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Abstract

We propose a novel architecture of recurrent
neural networks (RNNs) for causal prediction
which we call Entangled RNN (E-RNN). To is-
sue causal predictions, E-RNN can propagate the
backward hidden states of Bi-RNN through an
additional forward hidden layer. Unlike a 2-layer
RNNs, all the hidden states of E-RNN depend on
all the inputs seen so far. Furthermore, unlike a
Bi-RNN, for causal prediction, E-RNN depends
on both the forward and backward hidden states.
Importantly, E-RNN is a general architecture that
can be combined with various RNN techniques
such as multi-layer, dropout, and GRU. Using
three real-world datasets, we show that E-RNN
significantly and consistently improves the per-
formance of previous RNN architectures with the
same complexity.

1. Introduction

Recurrent neural networks (RNNs) are standard architec-
tures aimed at dealing with time-series data streams. RNN
is applied in a variety of applications such as clinical risk
scoring (Che et al., 2016), speech recognition (Sak et al.,
2014), language translation (Auli et al., 2013), traffic fore-
casting (Yu et al., 2017) etc. Standard RNNs (S-RNNs)
(Rumelhart et al., 1988) can propagate the hidden states
only in the forward direction. Therefore, S-RNNs can-
not utilize future inputs for current prediction. To utilize
future inputs for current prediction (i.e. issue non-causal
predictions), bi-directional RNNs (Bi-RNNs) (Schuster &
Paliwal, 1997) were proposed. Briefly described, Bi-RNN
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adds a backward hidden layer on top of the forward hidden
layer of the S-RNN and use the concatenated states of for-
ward and backward hidden states to issue non-causal pre-
dictions. Therefore, with Bi-RNN, the prediction at time t
depends on both the past inputs (i.e. inputs at time τ ≤ t)
and the future inputs (i.e. inputs at time τ > t).

In this paper, we focus on issuing causal predictions which
only depend on the past inputs. As will be shown later,
for causal prediction, the structure of Bi-RNN reduces to
standard RNNs since the current output is independent of
all the previous backward hidden states.

To address this limitation of Bi-RNNs for causal prediction,
we propose a novel RNN architecture, called Entangled
RNN (E-RNN). By stacking an additional forward hidden
layer on top of Bi-RNN structure, the causal prediction of
E-RNN is dependent on all the previous backward hidden
states. E-RNN can be used in a plethora of applications,
ranging from medicine to the finance.

Importantly, E-RNN can be combined with various state-
of-the-art RNN techniques such as multi-layer (Parlos
et al., 1994), dropout (Srivastava et al., 2014), LSTM
(Hochreiter & Schmidhuber, 1997), and GRU (Chung
et al., 2015) and leads to performance gains, without the
need for any additional assumptions.

2. Problem Formulation

The dataset consists of N arrays. The n-th array is denoted
as X (n) = {x1(n), x2(n), ..., xT (n)}, where xt(n) ∈ RD

is a measurement vector at time t, D is the dimension
of data streams, and T (n) is the total number of time
stamps. The entire data streams can be denoted as D =

{X (n)}Nn=1 = {x1(n), x2(n), ..., xT (n)(n)}Nn=1. For each
array (i.e. for each instance) X (n), we define the corre-
sponding label y(n) ∈ Y = R for regression, and y(n) ∈
Y = {1, 2, ..., C} for classification problem. Causal pre-
diction only uses the input x(τ) for values of τ ≤ t to issue
the prediction at time t. On the other hand, non-causal pre-
diction uses inputs x(τ) for both values of τ ≤ t (previous)
and τ > t (future) to issue the prediction at time t.
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Figure 1. Architectures of RNN for causal prediction (Grey node: Dependent nodes to ot, Dash line: Independent connection to ot,
Thick blue line: New connections by E-RNN, Dash circle: Concatenated states,

←−
h (I): Initial state of the backward hidden layer).

3. Entangled RNN

In this section, we introduce Entangled RNN for causal pre-
diction. To contrast E-RNN to S-RNN and Bi-RNN, we
first briefly describe the conventional RNN architectures.
Then, we propose E-RNN and highlight its advantages with
respect to conventional RNN architectures. Figure 1 de-
scribes the main architectural differences between S-RNN,
2-layer S-RNN, Bi-RNN, and E-RNN, respectively.

3.1. Standard RNN and Bi-directional RNN

Let us define the hidden state at time t as ht ∈ RK , where
K is the dimension of each hidden state. The output state
at time t is ot ∈ RM , where M is the dimension of each
output state. The hidden and output states of S-RNN are
updated as follows (See Figure 1(a)):

ht = σ(b+Wht−1 + Uxt)
ot = c+ V ht = c+ V × σ(b+Wht−1 + Uxt) (1)

where b ∈ RK ,W ∈ RK×K , U ∈ RD×K , c ∈ RM and
V ∈ RK×M are parameters (σ is a non-linear activation
function such as sigmoid, tanh or ReLu). As can be seen
in Equation 1, ot depends on the current input xt and the
previous hidden state ht−1 which depends on the previous
input xt−1 and the previous hidden state ht−2. Therefore,
ot depends on all the previous inputs {xτ}tτ=1 and is inde-
pendent of the future inputs {xτ}Tτ=t+1. The same depen-
dency between causal prediction (ot) and the inputs is true
for multi-layer standard RNN (See the Figure 1(b)).

To address this limitation, for non-causal prediction, Bi-
directional RNN (Bi-RNN) was proposed, which added a

backward hidden layer to the standard RNN architecture to
utilize the future inputs {xτ}Tτ=t+1. The hidden and output
states of Bi-RNN are updated as follows (See Figure 1 (c)):
−→
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where the right and left arrows specify the forward and
backward hidden layers, respectively. 1 Equation 2 shows
that ot depends on the current input xt, the previous for-
ward hidden state

−→
h t−1 (which depends on the previous

input xt−1, and the previous forward hidden state
−→
h t−2),

and the future backward hidden state
←−
h t+1 (which depends

on the future input xt+1, and the future backward hidden
state

←−
h t+2). Therefore, ot depends on both the previous

{xτ}tτ=1 and the future {xτ}Tτ=t+1 inputs.

For non-causal prediction, Bi-RNN can successfully utilize
the information of the backward hidden states. However,
for causal prediction at time t, the backward hidden state←−
h t+1 cannot be used because it depends on the future in-
puts. As can be seen in Figure 1 (c), all the previous hidden

1Note that Bi-RNN is a single layer RNN structure even if it
has both forward and backward hidden layers. As it can be seen
in Equation 2, the forward and the backward hidden states are just
concatenated and do not interact each other.
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Architecture Causal Prediction (Recursive Representations) Dependency
S-RNN ot = c+ V ht = c+ V × σ(b+Wht−1 + Uxt) {xτ}tτ=1, {hτ}tτ=1

Bi-RNN
ot = c+ V [

−→
h t;
←−
h t] = c+

−→
V −→σ (

−→
b +
−→
W
−→
h t−1 +

−→
U xt) {xτ}tτ=1, {

−→
h τ}tτ=1+

←−
V ←−σ (

←−
b +
←−
W
←−
h (I) +

←−
U xt)

E-RNN ot = c+ V ht = c+ V × σ(b+Wht−1 + U [
−→
h t;
←−
h t]) {xτ}tτ=1, {

−→
h τ}tτ=1, {

←−
h τ}tτ=1

Table 1. Comparisons of S-RNN, Bi-RNN, and E-RNN for causal prediction.

states are independent of the current output. Therefore, for
causal prediction, the output at time t can be re-written as

ot = c+ V̂ σ̂(b̂+ Ŵ
−→
h t−1 + Ûxt) (3)

By looking at Equations 1 and 3, we can see that S-RNN
and Bi-RNN have the same structure for causal prediction.

3.2. Entangled RNN

To enable utilizing the backward hidden states for causal
predictions, we propose Entangled RNN. E-RNN stacks a
forward hidden layer on top of backward hidden layer (See
Figure 1 (d) - propagated hidden layer) of Bi-RNN to prop-
agate the backward hidden states to the current output. The
hidden and output states of E-RNN are updated as follows:

−→
h t =

−→σ (
−→
b +
−→
W
−→
h t−1 +

−→
U xt)

←−
h τ =

{←−σ (
←−
b +
←−
W
←−
h (I) +

←−
U xt), if τ = t.

←−σ (
←−
b +
←−
W
←−
h τ+1 +

←−
U xτ ), otherwise.

ht = σ(b+Wht−1 + U [
−→
h t;
←−
h t])

ot = c+ V ht (4)

where
−→
h (I) and

←−
h (I) are the initial states of the forward

and backward hidden layer, respectively (we set both as
the zero vectors). Equation 4 shows that the output ot of
E-RNN depends on the propagated hidden state ht. The
propagated hidden state ht depends on the previous prop-
agated hidden state ht−1 (which depends on the previous
propagated hidden state ht−2, the previous forward hidden
state

−→
h t−1, and the previous backward hidden state

←−
h t−1),

the current forward and the backward hidden states. There-
fore, at time t, the output ot depends on the entire inputs
{xτ}tτ=1, forward {−→h τ}tτ=1 and backward {←−h τ}tτ=1 hid-
den states. Table 1 summarizes the differences of represen-
tations and dependencies for the causal prediction between
E-RNN and conventional RNN architectures.

Importantly, E-RNN can be combined with any state-of-
the-art RNN techniques without additional assumptions.
For instance, each hidden layer (backward, forward, and
propagated) can be iteratively stacked (multi-layer RNN).

Furthermore, each hidden state can be replaced by GRU to
capture long-term dependencies or add drop-out for regu-
larization. In the next section, we quantitatively show the
advantages of E-RNN compared to conventional RNNs.

4. Experiments

In this section, we experimentally show the performance
of E-RNN in comparison with standard RNN (S-RNN)
and Bi-RNN for causal prediction. We use three real-
world datasets: (1) using physiological data streams of
patients in regular hospital wards (see data description in
(Alaa et al., 2017)) to predict clinical deterioration for
last 24 hours, (2) using physiological data streams of pa-
tients in the intensive care units (ICU) (see data descrip-
tion in (Johnson et al., 2016)) to predict death (of patients)
for last 24 hours, (3) using historical stock price datasets
of Google to predict the future stock price of Google.
(http://finance.yahoo.com/quote/GOOG)

4.1. Simulation Setting

Each hidden state uses a sigmoid activation function (tanh
for regression problems) and the weights are initialized
using the Xavier initialization method (Glorot & Bengio,
2010). The dimensions of hidden states for the forward,
backward, and aggregation layers are all 2D. Note that we
use two-layer RNN architectures for standard RNN (4D
and 2D dimensions of forward hidden states for the first
and the second layer, respectively) and Bi-RNN (4D and
2D dimensions of forward/backward hidden states for the
first and the second layers, respectively) to fairly compare
with E-RNN with the same number of parameters (same
complexity). We use a fully connected layer at the end of
the output layer and softmax activation function to make
causal classification predictions (linear for regression prob-
lems). We use the Adam optimizer (Kingma & Ba, 2014) to
optimize the parameters and the binary cross-entropy as the
loss function (mean square error for regression problems).
The learning rate is 0.01, the number of epochs is 50, and
the batch size is 100. Initial states for the backward and the
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Setting Metric E-RNN
S-RNN

Gain
(/Bi-RNN)

A AUROC 0.9542 0.9447 17.2%
(Standard) AUSPC 0.7358 0.7229 4.7%

B AUROC 0.9552 0.9451 18.4%
(Dropout) AUSPC 0.7579 0.7432 5.7%

C AUROC 0.9612 0.9550 13.8%
(GRU) AUSPC 0.7712 0.7543 6.9%

D AUROC 0.9548 0.9461 16.1%
(Deep) AUSPC 0.7512 0.7301 7.8%

Table 2. Performance comparisons using dataset of (Alaa et al.,
2017) to predict clinical deterioration

forward hidden layers are set to the zero vector (
−→
h (I) = 0,←−

h (I) = 0). We call this the standard setting (Setting A).

To highlight the general applicability of E-RNN, we add
various architectural changes on top of the standard setting:
Setting B: Adds dropout (p = 0.75) in all the hidden layers;
Setting C: Replaces each hidden state from the standard
RNN cell to GRU cell with the tanh activation function;
Setting D: Doubles the depth of hidden layers.
All the other settings are exactly the same as in Setting A.

We use two performance metrics to evaluate the accuracy
of causal prediction for classification problems: area under
the receiver operating characteristics curve (AUROC) and
area under the sensitivity/precision curve (AUSPC). For re-
gression problems, we use root mean square error (RMSE)
as the performance metric. To highlight the improvements
obtained by E-RNN, we also state the relative gain.

4.2. Simulation Results

Table 2 and 3 show the performance of E-RNN in compari-
son with S-RNN/Bi-RNN in terms of AUSPC and AUROC
for four different settings and using two medical datasets.
Since the architectures of S-RNN and Bi-RNN for causal
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Figure 2. Learning for stock price prediction (setting A).

Setting Metric E-RNN
S-RNN

Gain
(/Bi-RNN)

A AUROC 0.9277 0.9135 16.4%
(Standard) AUSPC 0.4962 0.4842 2.3%

B AUROC 0.9445 0.9399 7.7%
(Dropout) AUSPC 0.5217 0.5059 3.2%

C AUROC 0.9348 0.9282 9.2%
(GRU) AUSPC 0.5212 0.5124 1.8%

D AUROC 0.9334 0.9257 10.4%
(Deep) AUSPC 0.5033 0.4901 2.6%

Table 3. Performance comparisons using dataset of (Johnson
et al., 2016) to predict death (of patients)

prediction coincide (only forward layers affect the output
as explained in section 3), the performance of S-RNN and
Bi-RNN is the same. As it can be seen, E-RNN consistently
outperforms in the various settings. More specifically, with
Setting A, the gains are 17.2% and 4.7% in comparison
with S-RNN/Bi-RNN in terms of AUROC and AUSPC, re-
spectively. Furthermore, by successfully utilizing the back-
ward hidden states, E-RNN consistently improves the per-
formance of various RNN architectures (dropout, GRU,
and multi-layer) for causal prediction.

Table 4 represents the performance of E-RNN for stock
price prediction. (This is a regression problem). In terms of
RMSE, E-RNN consistently outperforms S-RNN/Bi-RNN.
Furthermore, Figure 2 shows the learning curve of both E-
RNN and S-RNN/Bi-RNN for setting A. This figure shows
that the validation loss of E-RNN converges to a lower
value than that of the S-RNN/Bi-RNN due to its utilization.

5. Conclusion

We proposed Entangled RNN, a novel RNN architecture
for causal prediction. Experiments show that E-RNNs
obtain consistent performance improvements compared to
standard RNN for both classification and regression prob-
lems. E-RNN can be applied in a plethora of applications,
ranging from medicine to the finance.

Setting
E-RNN

S-RNN
Gain

(Metric: RMSE) (/Bi-RNN)
A (Standard) 0.1098 0.1268 13.4%
B (Dropout) 0.1043 0.1198 12.9%

C (GRU) 0.0640 0.0702 8.8%
D (Deep) 0.1101 0.1215 9.4%

Table 4. Performance comparisons for stock price prediction.
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