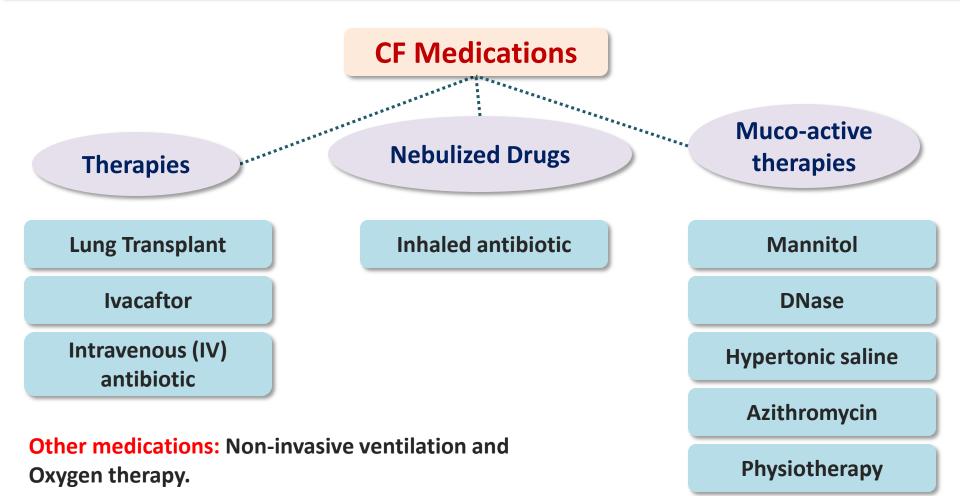
Incidences of CFRD over time in homozygous and heterozygous populations.



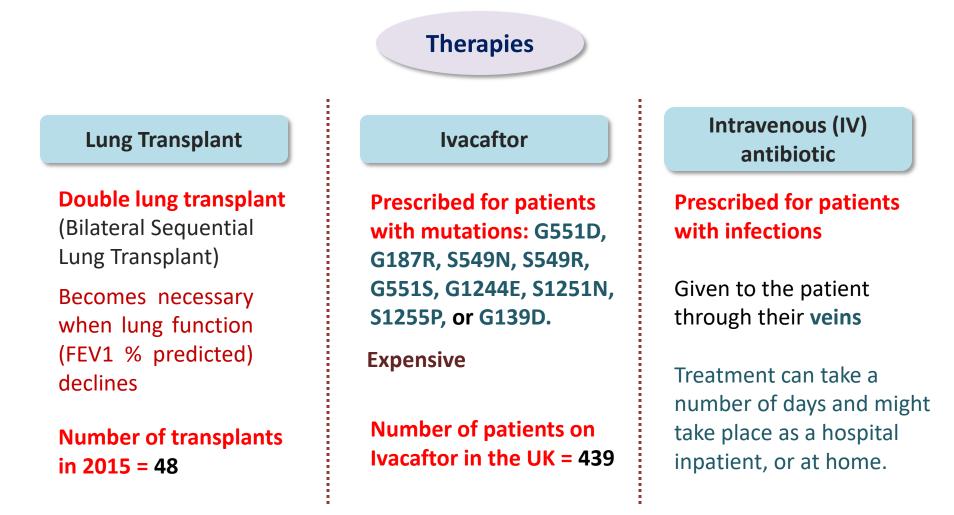
Data Analysis: Medications



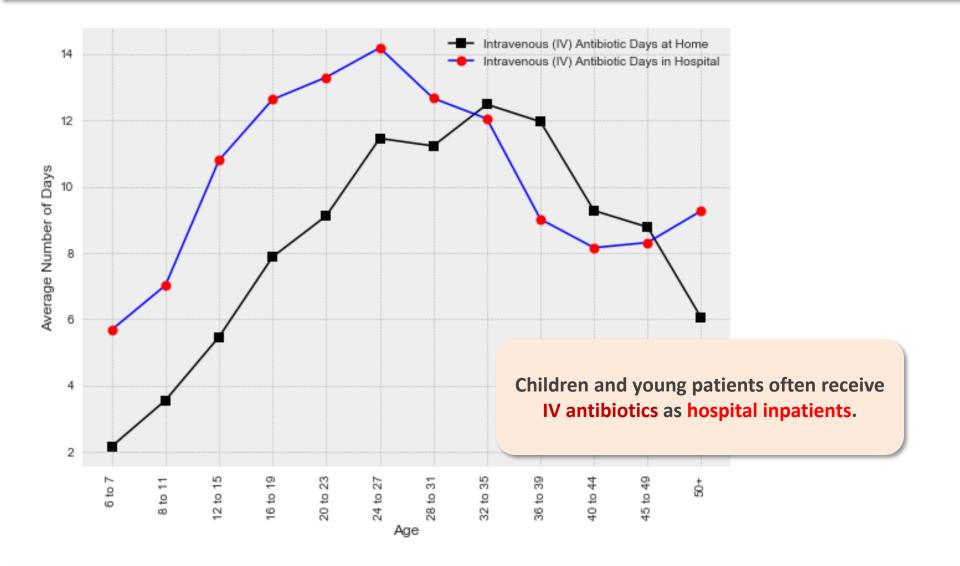
Data Analysis: Medications



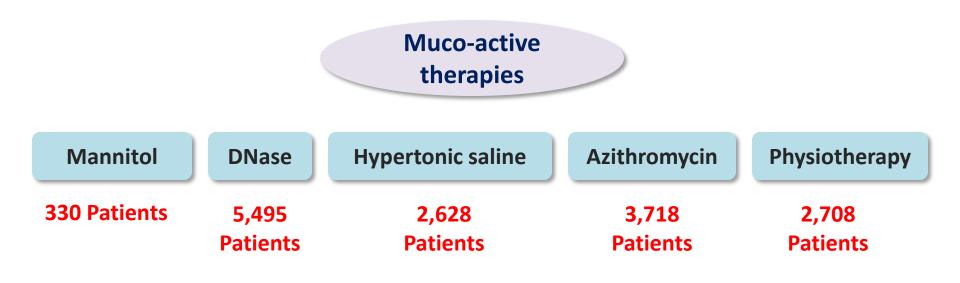
Therapies



Intravenous (IV) antibiotic Hospitalization Time



Muco-active therapies



List of Data-induced Hypotheses

 Our data analysis led to the following hypotheses regarding the interaction between CF genetic, microbiological and phenotypic variables:

Males survive longer than females.

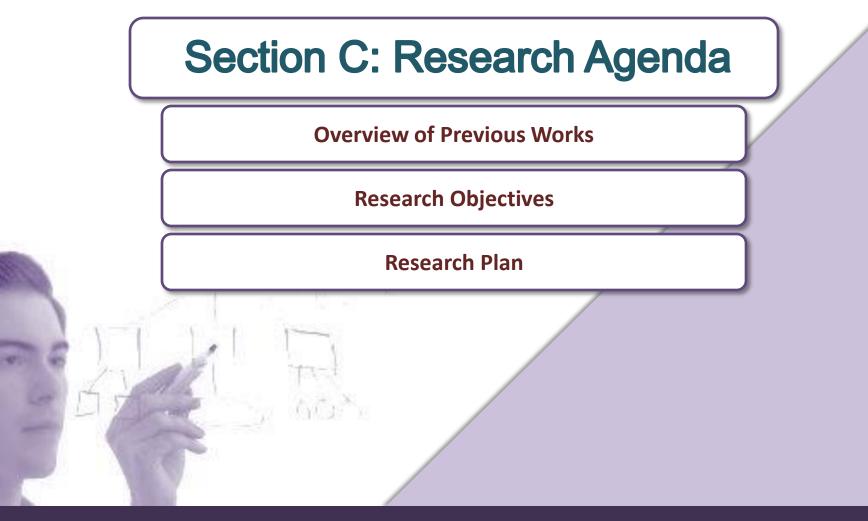
Patients with ΔF508 mutation are more likely to develop CFRD later in life.

CFRD is more prevalent in homozygous CF patients.

Patients with a ΔF508 mutation are more susceptible to a Pseudomonas Aeruginosa infection.

Homozygous patients are more susceptible to Pseudomonas Aeruginosa infections.

Our ultimate goal is to use machine learning to model the entire patient's trajectory and automatically capture all the manifestations above! The Alan Turing Institute



July 2017

Prognostic Models Developed in Previous Works

Study	Objective		
Szczesniak et. al, Am J Respir. Crit. Care Med, 2017	Phenotyping of rapid pulmonary decline		
Nkam et. al, J. Cystic Fibrosis, 2017	Prognostic score of 3-year death or lung transplant		
McCarthy et. al, CHEST, 2013	Prognostic score of CF outcomes		
George et. al, BMJ, 2011	Evaluating survival of CF patients		
Liou et. al, J. Cystic Fibrosis, 2010	Characterizing FEV1 trajectories		
Liou et. al, Am J Respir. Crit. Care Med, 2005	Impact of lung transplant on CF patient survival		

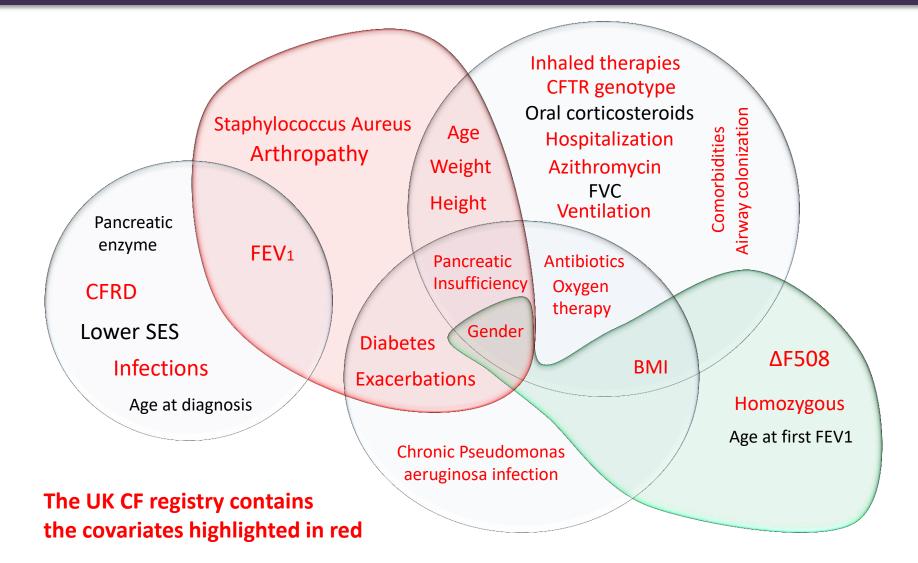
Data used in Previous Works

Study	Data Source	Sample Size
Szczesniak et. al, Am J Respir. Crit. Care Med, 2017	US Registry (CFFPR)	18,387
Nkam et. al, J. Cystic Fibrosis, 2017	French CF Registry	8,000
McCarthy et. al, CHEST, 2013	Irish CF Registry	370
George et. al, BMJ, 2011	Royal Brompton Hospital	276
Liou et. al, J. Cystic Fibrosis, 2010	ESCF (encounter-based longitudinal multi-center study)	20,644
Liou et. al, Am J Respir. Crit. Care Med, 2005	US Registry (CFFPR)	33,415

Covariates and Risk Factors used in Previous Studies

Study	Covariates
Szczesniak et. al, Am J Respir. Crit. Care Med, 2017	Gender, ΔF508 copies, age, age at diagnosis, FEV1(% predicted), BMI, pancreatic enzyme use, Infections (MRSA, Pa, B. cepacia, ABPA, NTM, Stenotrophomonas), CFRD, Lower SES.
Nkam et. al, <i>J. Cystic Fibrosis</i> , 2017	Gender, CFTR genotype, Airway colonization, Comorbidities, FEV1(% predicted), FVC(% predicted), Age, Weight, Height, BMI, IV antibiotics usage, Days of hospitalization, Non-invasive ventilation, Azithromycin, Oxygen therapy, Oral corticosteroids, Inhaled therapies
McCarthy et. al, CHEST, 2013	Age at first FEV1, Gender, ΔF508 homozygous, BMI
George et. al, <i>BMJ</i> , 2011	Gender, BMI, Pancreatic insufficiency, Chronic Pseudomonas aeruginosa infection, CF-related diabetes, Recombinant Human DNase, Nebulised antibiotics, Oxygen Therapy , Exacerbation
Liou et. al, Am J Respir. Crit. Care Med, 2005	Age, Acute exacerbations, Arthropathy, Diabetes, FEV1, Gender, Pancreatic Insufficiency, Weight, Staphylococcus Aureus

All Relevant Risk Factors Discovered in Previous Studies



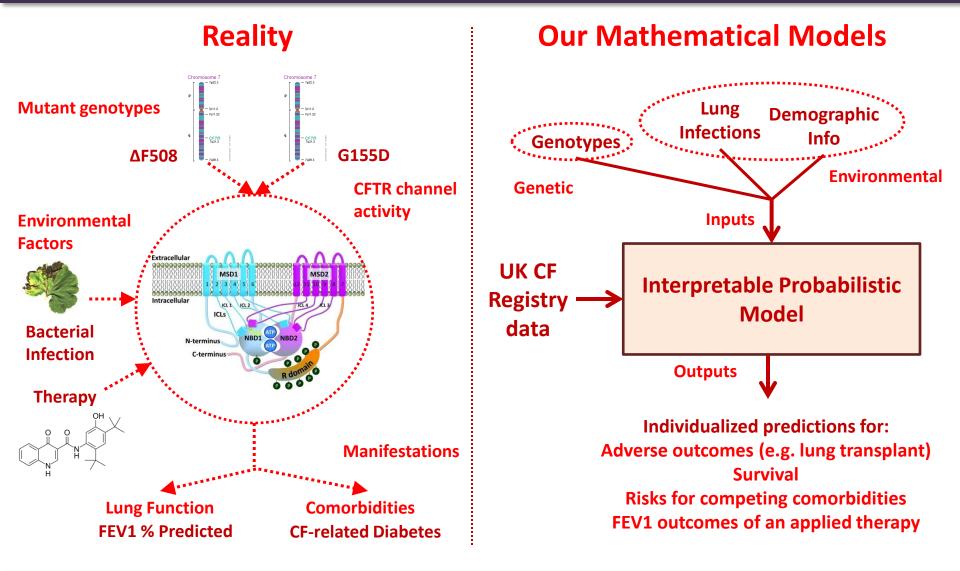
Our Research Objectives

Our ultimate objective is to learn highly-granular, data-driven temporal phenotypic expression models that describe the relation between a CF patient's individual traits (<u>genetic</u> and <u>environmental</u> factors) and manifestations of survival, lung function, comorbidities and responses to treatments.

Our models will provide clinicians with actionable intelligence that would help:

- □ Assess a patient's individualized risk to competing adverse outcomes, including CF-related complications and comorbidities.
- □ Understand the CF phenotypic expressions and its complex interaction with genetic and microbiological information.
- Construct individualized treatment plans that select the right treatment at the right time for a particular patient based on her individual traits.

High-level Conception of our Models



Research Plan

Our models will provide clinicians with actionable intelligence that would help:

Assess a patient's individualized risk to competing adverse outcomes, including CF-related complications and comorbidities.

Milestone 1: Individualized Risk Scoring

□ Understand the CF phenotypic expressions and its complex interaction with genetic and microbiological information.

Milestone 2: Temporal Phenotyping

Construct individualized treatment plans that select the right treatment at the right time for a particular patient based on her individual traits.

Milestone 3: Individualized Treatment Planning

Milestone 1: Individualized Risk Scoring

Limitations of the current prognostic scores (such as CF-ABLE):

- Quantifies the risk of a single adverse outcome at a single time horizon
- □ Coarse, one-size-fits-all prediction rule
- No principled mathematical model, fails to scale when more variables become available

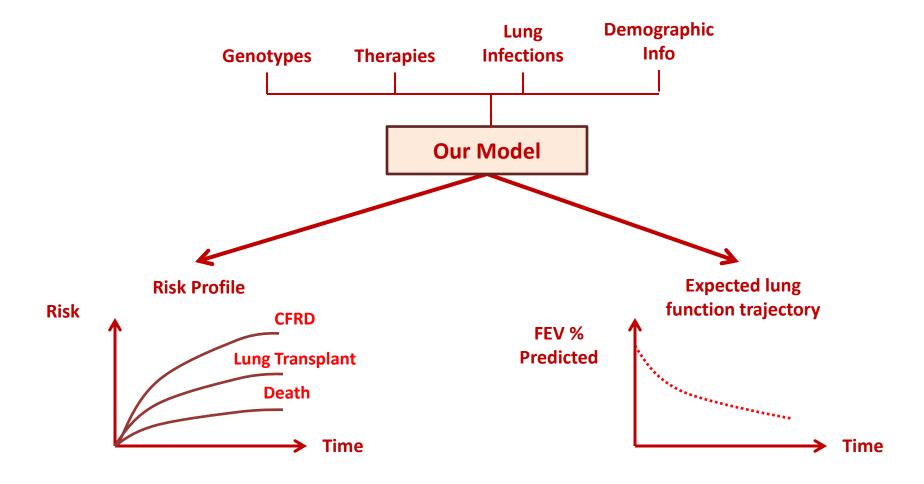
Our data-driven model will be able to:

- □ Forecast a full **lung function profile** (FEV1 % predicted trajectory)
- Provide a full risk profile at arbitrary time horizons. A risk profile accounts for all competing adverse events: death, lung transplant, CF-related diabetes, respiratory, pancreatic and renal complications.
- Tailor all predictions to the patient's demographic, environmental, microbiological and genetic traits.

Machine learning tools used: Deep multi-task probabilistic models.

Milestone 1: Individualized Risk Scoring

Depiction for the inputs and outputs of our model:



Milestone 2: Temporal Phenotyping

Limitations of the current phenotypic expressions:

- □ Limited to static manifestations (e.g. eventual manifestation of pancreatic insufficiency)
- Poor understanding of the interaction between classes of genetic mutation and microbiological infections (essential for treatment planning)

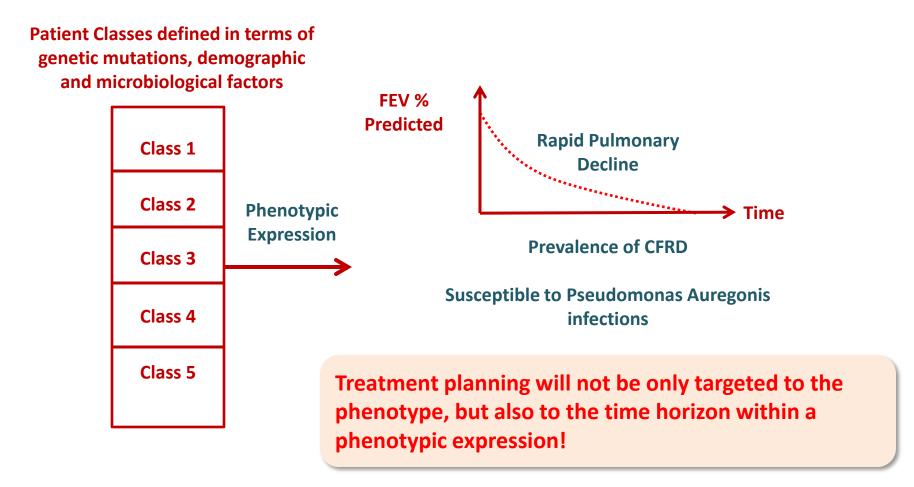
Our data-driven temporal phenotypic expression will be able to:

- Describe CF manifestation as a **temporal trajectory** of lung function
- □ Incorporate all comorbidities in the CF manifestation
- □ Capture interactions between genetic and **microbiological factors**.

Machine learning tools used: Unsupervised functional clustering.

Milestone 2: Temporal Phenotyping

Depiction for our envisioned temporal phenotypic expressions:



Milestone 3: Individualized Treatment Planning

Our data-driven model for counterfactual inference will be able to:

- □ Infer the individualized benefit of **Ivacaftor** in terms of 4-6 months improvement in FEV % predicted.
- □ Use the phenotypic expressions constructed in the previous milestone to design a **phenotype-specific treatment plans** that decides which antibiotics/therapies should each patient take at every point of time.

Machine learning tools used: Bayesian nonparametric models for causal inference.

Tentative Timeline

The Alan Turing Institute

Section D: Preliminary Results

Risk Scoring via Automated Prognostic Model Learning

July 2017

Objectives

The goal of this section is to:

- Use our Automated prognostic model construction algorithm for predicting 3-year outcomes for CF patients by applying machine learning to the CF registry data.
- Compare the predictive power of machine learning with that of the CF-ABLE score and the FEV1 biomarker.
- Demonstrate the utility of using our methods for individualized risk scoring and illustrate the nature of contributions that machine learning can offer in the CF healthcare setting.

Risk Factors

We have included the following genetic, microbiological and therapeutic information as risk factors in our analysis. (44 risk factors)

Age	Best FEV1 % Predicted	Xanthomonas	IV Anti. Days Home
Gender	B. Cepacia	B. Multivorans	IV Anti. Days Hosp.
Height	P. Aeruginosa	CF-related Diabetes	Dornase Alpha
Weight	MRSA	ABPA	Tobi Solution
BMI	NTM	Depression	Chronic Oral Antibiotic
Smoking	H. Influenza	Intestinal Obstruct.	Hypersaline
Homozygous	E. Coli	Cirrhosis	Inh. Bronchodilators
DF508 Mutation	Aspergillus	Cancer	Promixin
FEV1	K. Pneumoniae	GERD	Oxygen Therapy
FEV1 % Predicted	Gram-negative	Liver Disease	Non-Invasive Vent.
Best FEV1	Staphylococcus Aureus	Chronic Staphylococcus	Lab Liver Enzymes

The Cohort

- We extracted a cohort of patients who were enrolled in the registry in 2012 and obtained their 3-year outcomes from the 2015 registry.
- Adverse outcomes are defined as: death or lung-transplant in 3 years.
- We excluded all patients who have had a lung transplant by 2012 from the study since for those the definition of the adverse outcome does not apply.

IMPORTANT (need to discuss with collaborators in the Trust)

- Explicit information on individual patient deaths are not available in the registry
- We assumed that patients who disappear from the registry in 2015 are dead
- This may not be true as it could be that they were not enrolled in the registry as their information for this year was not complete

We compared the predictive power of machine learning with three prognostic approaches:

• The CF-ABLE score: designed to predict mortality and lung transplant endpoints using a simple rule for mapping the patient's clinical features to a risk score.

McCarthy et. al, "The CF-ABLE score: a novel clinical prediction rule for prognosis in patients with cystic fibrosis," CHEST, 2013.

Computation of the CF-ABLE score [0-7]: Score = (3.5 points if FEV1 < 52%) + (1.5 points for exacerbations) + (2 points if age < 24 years and BMI < 20.1 kg/m2)

Clinical Scores (II)

• **The CF-ABLE-UK score:** a modification of the CF-ABLE score that replaces exacerbations with days spent on intravenous antibiotics

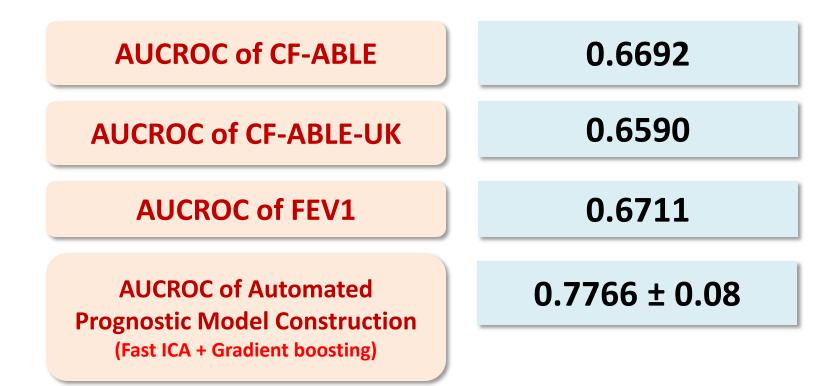
Dimitrov et. al, "CF-ABLE-UK score: Modification and validation of a clinical prediction rule for prognosis in cystic fibrosis on data from UK CF registry," European Respiratory Journal, 2015.

Computation of the CF-ABLE-UK score [0-7]: Score = (3.5 points if FEV1 < 52%) + (1.5 points for usage of IV antibiotics) + (2 points if age < 24 years and BMI < 20.1 kg/m2)

Predictions based solely on FEV1

Results

Our Automated Prognostic Model construction algorithm searches for a prognostic model in a space of 72 machine learning models.



Performance of ML Pipelines Searched by the Automated Prognostic Model Construction Algorithm (I)

No preprocessing, 5-fold CV

Benchmark	AUCROC	Benchmark	AUCROC
No Prep. + Logistic Reg.	0.7760 ± 0.10	No Prep. + Linear SVM	0.7160 ± 0.18
No Prep. + SGD Perceptron	0.6943 ± 0.14	No Prep. + Random Forest	0.7366 ± 0.07
No Prep. + kNN	0.6481 ± 0.05	No Prep. + Extra Trees	0.7381 ± 0.06
No Prep. + Decision Tree	0.5865 ± 0.03	No Prep. + AdaBoost	0.7567 ± 0.10
No Prep. + Kernel SVM	0.6409 ± 0.09	No Prep. + Bagging	0.7075 ± 0.08
No Prep. + Gauss. Naïve Bayes	0.7165 ± 0.15	No Prep. + Gradient Boosting	0.7751 ± 0.09
No Prep. + Bern. Naïve Bayes	0.6693 ± 0.13	No Prep. + XGBoost	0.7760 ± 0.10
No Prep. + LDA	0.7689 ± 0.10	No Prep. + MLP (2 layers)	0.7569 ± 0.07
No Prep. + Passive Aggressive	0.7254 ± 0.12	No Prep. + MLP (3 layers)	0.7612 ± 0.07

Performance of ML Pipelines Searched by the Automated Prognostic Model Construction Algorithm (II)

PCA (25 components), 5-fold CV

Benchmark	AUCROC	Benchmark	AUCROC
PCA + Logistic Reg.	0.7653 ± 0.10	PCA + Linear SVM	0.6067 ± 0.24
PCA + SGD Perceptron	0.6417 ± 0.25	PCA + Random Forest	0.7086 ± 0.09
PCA + kNN	0.6492 ± 0.05	PCA + Extra Trees	0.7237 ± 0.07
PCA + Decision Tree	0.5608 ± 0.04	PCA + AdaBoost	0.7351 ± 0.05
PCA + Kernel SVM	0.6307 ± 0.11	PCA + Bagging	0.6938 ± 0.08
PCA + Gauss. Naïve Bayes	0.7504 ± 0.11	PCA + Gradient Boosting	0.7626 ± 0.08
PCA + Bern. Naïve Bayes	0.7023 ± 0.10	PCA + XGBoost	0.7691 ± 0.08
PCA + LDA	0.7586 ± 0.10	PCA + MLP (2 layers)	0.6904 ± 0.07
PCA + Passive Aggressive	0.4785 ± 0.39	PCA + MLP (3 layers)	0.6807 ± 0.10

Performance of ML Pipelines Searched by the Automated Prognostic Model Construction Algorithm (III)

Sparse PCA (25 components), 5-fold CV

Benchmark	AUCROC	Benchmark	AUCROC
SPCA + Logistic Reg.	0.7259 ± 0.15	SPCA + Linear SVM	0.7444 ± 0.12
SPCA + SGD Perceptron	0.7378 ± 0.13	SPCA + Random Forest	0.7292 ± 0.08
SPCA + kNN	0.6520 ± 0.05	SPCA + Extra Trees	0.7266 ± 0.08
SPCA + Decision Tree	0.5755 ± 0.03	SPCA + AdaBoost	0.7354 ± 0.05
SPCA + Kernel SVM	0.6833 ± 0.07	SPCA + Bagging	0.6985 ± 0.06
SPCA + Gauss. Naïve Bayes	0.7319 ± 0.15	SPCA + Gradient Boosting	0.7628 ± 0.10
SPCA + Bern. Naïve Bayes	0.7201 ± 0.13	SPCA + XGBoost	0.7708 ± 0.09
SPCA + LDA	0.7587 ± 0.10	SPCA + MLP (2 layers)	0.7711 ± 0.09
SPCA + Passive Aggressive	0.7395 ± 0.14	SPCA + MLP (3 layers)	0.7553 ± 0.10

Performance of ML Pipelines Searched by the Automated Prognostic Model Construction Algorithm (IV)

Fast ICA (25 component), 5-fold CV

Benchmark	AUCROC	Benchmark	AUCROC
ICA + Logistic Reg.	0.7760 ± 0.10	ICA + Linear SVM	0.7395 ± 0.07
ICA + SGD Perceptron	0.6097 ± 0.13	ICA + Random Forest	0.7447 ± 0.06
ICA + kNN	0.6481 ± 0.05	ICA + Extra Trees	0.7286 ± 0.06
ICA + Decision Tree	0.5941 ± 0.02	ICA + AdaBoost	0.7567 ± 0.09
ICA + Kernel SVM	0.6408 ± 0.09	ICA + Bagging	0.7005 ± 0.08
ICA + Gauss. Naïve Bayes	0.7165 ± 0.15	ICA + Gradient Boosting	0.7766 ± 0.08
ICA + Bern. Naïve Bayes	0.6693 ± 0.14	ICA + XGBoost	0.7760 ± 0.09
ICA + LDA	0.7689 ± 0.10	ICA + MLP (2 layers)	0.7569 ± 0.07
ICA + Passive Aggressive	0.6939 ± 0.11	ICA + MLP (3 layers)	0.7612 ± 0.07