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Abstract 
Analytical modeling of the performance of video coders is essential in a variety of applications, such as power 

constrained processing, complexity-driven video streaming, etc., where information concerning rate, distortion or 

complexity (and their interrelation) is required. In this work, we present a novel rate-distortion-complexity (R-D-C) 

analysis for state-of-the-art wavelet video coding methods by explicitly modeling several aspects found in 

operational coders, i.e. embedded quantization, quadtree decompositions of block significance maps and context-

adaptive entropy coding of subband blocks. This work achieves two main goals. Firstly, unlike existing R-D models 

for wavelet video coders, the proposed derivations reveal for the first time the expected coding behavior of specific 

coding algorithms (e.g. quadtree decompositions, coefficient significance and refinement coding) and therefore can 

be used for a variety of coding mechanisms incorporating some or all the coding algorithms discussed. Secondly, the 

proposed modeling derives for the first time analytical estimates of the expected number of operations (complexity) 

of a broad class of wavelet video coding algorithms based on stochastic source models, the coding algorithm 

characteristics and the system parameters. This enables the formulation of an analytical model characterizing the 

complexity of various video decoding operations. As a result, this work complements prior complexity-prediction 

research that is based on operational measurements. The accuracy of the proposed analytical R-D-C expressions is 

justified against experimental data obtained with a state-of-the-art motion-compensated temporal filtering based 

wavelet video coder, and several new insights are revealed on the different tradeoffs between rate-distortion 

performance and the required decoding complexity.  
Keywords: rate-distortion, complexity, wavelet-based video coding, analytical modeling  
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I. Introduction 
Energy consumption is an important issue in mobile devices. In the case of multimedia, the battery life of 

such devices has been shown to be directly linked to the complexity of coding algorithms [3] [4] [8]. For 

this reason, recent advances in scalable coding algorithms that provide schemes enabling a variety of rate-

distortion-complexity (R-D-C) tradeoffs with state-of-the-art performance [2] are very appealing 

frameworks for such resource constrained systems. This flexibility in video encoding and decoding is also 
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very suitable for the increasing diversity of multimedia implementation platforms based on embedded 

systems or processors that can provide significant tradeoffs between video coding quality and energy 

consumption [3] [4]. In order to select the optimal operational point for a multimedia application in a 

particular system, accurate modeling of the source, algorithm and system (implementation) characteristics 

is required. Such modeling approaches are important because they can also serve as the driving 

mechanism behind the design of future complexity-scalable coders.  

Two methods have been used to determine the rate-distortion and the complexity characteristics of 

operational video coders. The first is an empirical approach, where analytical formulations are fitted to 

experimental data to derive an operational model suitable for a particular class of video sequences and a 

particular instantiation of a compression algorithm in a fixed implementation architecture; see [17] [18] 

for such examples of R-D models and [3]-[7] for such examples of complexity modeling. While this 

modeling approach is simple, the obtained rate-distortion-complexity (R-D-C) expressions cannot be 

generalized because their dependency on the sequence, algorithm and system parameters is not explicitly 

expressed via the model. As a result, while current state-of-the-art multimedia compression algorithms 

and standards provide profiles for rate control [1] [4] [6], they lack analytical methods to determine the 

complexity tradeoffs between different coding operations that can be exploited for different systems.  

The second approach is a theoretical approach, where stochastic models are used for pixels or transform 

coefficients. Using this approach, analytical expressions can be derived for the R-D-C behavior of a 

particular system or class of systems processing a broad category of input sources in function of the 

sources’ statistics; see [9] [12] [13] for such examples of R-D models and [10] [11] [14] for complexity 

modeling using operational source statistics and off-line or on-line training to estimate (learn) the 

algorithm and system parameters. We remark that, although there is a significant volume of work in 

modeling of transform-domain statistics [26] [27] [28] and also in the efficiency analysis of coding 

mechanisms [17], there is significantly less literature on rate-distortion modeling for state-of-the-art 

operational video coders, and (to the best of the authors’ knowledge) scarcely any work exists on 

complexity modeling for such systems in function of stochastic source models and algorithm 

characteristics. We emphasize that, while the derived theoretical expressions of such approaches are 

typically more complex than the expressions derived from the first category, the dependencies on the 

source and system modeling parameters are explicitly indicated via the derived analytical framework. 

This is of great importance to several cross-layer or resource optimization problems [3] [8] [10] that need 

to judicially balance the network or system resources in order to accommodate the viewer preferences in 
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the most efficient manner. In addition, the explicit dependency of the derived R-D-C estimation on 

source, algorithm and system parameters facilitates the application of the derived framework for a variety 

of input video source classes. Moreover, various algorithms and systems of interest are accommodated in 

this way. Finally, a rigorous, analytical R-D-C formulation methodology can be easily extended to model 

properties of various other coding algorithms based on input source and algorithm parameters. In this 

way, analytical comparisons of the R-D-C efficiency for particular algorithms can accompany 

experimental testing in order to facilitate system design decisions and options.  

For these reasons, we follow the second category of approaches and provide a unified R-D-C modeling 

framework for motion-compensated temporal filtering (MCTF) based wavelet video coders [2] [22] [25] 

[29]. Two aspects are typically required for unified R-D-C modeling of video coding: i) modeling of the 

temporal prediction process [15] [16]; ii) modeling of the quantization and coding process [9] [12]. Since 

the motion-compensation complexity of the MCTF process has been studied in detail in prior work [7] 

[11], we focus on the second part and assume that the transform-domain statistics of the intra and error 

frames produced by the temporal decomposition are available. Unlike the existing theoretical work [9] 

[12] in this area, the proposed R-D-C model is based on a thorough analysis of different coding 

operations (quadtree coding, coefficient significance and refinement coding) and as a result can 

encompass many state-of-the-art wavelet video coders found in the literature.   

Consequently, this work extends prior R-D modeling of block-based wavelet video coders to a broader 

class of coding mechanisms. Perhaps more importantly, this work proposes an analytical derivation of 

complexity estimates for the entropy decoding and the inverse spatial transform, thereby complementing 

our prior work on complexity estimation [7] [10] [11].  

Based on the derived theoretical results and their experimental validation, we explore the R-D-C space of 

achievable operational points for state-of-the-art wavelet video coders and derive several interesting 

properties for the interrelation of rate-distortion performance and the associated decoding and inverse 

spatial transform complexity. 

The paper is organized as follows. Section II introduces the types of quantization and coding schemes 

analyzed in this paper. Some important nomenclature is also provided. Section III presents the utilized 

wavelet coefficient models and derived probability estimates for a variety of coding/decoding operations. 

These probabililities will be used to determine the average rate, distortion and complexity (Sections IV-

VI, respectively) for decoding a video sequence. Section VII displays theoretical and experimental R-D-C 
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results that validate the proposed models and discusses several interesting R-D-C properties of 

operational video coders. Section VIII concludes the paper. 

II. Overview of Wavelet Video Coders  
In this section, we introduce a basic overview of state-of-the-art wavelet coding schemes analyzed in this 

paper. They involve temporal decomposition via MCTF, spatial discrete wavelet transform (DWT) 

decomposition, embedded quantization, and the entropy coding process.  

A. Temporal Decomposition 
Recent state-of-the-art scalable video coding schemes are based on motion compensated temporal 

filtering [2]. During MCTF, the original video frames are filtered temporally in the direction of motion [2] 

[15], prior to performing the spatial transformation and coding. Video frames are filtered into L  (low-

frequency or average) and H  (high-frequency or error) frames [2]. The process is applied initially in a 

group of pictures (GOP) and also to all the subsequently-produced L  frames thereby forming a total of 

MCTFT  temporal levels. After the temporal decomposition, the derived L  and H  temporal frames are 

spatially decomposed in a hierarchy of spatio-temporal subbands. Quantization and entropy coding are 

applied to these subbands to form the final compressed bitstream.  

B. Embedded Quantization 
An important category of quantizers used in image and video coding is the family of embedded double-

deadzone scalar quantizers [19]. For this family, each input wavelet coefficient x  is quantized to:  

 ( ) ( ){ }2
sign , if 1;  0, otherwise

2b
x

b b
xQ x x

Δ
⎢ ⎥= ⋅ ≥⎢ ⎥⎣ ⎦ Δ

, (1) 

where ⎣ ⎦a  denotes the integer part of a ; 0Δ >  is the basic quantization step size (basic partition interval 

size) of the quantizer family; b +∈ Z  indicates the quantizer level (granularity), with higher values of b  

indicating coarser quantizers. In general, b  is upper bounded by a value maxB , selected to cover the 

dynamic range of the input signal. The signal reconstruction is performed by: 

 ( )( ) ( )( ) ( )( ) ( ) ( ){ }1 1
2sign 2 , if 0;  0 if 0b

b b b b b bQ Q x Q x Q x Q x Q x− = ⋅ + Δ ≠ =  (2) 

where the reconstructed value ( )( )1
b bQ Q x−  is placed in the middle of the corresponding uncertainty 

interval (partition cell), and ( )bQ x  is the partition cell index, which is bounded by a predefined value for 

each quantizer level. For example, ( )0 1b bQ x M≤ ≤ − , for each b , with 
max 0 2BM M= = =…  and 

1Δ =  for the popular case of successive approximation quantization (SAQ) [19]. If the b  least-

significant bits of ( )0Q x  are not available, one can still dequantize at a lower level of quality using the 

inverse quantization formula given in (2). SAQ can be implemented via thresholding, by applying a 

monotonically decreasing set of thresholds of the form 1 /2b bT T− = , with max 1B b≥ ≥  and 
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max quant maxBT xα= ⋅ , where maxx  is the highest coefficient magnitude in the input wavelet decomposition, 

and quantα  is a constant that is taken as quant 1/2α > . By using SAQ, the significance of the wavelet 

coefficients with respect to any threshold bT  is indicated in a corresponding binary map, called the 

significance map. Coding of max min, ,B B…  significance maps corresponds to coding the max min 1B B− +  

most significant bitplanes of each wavelet coefficient x . 

C. Coding of the Significance Maps and Coefficients 
In all state-of-the-art wavelet coders [19]-[25], the coding process exploits intra-band dependencies 

following a block-partitioning process within each transform subband. This coding process is performed 

for every bitplane b . As indicated in Figure 1, several coding passes that identify coefficient significance 

(“Significance Pass”) or refine wavelet coefficients (“Refinement Pass”) with respect to the current SAQ 

threshold are performed either within quadtree coding [22] [23] or within block coding [19]. Several 

state-of-the-art embedded image coders invoke both approaches, i.e. the quadtree coding partitions the 

input subbands until a minimum block size, which is then coded with the block coding module [20] [21].  

We analyze such intra-band coders that use quadtrees to decompose subbands into non-overlapping 

blocks of dyadically-decreasing sizes followed by block coding for the blocks of the maximally 

decomposed quadtree [20] [21]. In particular, the initial subbands are hierarchically split in K  quadtree 

levels using several coding passes, with blocks at quadtree level K  having the smallest size. The 

significance information (i.e. whether the block contains significant coefficients) is encoded using depth-

first-search along the quadtree, where the significance of a block at quadtree level k  is encoded only if its 

parent block at quadtree level 1k −  is found to be significant. For the blocks found significant at the 

bottom of the quadtree (level K ), the block coding is invoked. Block coding performs raster scan to 

obtain the significance of each coefficient. The coefficients found significant are then placed in a 

refinement list to be refined at the next finer quantization level.  

The produced symbols from each coding pass, from block significance information to coefficient 

significance, refinement, and sign information, are then encoded using context-based adaptive arithmetic 

coding [33] [34].  This technique exploits the dependencies between the symbols to be encoded and the 

neighboring symbols (the context) [33]. Context conditioning reduces the entropy and improves the 

coding performance. An example of context-based entropy coding is to use several arithmetic coder 

models with different initial probabilities to encode coefficients based on the significance of their 

neighbors, since a coefficient with significant neighboring coefficients has a larger probability to be 

significant than coefficients with insignificant neighboring coefficients. Using these separate arithmetic 
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coder models for different “contexts,” context-based coding schemes achieve better performance than 

simply compressing all symbols using a single arithmetic coder [33] [34]. 

 

 

 

 

 
Figure 1 Block diagram of intra-band coding process of state-of-the-art wavelet-based coders encompassing 
quadtree and block coding of the significance maps. 

III. Approximation of Block Significance Probabilities in Quadtree 
Decompositions of the Significance Maps 
In this section, we introduce the utilized stochastic source model for wavelet coefficients. We then derive 

probabilities of significance for quadtree decompositions over quantized spatio-temporal subbands. These 

probabilities form the core of the rate and complexity estimation derived in the remaining sections of this 

paper as they provide the means of establishing the percentage of blocks that are expected to be coded or 

decoded at a given distortion bound, expressed by the terminating SAQ threshold 
minBT . In addition, the 

percentage of significant areas within the spatio-temporal subbands along with the percentage of non-zero 

coefficients are the two features (or “decomposition functions” [11]) that express the complexity of the 

inverse DWT.  

A. Source Models for Low and High-frequency Wavelet Coefficients 
The R-D characteristics of low-frequency wavelet coefficients are typically modeled using the high-rate 

uniform quantization assumption [9] [19] for independent zero-mean Gaussian random variables. This 

model will be accurate if the low-frequency coefficients exhibit sufficiently low correlation. We 

investigate this in Table 1, which displays the ratio of the average correlation between neighboring 

coefficients to the average coefficient variance. In Figure 2 we validated that the Gaussian distribution for 

low-frequency spatio-temporal subband coefficients was accurate. 

While low-frequency spatio-temporal subbands account for a large percentage of the video coding rate, 

the high-frequency spatio-temporal subbands also contribute a significant amount to the overall coding 

rate and complexity [13]. Thus, accurate modeling of the high-frequency spatio-temporal subband 

statistics is also very important for precise R-D-C modeling of wavelet video coders. When applied to 

image or residual frame data, typical wavelet filters tend to produce decorrelated coefficients in the high-
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frequency subbands. However, dependencies remain among coefficients within the same scale and across 

different scales [26]. Certain highly-popular wavelet filter-banks, such as the Daubechies 9/7 filter-pair, 

have further properties that can reduce most of the interscale dependencies, leaving only dependencies 

among neighboring coefficients within the same subband [26]. 

 
 Foreman Coastguard Silent Mobile 
Autocorrelation Coefficient 0.5340 0.6733 0.5100 0.3763 
Table 1 Ratio of correlation between neighboring coefficients to the average coefficient variance for the LL subband 
of L-frames of Foreman, Coastguard, Silent, and Mobile after a 2 temporal level-4 spatial level decomposition. 
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Figure 2. Experimental examples that the Gaussian assumption for the low-frequency wavelet coefficients of the 
MCTF-based decomposition (with four spatio-temporal levels) is accurate. 

In order to capture the experimentally-observed heavy-tailed non-Gaussian distribution of wavelet 

coefficients within each subband, in this paper high-frequency wavelet coefficients are modeled as a 

doubly-stochastic process, i.e. a Gaussian distribution parameterized by Θ , which is exponentially 

distributed with parameter 2σ :  

 
1
2

2
1~ ( )p e σ

θθ
σ

−Θ =  (3) 

In this case, each high-frequency wavelet coefficient x  can be modeled by a random variable X  with 

marginally Laplacian distribution and variance 2σ  [36]:  

 
2 1

22
1

| |2
2

0 0

1 1 1( ) ( | ) ( )
22

x xX p x p x p d e e d eσ σ
θ

θθ θ θ θ
σπθ σ

∞ ∞
−− −= = =∫ ∫∼  (4) 

where ( )p x  indicates the probability density function (PDF). Figure 3 demonstrates the accuracy of the 

doubly-stochastic model of (4) for different spatio-temporal high-frequency subbands. In addition, Table 

2 presents the change in the subband statistics for different spatio-temporal levels across the MCTF 

decomposition and the corresponding rate for terminating the coding of the wavelet coefficients of each 

spatio-temporal level at several bitplanes. The coder of [29] was used for the examples of this section. 

While we focused on 4x4 blocks in Table 2, similar results can be shown for larger block sizes (e.g. 8x8), 
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since, for natural images or error frames, wavelet coefficients within such small areas of high-frequency 

subbands are modeled accurately with the same local parameter θ . 

Based on the results of Table 2 we conclude that there is significant variation in the rate associated with 

each spatio-temporal level, ranging from 0 bpp to almost 1 bpp for low-rate coding ( min 7B =  in Table 2) 

and from 0.15 bpp to almost 5 bpp for medium and high rate coding ( min 3B =  in Table 2). Furthermore, 

the higher (coarser) spatio-temporal high-frequency subbands exhibit significant variance and the 

correlation of the subband statistics (parameter θ ) varies significantly as well. Consequently, there is a 

significant portion of the coding rate attributed to them for a variety of quantization thresholds; thus, 

accurate modeling of the rate-distortion-complexity characteristics of high-frequency spatio-temporal 

subbands is important for predicting the overall R-D-C behavior. Finally, although the results of Table 2 

reveal certain trends between the spatio-temporal subband rate and the model parameters ( 2σ  and θ ), the 

overall rate contribution of each subband depends not only on the statistics of the input but also on the 

details of the invoked coding algorithm. Hence, a detailed theoretical analysis of the coding operations as 

a function of the source model is of paramount importance for precise R-D-C estimations, and intuitive 

models based on the source statistics and experimental observations do not suffice. 
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Figure 3. The discrete wavelet transform of an H  frame of temporal level two (top left) and plots of the doubly-
stochastic (Laplacian) model and simulation data for several H  frames of different spatio-temporal resolutions. 

Subband variance 2σ , [variance of θ ] Rate (bpp) for various decoded bitplanes minB  Temporal(T)-
Spatial(S) LH HL HH, LL (if exists) 7 6 5 4 3 
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level 
1T-1S 3.18, [12.1] 1.87, [9.1] 1.61. [7.8] 0 0 0.0021 0.0261 0.1489 
2T-2S 6.59, [37.5] 5.55, [22.8] 4.46, [25.7] 0.0017 0.0219 0.1216 0.3910 1.0257 
3T-3S 18.2, [60.3] 14.8, [70.1] 11.7, [63.1] 0.1178 0.4209 0.9630 1.7071 2.7121 

4T-4S 39.7, [241] 33.2, [496] {26.0,[144]},
{53.1, 690]} 0.9697 1.7323 2.6717 3.7929 4.9343 

Table 2. Examples of subband variances as well as the variance of the correlation θ  (for block sizes of 4 4× ) 
formed across the spatio-temporal MCTF subbands of sequence Foreman, along with the corresponding bitrates for 
several values of minB . 

We denote the minimum decoded bitplane threshold level as min
min

2B
BT = . In addition, we define the 

following parameters for all bitplanes b : 

 b
b

Tυ
σ

=  (5) 

 2 b
b e υρ −=  (6) 

where bυ  describes the ratio of the threshold of bitplane b  to the variance of each wavelet coefficient, and 

bρ  is the probability of significance of a wavelet coefficient under a certain bυ  under the model of (4).  

B. Probability of Block Significance at Bitplane b  
We begin this section by introducing some notation. We define the significance test of a block of n  

coefficients with respect to a threshold bT  as sig( , ) {0,1}bT n ∈ , where sig( , ) 1bT n =  if at least one 

coefficient within the block is found significant with respect to the threshold bT , and sig( , ) 0bT n =  

otherwise. We also define the newly significance test as newsig( , ) {0,1}bT n = , which returns one if the 

block was found to be significant at bitplane b  and insignificant at bitplane 1b + , i.e. sig( , ) 1bT n =  and 

1sig( , ) 0bT n+ = . For notational abbreviation, the probability of a block being significant or newly-

significant at bitplane b  is indicated by band
,bv nχ  and band

,bv nδ , respectively, with band {low,high}=  indicating 

the frequency subband that the block belongs to. Note that these metrics depend on bυ , which is a 

function of the bitplane b as well as the variance of subband coefficients, 2σ . Let us first consider a high-

frequency spatio-temporal subband, which may be any subband of an error ( H ) frame, or any high-

frequency subband of an L  frame. The probability that a block of n  wavelet coefficients is found 

significant during (or before) the significance pass at bitplane b , high
,b nυχ , is no more than the probability 

that at least one coefficient in the block is found significant when compared to 2b
bT = . Thus, we have: 

 { }high
, Pr sig( , ) 1 1 Pr{| | }

b n b bT n Tυχ ∞= = = − ≤X  (7) 

where ( )1,..., nX X=X  is a length-n  random vector of variables iX  (1 i n≤ ≤ ) for coefficients in the 

same block, and | |∞• is the infL  norm. Considering that block sizes are generally small enough to capture 

local variances, we follow the doubly stochastic model in equation (3). Given Θ , the conditional joint 
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distribution of X  is then a uncorrelated Gaussian random vector. Given that the variance of the subband 

coefficients is 2σ , the probability density function of X  is: 

 
2 2 2
1 22

1 1 ( ... )
2

2 2
0 0

1 1
( ) ( ) ( | )

(2 )
nx x x

np p p d e e d
θ

σ θθ θ θ θ
σ πθ

∞ ∞
− − + + +

+ +

= = ⋅∫ ∫x x  (8) 

where 1 2( , ,..., )nx x x=x  is a vector of coefficient values, and ( )p x  is the n-dimensional PDF of X .  

Proposition 1: The probability that a block of size n is significant compared to threshold bT  can be 

approximated by:  

 
2

high
, 1.296exp

ln( ) 0.166b
b

n nυ
υχ

⎧ ⎫⎪ ⎪⎪ ⎪≅ ⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
 (9) 

Proof: See Appendix A.              ■ 

For low-frequency subbands, assuming sufficiently-decorrelated Gaussian distributed coefficients, the 

probability of block significance is simply the n -dimensional Gaussian tail probability along one of the 

orthogonal axes: 

 ( )low
, erfc

2b

n
b

nυ
υχ ⎡ ⎤= ⎢ ⎥⎣ ⎦

 (10) 

where ( ) ( )erfc 1 erf
2 2
b bυ υ= − , and ( )erf

2
bυ  can be piecewise approximated by (11): 

 ( )
0.2 (4.4 )

erf .98
2

1

b b
b

υ υ
υ

⎧⎪ −⎪⎪⎪⎪≈ ⎨⎪⎪⎪⎪⎪⎩

, 0 2.2

,2.2 2.6

, 2.6

b

b

b

υ
υ

υ

≤ ≤

< <

≥

 (11) 

in order to avoid numerical integrations during the model calculation.  

C. The Probability a Block is found Newly Significant at Bitplane b  
In order to model the number of operations performed during the significance pass at each bitplane, it is 

necessary to derive the probability that a block is found significant at bitplane b , but not at any higher 

bitplanes. This is due to the fact that in all coding algorithms using quadtrees of wavelet coefficients, once 

a block is found significant at bitplane b , it is moved into the refinement list and its significance is not 

encoded at the subsequent bitplanes min1, ,b B− … . 

Proposition 2: The probability that a block of n  coefficients in a high-frequency subband is found 

significant at bitplane b , but it is insignificant at bitplane max1, ,b B+ … , is: 

{ }high high high
, , ,Pr newsig( , ) 1 (1 )

b b bn b n nT nυ υ υδ χ χ= = ≅ −                                      (12) 

Proof: See Appendix B.                    ■ 

We note that our proof only specifies the existence of a large enough n  for the approximation above, but 

it does not give the exact lower bound for n . To verify the accuracy of this estimate for typical blocks 

during the quadtree significance passes, we did a qualitative comparison of plotted curves for 
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erf( )/ erf(2 )x x  raised to various powers. For the minimum block size 16n =  used in practical coders [20] 

[24] [25] the match is approximately equal (Figure 4). The fit only improves for a larger n . 

For low-frequency subbands, we will assume decorrelated coefficients. Our result is given below. 

Proposition 3: The probability that a block of n  coefficients in a low-frequency subband is found 

significant at bitplane b , but it is insignificant at bitplane max1, ,b B+ …  is: 

 
( ) ( )[ ] ( )[ ] ( )
( )[ ] ( ) 1

low
,

low low
, ,

erfc erfc 2 erf 2 erf
2 2

erf 2 1 erfc (1 )
2

b

b b

n nn nb b
n b b

nn b
b n n

υ

υ υ

υ υδ υ υ

υυ χ χ
+

⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤≅ − = −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (13) 

Proof: The approximation of (13) is a straightforward result of Lemma 3 in Appendix B.       ■ 
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Figure 4. Plot of: erf( )x  vs. erf( )/ erf(2 )x x  (left), and [ ]16erf( )x  vs. [ ]16erf( )/ erf(2 )x x  (right). 
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Figure 5. Simulation and model prediction of significance and newly-significance of 4 4×  blocks in various high-
frequency spatio-temporal subbands. 

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
HL3 subband

bit-plane level b

pr
ob

. s
ig

ni
fic

an
t b

lo
ck

s

 

 
sig. blocks simulation
sig. blocks model
newly sig. blocks sim.
newly sig. blocks model

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Foreman sequence, LL subband

bit-plane level b

pr
ob

. s
ig

ni
fic

an
t b

lo
ck

s

 

 
sig. blocks simulation
sig. blocks model
newly sig. blocks sim.
newly sig. blocks model

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Silent Sequence, LL subband

bit-plane level b

pr
ob

. s
ig

ni
fic

an
t b

lo
ck

s

 

 
sig. blocks simulation
sig. blocks model
newly sig. blocks sim.
newly sig. blocks model

Figure 6. Simulation and model prediction of significance and newly-significance of 4 4×  blocks in LL  subbands 
of L  frames. 
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To verify the accuracy of the proposed model of (9) and (12), Figure 5 demonstrates the model prediction 

of the probability of block significance and newly-significance (with 16n = ) for several high-frequency 

subbands belonging to various temporal levels in MCTF-decomposed frames of video sequences. 

Similarly, we plot several examples that validate the proposed model of (10) and (13) (low-frequency 

spatio-temporal subbands) in Figure 6. The experimentally-derived significance and newly-significance 

for low and high-frequency spatio-temporal subbands are in agreement with the theoretical derivations for 

a large variety of cases, as shown by these experiments. In addition, the model validation reveals several 

interesting properties. Firstly, the approximation (13) for the significance probability of blocks in the low-

frequency spatio-temporal subbands suggests that most of the blocks within the subband will be found 

newly-significant at the same bitplane, or at most at two consecutive bitplanes. This observation can be 

intuitively explained due to the removal of high-frequency (detail) information based on the repetitive 

application of the low-pass analysis filter. Experimental validation is given in Figure 6, where most of the 

blocks become significant within bitplanes {10,9}b = . Secondly, the high-frequency spatio-temporal 

subbands exhibit a heavy-tail distribution based on the doubly-stochastic model of (4) and therefore the 

probability of significance (and newly-significance) is more skewed, as seen in Figure 5.  

IV. Rate Approximation of Intra-band Embedded Coding 
In this section, we derive rate estimations for an embedded coding scheme using a quadtree 

decomposition structure followed by block-coding for the maximum depth of the quadtree. This follows 

the system model outlined in Figure 1. Using the high-frequency and low-frequency wavelet coefficient 

models and the previously-derived probability estimates from Proposition 1-Proposition 3 in Section III, 

we derive the rate of quadtree coding, block coding, and coefficient refinement coding. The derived rate 

estimates can be modified to fit a variety of wavelet coding schemes consisting of subsets of the general 

structure of Figure 1, i.e. quadtree-based coders [22] [23], and block-based coders [19] [24] [25].  

A. Rate of Quadtree Significance-map Coding for High-frequency Spatio-
temporal Subbands 
In most video frames, the probability of block significances at various levels in the quadtree varies 

considerably depending on the spatio-temporal subband statistics and the block size, since small blocks 

encapsulate small areas while large blocks represent large areas within each subband. For most practical 

wavelet video coders, we can simplify our analysis by assuming that the significance map encoding of 

quadtree structures remains virtually uncompressed. An example that strongly suggests this property is 

given in Table 3, where operational measurements from the coder of [29] were used for a variety of input 
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video sequences. Note that while the rate is not identically 1 bit per quadtree symbol encoded, the 

difference in size between quadtrees leads to a distribution that cannot be well compressed, especially for 

lower bitplanes. In the remainder of this paper, we assume that the rate of significance-map coding for 

blocks in the quadtree structure is approximately equal to the number of times significance-map symbols 

are encoded. We additionally assume that coefficients in blocks of all sizes are sufficiently correlated so 

that the i.i.d. joint Gaussian distribution with a fixed local variance θ  can be used to model them.  

The significance of a block in the quadtree decomposition may be encoded in two cases: i) If the block is 

found newly significant at bitplane b , its significance will be encoded at that moment and it will never be 

encoded again; ii) if the block’s parent is found to be significant at bitplane b  even though the block itself 

is non-significant, it will be coded continuously until the block is found newly significant. Condition (ii) 

is added in most state-of-the-art coders to exploit intra-band spatial correlation of wavelet coefficients.  

Under the above-stated two conditions, we now derive the probability of block significance, which 

corresponds to the rate of block significance coding. In general, if a block at quadtree level k , 

2 k K≤ ≤ , has n  coefficients, its parent block at level 1k −  has 4n  coefficients2 . The number of 

symbols (or rate) used to encode the significance of a block of size n  found significant at bitplane b  

depends on the probability that its parent is found significant at higher bitplanes b r+ , 0r ≥  (which 

means that the block significance will be coded a total of 1r +  times). Given the subband variance 2σ , 

this can be formulated as: 

 
max

block_newsig
0

( , ) Pr{sig( , 4 ) 1 | newsig( , ) 1}
B b

b b r b
r

R n T n T nυ
−

+
=

= = =∑  (14) 

Averaging the rates over all bitplanes min max, ,B B… , we get the following rate estimate: 

 

max

min

min

max max

min

block_sig block_newsig

band
,

0

( , ) Pr{newsig( , ) 1} ( , )

Pr{sig( , 4 ) 1 | newsig( , ) 1}
b

B

B b b
b B

B B b

n b r b
b B r

R n T n R n

T n T nυ

υ υ

δ

=
−

+
= =

= =

= = =

∑

∑ ∑
 (15) 

where band {low,high}∈  depending on the type of frequency subband we are interested in. The 

probability within the summation of (14) can be estimated by obtaining the local distribution of parameter 

θ  given the newly-significant child block at bitplane b , and then determining the probability of a 

significant coefficient (in the other 3 child blocks) at bitplane b r+ , thereby deriving the conditional 

probability of significance for the parent block of 4n  coefficients: 

                                                 
2 In the subsequent derivations of this paper, whenever blocks of size n  and 4n  appear in the same expression, it is 
implied that the first is the child block at quadtree level k  while the second is the parent block at quadtree level 

1k − .  
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 { } { }Pr newsig( , ) 1 | sig( , 4 ) 1 Pr newsig( , ) 1 |b b r bT n T n T n+= = = = Θ  (16) 

where:  

 ( ) { }
{ }

( ) 2
4

1
2

band
,4

11 erf
2Pr sig( , 4 ) | ( )

| sig( , 4 )
Pr sig( , 4 )

b r

n
b r

b r
b r

b r n

T e
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p T n
T n

θ
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υ

θθ θ σθ
χ

+

−+ +

+
+

+

⎛ ⎞⎡ ⎤ ⎟⎜ − ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎣ ⎦Θ = =∼  (17) 

Thus, (16) becomes: 
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⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎟⎜ ⎟⎜= − −⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎜⎟ ⎟⎜⎟⎜⎜ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∫

∫
(18) 

Similar to the derivation used in Appendix A, [ ]erf( / ) nT x  can be seen as an indicator function. Hence, 

we approximate the integral of (18) by treating the two multiplicative erf( )⋅  terms as an indicator and a 

step function using the approximation of (50) with the parameter 2
nγ  estimated by (54) (see the full 

derivation in the proof given in Appendix A):  

 ( ) 4 2

1.2961 erf I
2 ln(4 ) 0.166

n
b r b rT T

n
θ

θ
+ +⎛ ⎞⎡ ⎤ ⎟⎜− ≅ ≥ ⎟⎢ ⎥ ⎜ ⎟⎟⎜ +⎝ ⎠⎣ ⎦

 (19) 

 ( ) ( ) 22
1 1

1.296 1.296erf erf I
2 2 ln( ) 0.166 ln( ) 0.166

n n
b bb bT TT T

n n
θ

θ θ
+ +⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎟⎜− ≅ ≤ ≤ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎟⎜ + +⎝ ⎠⎣ ⎦⎣ ⎦

 (20) 

where I  is the indicator function. Based on (19) and (20), we can approximate (18) by: 

( )1
band band

,4 ,bandband ,, ,

1

1

b r b
bb

n n
nn r

υ υ
υυ

χ χ
δγ + +

+⎧⎪ −⎪⎪⎪≅ ⎨⎪⎪⎪⎪⎩

22

1.296 1.296,
ln( ) 0.166 ln(4 ) 0.166

, otherwise

b rb TT
n n

+≤
+ +  (21) 

Combining (15), (19)–(21) together, we obtain the final expression: 

 
max max

min

min

band band
block_sig , , ,

0
( , )

b b

B B b

B n n r
b B r

R n υ υυ δ γ
−

= =
= ∑ ∑  (22) 

The average rate per coefficient is block_sig( , )/bR T n n . If we let n  be the smallest block size, then we must 

sum up the rates for K  levels of the quadtree decomposition in the subbands of each spatial resolution to 

obtain the total rate for quadtree encoding: 

 min
min

1
block_sig

quadtree
0

( , 4 )
( )

4

K k
B

B k
k

R n
R

n
υ

υ
−

=
= ∑  (23) 

16bT =  32bT =  64bT =  
H  frames, temporal level 3, spatial level 2 

Symbols Rate Symbols Rate Symbols Rate 
Coastguard, HL  2254 0.97 1556 0.85 447 0.73 
Foreman, HL  1056 0.87 571 0.79 284 0.79 

Silent, HL  1787 0.91 1046 0.81 348 0.79 
Table 3. Examples of the number of 8 8×  blocks encoded at each bitplane (symbols) and the average rate of 
encoding each block significance (rate is measured in bits-per-symbol), using the coder of [29]. Note that the rate 
per symbol increases as the bitplane decreases and approaches one bit-per-symbol. 
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B. Estimation of Block-coding Rate and Coefficient Refinement-coding 
Rate in High-frequency Spatio-temporal Subbands 
In this subsection, we estimate the rate of encoding both the significance and the refinement of 

coefficients based on the quantization level (or minimum bitplane level) 
minBT .  

First, we consider the significance rate. In block-based coders like JPEG2000 [19] or ESCOT [25] (i.e. 

intra-band coders that do not employ quadtree decompositions), a subband is simply divided into blocks, 

which are then coded independently. In these algorithms, the significance of each coefficient within the 

block is encoded. If a coefficient is significant, then its refinement bits are also encoded. The significance 

of a coefficient relative to the threshold 
minBT  is a binary value. Hence, the rate from independently 

encoding the significance of each coefficient can be expressed by the binary entropy function ( )min
H Bρ , 

where 
minBρ  is the probability that the coefficient is significant compared to 

minBT . However, when 

context-based entropy decoding is employed, dependencies between neighboring coefficients can be 

exploited, such that the rate (based on the doubly-stochastic model) is [9]: 

 ( )( )2
2 min

min min min

1
1.407

ZC 2
0

1( , ) H erf H( ) 0.6707
2

B
B B B

TR n e d e
θ υσ

θ

υ θ ρ υ
θσ+

∞
− −

=

= ≅ −∫  (24) 

A common weakness of using only block-coding methods without quadtree coding [19] [24] [25] is that 

the spatial distribution of local variances in the spatio-temporal subbands is not exploited, since the same 

context-conditioning scheme is utilized for all blocks. Coders combining quadtree coding and block-

coding techniques [20] [21] exploit the spatial correlation of local variances by using the quadtree 

decomposition which inherently assigns fewer symbols to the insignificant areas: if all coefficients within 

a certain block are insignificant, quadtree-based coders return a single “0” for that block and do not 

encode the coefficients within that block. However, for (minimum-sized) blocks that are significant, 

context coding is used for the coefficients in the block. Hence, the effective significance coding rate for 

the blocks resulting at the maximum quadtree depth depends on the probability of the smallest blocks 

being significant, and the context coding rate conditioned on the block being significant: 

 
min min min

min min min

ZC,QB

0

( , ) H(sig( ,1) | sig( , ), )

( ) Pr{sig( , )| } H(Pr{sig( ,1) | sig( , ), })

B B B

B B B

R n T T n

p T n T T n d
θ

υ

θ θ θ θ
∞

=

= Θ

= ⋅ ⋅∫
 (25) 

where 
min

sig( ,1)BT  indicates the significance test at bitplane minB  for an individual coefficient within a 

wavelet subband. The probability of coefficient significance given block significance and local variance 

θ  can be solved using Bayes rule: 
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min

min min min
min min

minmin
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      (26) 

The resulting expression is: 
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∫  (27) 

Notice that the expression is parametrical to the number of coefficients per smallest block, n . A 

minimum block size of approximately 16n =  has been shown to achieve the most savings over pure 

context-based coding. 

Consider now the rate of refinement-coding for significant coefficients. For a given error subband, the 

rate of quantizing a significant coefficient X based on its neighborhood information XN  can be 

estimated as [9]: 

 min
min

min min min

2
refinement 2 0.8

log1 0.2988
( ( ) | ) 1 log ( 1)

1 ( 0.9773)
B

B
B B B

R Q X X
ρ

ρ ρ υ
≅ − − − −

− +
N  (28) 

Therefore, the total coding rate can be estimated as: 
 

min min min min minhigh quadtree ZC,QB refinement( ) ( ) ( , ) ( ( ) | )B B B B BR R R n R Q X Xυ υ υ ρ= + + N  (29) 

C. Coding Rate of Low-frequency Spatio-temporal Subbands 
Following the independent Gaussian model assumption for the low-frequency subbands of L  frames, we 

derived the following rate estimate for the coding of low-frequency wavelet coefficients.  

Proposition 4: The rate of encoding a low-frequency coefficient can be approximated as follows: 

 ( )( ) ( ) ( )
2

minmin min min min
min

min

low 2 222 2 2
2( ) H erf erfc log erfc exp( )log

2
B B B BB

B
B

eR eυ υ υ υυπυ
υ π

⎛ ⎞⎟⎜≅ + − −⎟⎜ ⎟⎟⎜⎝ ⎠
 (30) 

Proof: We use the estimation method of Mallat and Falzon [28] for the rate in the low-rate (high 

distortion) region: 

 ( )
min min min min min

min
min min min

H( ( )) H( ) ( )H( ( ) | ( ))

H(erf ( )H( ( ) | ( ))
2

B B B B B

B
B B B

Q X X T p X T Q X X T

p X T Q X X T
υ

≅ ≥ + ≥ ≥

= + ≥ ≥
 (31) 

For significant coefficients, we use the high-resolution hypothesis from [19], which is: 
 

min min2H( ( )) H( ) logB BQ X X υ≅ −  (32) 

This gives us: 
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e

 (33) 

The proof follows from substituting (33) into (31).           ■ 

In order to avoid integrations in (30), we use the approximation for ( )min
2erf Bυ  given in (11). 

Notice that, for high-rate (low distortion) regions where the variance of each coefficient is significantly 

larger than the quantization stepsize (i.e. 
minBυ  is small), ( )minerfc 1

2
Bυ ≈ , and the rate estimate of (30) 

becomes the well-known high-rate approximation [19]: 
 

min minlow 2 2( ) log 2 logB BR eυ π υ≅ −  (34) 

Table 4 gives an example of the accuracy of (30) as a function of quantization step. We also present the 

results with the more conventional model of (34) used in prior work [9] in order to indicate the superior 

approximation achieved with the proposed estimation of (30). Notice from Table 4 that, although the 

proposed model still remains relatively inaccurate when only the highest 2-3 bitplanes are decoded, it 

becomes increasingly accurate as the number of decoded bitplanes increases. 
Quantization 
step size ( bT ) 

Encoded size 
(bits) 

Conventional 
approximation [9] 

Error Proposed 
approximation 

Error 

1024 1336 3289 146.2% 941 -29.6% 
512 3208 4513 40.7% 3019 -5.9% 
256 5032 5920 17.7% 5128 1.9% 
128 6816 7507 10.1% 7053 3.5% 
64 8472 9080 7.2% 8856 4.5% 
32 10096 10661 5.6% 10595 4.9% 

Table 4. Example comparison between the actual encoded rate (“Encoded size” using the coder of [29]), the 
conventional approximation from prior work, and the proposed approximation of (30) for an 44x38 LL  subband of 
an L -frame in the Foreman sequence.  

Based on the derived estimations of (29) and (34), the average coding rate per pixel over all subbands of 

MCTF-based wavelet video coding is: 

 
min

3

total low, ,0 high, ,
1 1

( ) 4 4
J

J j
B J j m

j m
R R Rυ − −

= =
= +∑∑  (35) 

where ( )band, ,j m  indicates which model band={low,high}  is used to determine the rate of the subband 

of the thm  orientation in the thj  scale of the wavelet frame decomposition, with 1j =  indicating the 
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finest resolution, and j J=  indicating the coarsest resolution (lowest frequency). low, ,0JR  indicates the 

coarsest LL  subband. 

V. Distortion Estimation of Combined Quadtree and Block Coding 
followed by MCTF Reconstruction 
In this section we determine the distortion of the various coding passes mentioned previously for the 

different subbands, and a general formulation of the average distortion for the combined decoding 

followed by MCTF reconstruction is derived.  

A. Distortion of Combined Decoding followed by Inverse Spatial DWT 
As mentioned in Section II, SAQ followed by the accumulation of all coding passes up to any bitplane 

minB  corresponds to a double-deadzone uniform quantization of wavelet coefficients. In other words, 

once the produced bitstream is truncated at bitplane minB , we have a quantizer of the form given in (1) 

with min
min

2B
BT = Δ . The average distortion of a high-frequency subband when a uniform quantizer with 

this deadzone is applied is [9]: 

 
( ) ( ){ }min min min min min

2
high

2 22 2 2

ˆE[( ) ]
1/ 2 1 / 1B B B B B

D X X
ρ υ ρ υ ρ σ

= −
= − + + − −

 (36) 

where 2σ  is the variance of the Laplacian-distributed coefficients. We now derive the distortion of the 

low-frequency subband of an L  frame. 

Proposition 5: The estimated distortion for the low-frequency spatio-temporal subband is: 

 ( ) ( )
2
minmin min min2

min

2
2

low
2

erf erfc
122 2

BB B B
BD e

υυ υ υ
υ σ

π
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 (37) 

Proof: Based on the procedure in [28], we separate the distortion calculation lowD  into the distortion of 

non-significant coefficients (deadzone), and the distortion of significant coefficients. The deadzone 

distortion is the variance of a truncated Gaussian at 
minBT , which can be shown to be 

( )
2
min min2

minlow,zero
2

1 / erf
2

B B
BD e

υ υ
υ

π
−= −  using integration by parts. For significant coefficients, we use 

the high-rate assumption [19] [28], min
2

2
low,nonzero 12

BD
υ

σ≅ . Hence, the total distortion is the weighted sum 

of the two metrics, or: 

 ( ) ( )min min
low low,zero low,zero low,nonzero low,nonzero low,zero low,nonzeroerf erfc

2 2
B BD p D p D D D

υ υ
= + = +       (38) 

which gives us (37).              ■ 

Notice that, similar to the corresponding rate estimation of (30), for low-distortion (high-rate) regions 

where the variance of each coefficient is significantly larger than the quantization stepsize (i.e. 
minBυ  is 
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small), ( )minerfc 1
2

Bυ ≈ , and the distortion estimate of (37) converges to the well-known high-rate 

approximation of min
2

2
12
B

lowD
υ

σ≅ . 

For all the different subbands at all scales of the DWT, we get an average distortion: 

 
3

low, ,0 high, ,
1 1

4 4
J

J j
J J j j m

j m
G D G D− −

= =
= ⋅ + ⋅∑∑d  (39) 

where jG  is the synthesis gain of the wavelet filter at the j th scale level, and band, ,j mD  is the expected 

distortion of the m th type  subband at the j th scale level, with band={low,high} . 

B. Distortion for MCTF Reconstruction 
For generalized MCTF filtering, distortion takes on a linear combination of each L  and H  frame 

produced by the decomposition [9] [30]: 

 
MCTFMCTF

MCTF MCTF MCTF
MCTF

1
(0) ( ) ( ) ( ) (1) ( )( ) ( ) ( )

1
1 1 1

[ , ,..., ][ ,..., ]
k TT

k T T Tk j j T
TL L LH H H

k j j
B A A

−

= = =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= + =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∏ ∏d d d d d dA B B  (40) 

The last derivation of (40) is valid because the weight of each H -frame at each temporal level is a 

function of only the average number of connected pixels in the GOP. However, we note that this 

approximation can also be applied across several GOPs if the motion between GOPs is similar. In our 

experiments, linear minimum mean square error (MMSE) fitting is used to determine the weights of L -

frames and H -frames and predict the distortion associated with the sequence.  

VI. Complexity of Entropy Decoding and IDWT  
A. Generic Complexity Modeling for Video Decoding 
Since many multimedia decoders today typically reside in a variety of handheld (Video iPod, 3G 

cellphones, etc) and portable devices (notebooks, PDAs) that have stringent power and processing 

constraints, they are in general more resource-constrained than encoders. Hence, while a similar 

complexity estimation framework can be likewise derived for the encoder, we opt to focus on the 

decoding complexity in this paper. A second (and more algorithm-related) reason is that the encoding 

complexity is strongly dominated by the motion estimation complexity rather than the coding operations. 

Hence, accurate modeling of embedded encoding per-se is of a lesser importance for the R-D-C analysis 

of the encoder, as it is for the decoder. 

In order to represent different decoder (receiver) architectures in a generic manner at the encoder (server) 

side, in our recent work [10] [11] we have deployed a concept that has been successful in the area of 

computer systems, namely, a virtual machine. The key idea of the proposed paradigm is that the same 

bitstream will require/involve different resources/complexities on various decoders. We adopt a generic 
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complexity model that captures the abstract/generic complexity metrics (GCMs) of the employed 

decoding or streaming algorithm depending on the content characteristics and transmission bitrate. GCMs 

are derived by computing or estimating the average number of times the different operations are executed, 

such as the number of read symbols during entropy decoding, the number of multiply-accumulate 

operations performed during inverse transform, the number of motion compensation operations per pixel 

or coefficient, and the frequency of invocation of fractional pixel interpolation. The value of each GCM 

may be determined at encoding time for each adaptation unit q  (e.g.  the q -th video frame, or the q -th 

macroblock) following experimental or modeling approaches [10]. Our previous work demonstrated that 

the mapping of the derived GCMs to execution time provides a very accurate and straightforward manner 

of predicting the real (system-specific) complexity [35]. The added advantage of GCMs however is that 

they are not system-specific and they are also not restricted to a particular coding structure (predictive or 

MCTF-based). This makes them applicable for a broad class of motion-compensated video decoders. In 

this paper, unlike our previous work [10] [11], we focus on the derivation of entropy decoding and 

inverse transform GCMs based on stochastic models that analytically express the dependencies on the 

source characteristics and the algorithm operations. 

B. Entropy Decoding Complexity  
The complexity of decoding the quadtree significance at bitplane b  depends on the size of the quadtree 

before the significance pass. Since the quadtree is virtually uncompressed for the vast majority of cases, 

the complexity is of the order of the quadtree significance map encoding rate: 
 

min minquadtree quadtree( , ) ( , )B BC n R nυ υ≅  (41)  

with 
minquadtree( , )BR nυ  given by (23) based on Proposition 1-Proposition 3. This includes both the number 

of read symbols (RS) associated with quadtree coding, and writing the significances into the quadtree 

structure.  

Concerning block coding, we group together the number of symbols read from significance coding and 

refinement. Notice that, as long as the coefficient is in a significant block at bitplane b  or higher, its 

significance will be coded, or it will be refined at bitplane b . Summing up all symbols read in the passes 

until bitplane minB  we have:  

 
max max

min

min min

1 low 1 high
block , ,( ) 4 4

b b

B B
K K

B n n
b B b B

C n nυ υυ χ χ− −

= =
= +∑ ∑  (42) 

where 14K n−  is the number of coefficients in the subband. Notice that the combination of (41) and (42) 

predicts the number of RS operations during entropy coding/decoding of a low or high-frequency spatio-
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temporal subband to a certain bitplane minB . Since each subband is encoded independently, the 

complexity metrics must first be estimated for each subband and then summed in the same weighted 

fashion as the rate calculation. In other words, for a given frame i , 1 i N≤ ≤ , we have: 

 
min min min

3

op op, ,0 op, ,
1 1

( ) 4 ( ) 4 ( )
J

i J j
B J B j m B

j m
C v C Cυ υ− −

= =
= +∑∑  (43) 

where { }op quadtree,block∈  and 
minop, , ( )j k BC υ  is the quadtree and block coding complexity for each 

subband at spatial resolution j . Having obtained the RS estimates for quadtree and block coding, the 

expression 
min minquadtree quadtree block block( ) ( )i i

B BC v C vα α+  derives an estimate of the real complexity for frame 

i , where opα  is an approximate algorithmic (and platform dependent) complexity associated with each 

symbol used to perform operation op . See our recent work [35] for extended examples of adaptive 

generation of weighting factors for mapping GCM estimates to platform-specific complexity. 

C. Complexity of the Inverse Spatial DWT 
The complexity of the inverse DWT depends on the number of taps of the filter used as well as on the 

implementation method (convolution or lifting). In our prior work [11], we have modeled the transform-

related complexity of a coding system that processes N  video frames by expressing it as a decomposition 

into two functions relating to: i) the percentage of non-zero coefficients for a given SAQ threshold bT  

(function nonzeroT ); ii) the sum of run-lengths of zero wavelet coefficients (function runlenT ). The 

motivation behind (i) is that in an input-adaptive implementation, the number of non-zero multiply-

accumulate operations in the synthesis filter-bank is directly proportional to the percentage of non-zero 

coefficients. Moreover, the distribution of the zeros within the transform subbands (as expressed by the 

sum of run-lengths) affects the number of consecutive filtering operations that can be avoided altogether. 

Once an estimate of nonzeroT  and runlenT  is derived, the complexity of the inverse spatial DWT (non-zero 

MAC operations) is formulated as [11]: 
 nonzero nonzero runlen runlen dec_constFCN N N N N N= ⋅ + ⋅ + ⋅C C C 1T T  (44) 

with nonzero
NT  and runlen

NT  the N -element vectors of the corresponding functions and the parameter vectors 

nonzero
NC  and runlen

NC  can be estimated based on linear regression and off-line training [11]. In our current 

work two main differences exist in the derivation of the non-zero MAC operations of the IDWT in 

comparison to [11]. Firstly, linear MMSE fitting is used to determine nonzero
NC , runlen

NC  and predict the 

number of non-zero MAC operations associated with the sequence. This is equivalent to the process 

performed for the derivation of the final MCTF distortion in (40) (Section V.B). More importantly, in this 

paper, we present an analytical calculation of the decomposition functions mentioned above based on 
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stochastic source models. In this way, the proposed analytical derivations create a clear link between the 

source parameters (variances of the distributions) and the derived complexity estimates. The 

decomposition function nonzeroT  for the high-frequency spatio-temporal subbands is derived by (6), while 

for the low-frequency spatio-temporal subbands it is derived by: 
 ( )min

nonzero 2erfc Bυ=T  (45)  

with ( )min
2erf Bυ  approximated as in (11). In addition, runlenT  is derived by the percentage of non-

significant blocks for a certain SAQ threshold 
minBT , expressed by: 

 
min min

band
runlen ,Pr{sig( , ) 0} 1

BB nT n υχ= = = −T  (46)  

with 
min

band
,B nυχ  estimated by (9) for the high-frequency temporal subbands and by (10) for the LL  subband 

of the L  frames. Following the lifting dependencies of popular wavelet filter-pairs, we set an average of 

64n =  since a window of 7 7×  coefficients and 9 9×  coefficients is used in the lifting steps of the 

inverse DWT for the low and high-frequency subbands [19].  

Additionally, note that the number of taps also affects memory usage in the system. While memory usage 

is another concern in battery-limited devices, in this work we are primarily concerned with time-based 

complexity, as this more greatly affects the performance of delay-sensitive applications. 

VII. Simulation Results 
In this section we validate the derived analytical R-D-C expressions of this paper by presenting 

experiments with three common interchange format (CIF) resolution sequences (Coastguard, Foreman, 

Silent) that encapsulate a variety of motion and texture characteristics. Apart from validating the 

theoretical modeling of rate-distortion and complexity-distortion, the interplay of rate and complexity for 

achieving the same video quality under different coding structures is discussed.   

For validation purposes, we utilize the spatial-domain MCTF version of the coder of [29] that performs 

multihypothesis MCTF decomposition with a variety of temporal filters and intra-band quadtree-based 

coding of the significance maps, and block-based intra-band coding after a block size of 4 4×  

coefficients is reached in the quadtree decomposition. Figure 7–Figure 9 present our results for a variety 

of spatial (S) and temporal (T) decomposition levels. Distortion, as estimated by (36)–(40) in Section V, 

is converted into peak signal to noise ratio (PSNR). The entropy-decoding complexity is quantified by the 

number of read symbols per second. For the inverse transform, we plot the number of non-zero MAC 

operations per second (FC/s). The results demonstrate that the proposed R-D-C modeling predicts the 

experimental behavior of the advanced MCTF-based wavelet video coder accurately for all the different 
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cases under investigation. Different choices for MCTF (temporal) levels and spatial decomposition levels 

lead to different tradeoffs in rate and complexity for the same distortion in the decoded video.  

Since the proposed models of Sections III–VI enable accurate estimation of rate and complexity for a 

variety of decoding distortion, the derived framework can be used in a variety of applications where rate 

or complexity tradeoffs are of paramount importance (see [3] [7] [8] [10]). For example, the R-C curve 

may be used to optimize post-encoding bitstream shaping, where an encoded bitstream may be truncated 

and transmitted at a lower rate based on decoder-specified complexity bounds.    

There are several interesting aspects to note from our results. For example, for good quality video 

decoding (PSNR range of 32 dB–40 dB) there is typically an overhead of about 300 to 500 kbps when 

one uses two temporal levels instead of four and an overhead of about 600 to 900 kbps when one uses two 

temporal and two spatial levels. Notice that the exact overhead is both sequence and bitrate dependent and 

the proposed theoretical modeling captures this behavior accurately. Apart from the rate overhead, there is 

also an increase in the number of entropy decoding operations by about 52.5 10⋅  to 55 10⋅  RS/s and 610  

to 62 10⋅  RS/s for the “2T-4S” and “2T-2S” cases (respectively) in comparison to the “4T-4S” case. 

However, concerning the IDWT complexity, Figure 9 demonstrates that a large variation exists in the 

performance of the different approaches depending on the sequence and bitrate region. The case of “2T-

2S” is the best in terms of operations per second, followed by the “4T-4S” case and by the “2T-4S” case, 

since the two latter require more spatial reconstruction levels. The fact that the “2T-4S” case appears to be 

worse than the “4T-4S” case can be explained by the increase in the non-zero coefficients due to the fact 

that the “2T” case includes four times more L  frames as compared to the “4T” case, and L  frames 

contain a higher percentage of non-zero coefficients in comparison to H  frames (for the same 

quantization parameters). It is also interesting to notice that, for the low to medium rate coding of the 

Coastguard sequence, the “4T-4S” case is the most efficient both in R-D and C-D performance. The 

proposed modeling approach agrees with all these observations, a fact that validates the importance of 

analytical R-D-C modeling methods that adapt based on both source and algorithm statistics.  

It is also interesting to note that, if one ignores the coding bitrate and focuses on the complexity-distortion 

tradeoffs, Figure 8 and Figure 9 reveal that, for the same number of entropy decoding operations, the “4T-

4S” case can provide gains of 2 to 8 dB in comparison to the other alternatives. On the other hand, the 

“2T-2S” case may outperform the other decompositions by 2.5 to 10 dB for the same number of non-zero 

MAC operations during the IDWT. On different platforms where each entropy decoding operation and 

IDWT MAC operation may have different respective computational workloads and/or energy 
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consumption levels, the significant tradeoffs between the different types of decoding complexities can be 

exploited to optimally configure coder parameters to run on a specific system. 

Finally, it is interesting to investigate how rate and complexity change for different coding parameters for 

a higher resolution video, e.g. in sequences of Standard Definition (SD) format. The entropy decoding 

results for the 720x480 Mobile sequence (30 frames/sec) are presented in Figure 10. As seen in the figure, 

our theoretical approximations are fairly accurate in predicting the large performance gain of 4 temporal 

levels over 2 temporal levels of decomposition. Interestingly, this gain is not so prominent for CIF 

sequences, as indicated by Figure 7 and Figure 8. One reason is that the MCTF process can better exploit 

the correlation between neighboring pixels and coefficients in SD sequences due to the decrease of spatio-

temporal aliasing in comparison to CIF sequences. Hence, the percentage of non-zero coefficients in the 

high-frequency subbands is decreased. Consequently the number of read symbols (entropy decoding 

complexity) and the required bitrate  to encode H-frames are reduced when using more temporal levels. 
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Figure 7. Rate-distortion plots for different configurations of the spatio-temporal decomposition parameters.  
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Figure 8. Entropy decoding complexity vs. distortion plots for different spatio-temporal decomposition parameters, 
where “S” and “T” indicate the number of spatial and temporal levels (respectively). 
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Figure 9. IDWT complexity vs. distortion plots for different spatio-temporal decomposition parameters, where “S” 
and “T” indicate the number of spatial and temporal levels (respectively).   
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Figure 10 Rate and entropy decoding complexity curves for 720x480 Mobile sequence. The cases of 4 and 2 
temporal decomposition levels are presented. Both encodings use 3 spatial decomposition levels. 

VIII. Conclusions 
This paper presents an analytical modeling framework that derives rate, distortion and (decoding) 

complexity predictions for wavelet-based video coders. Our analysis encapsulates a broad variety of 

coding techniques found in state-of-the-art coding schemes. By analytically deriving probabilities for 

block and coefficient significance according to the quantization threshold (for both low and high-

frequency temporal subbands), we are able to establish analytical models that approximate well the R-D-

C behavior of a state-of-the-art wavelet-based video coder. In this way, this work complements prior 

work on operational rate-distortion modeling for video coders by extending its applicability to a broader 

coding paradigm. At the same time, it complements complexity modeling frameworks proposed in earlier 

work by deriving analytically the input statistics used in these approaches. As such, this work bridges the 

gap between the operational measurements used in prior complexity modeling work and stochastic 

estimates common in rate-distortion modeling work. 

The theoretical R-D-C analysis presented in this paper may guide the construction of more efficient intra-

band coding mechanisms targeting error frames in particular. An open question concerns the efficiency of 

quadtree coding versus block coding mechanisms (both compression-wise and implementation-wise) and 



 26

the optimal setting (e.g. minimum block size or combination of coding passes) for a coder that encodes 

error frames using both schemes in succession. Perhaps more importantly, the proposed R-D-C analysis 

allows for the efficient exploration of complexity and rate tradeoffs for different video qualities and 

resolutions. As indicated by our results with CIF and SD-resolution videos, a careful selection of coder 

parameters is important for optimizing the performance in a complexity-distortion or rate-distortion sense. 

A thorough investigation of the theoretical R-D-C tradeoffs between different coder parameters for 

different video resolutions is an interesting topic for future research. 

Appendix A: Derivation of Probability of a Significant Block in a High-
Frequency Subband 
Proof of Proposition 1: First, let us consider the probability that a block with n  coefficients is 

insignificant to a threshold T . According to (8), we are integrating over each component of random 

vector ( )1,..., nX X=X  from T−  to T . Hence, we want to find the following probability: 
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where the final result of (47) is reached by rearranging integrals, and by the fact that the n  resulting 

integrals are equal.  

Now, recall the definition of the erf  function 
2

0

2erf( )
z xz e dx

π
−= ∫ . Using substitution of variables, we 

get the following expression: 
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Hence, substituting (48) into (47) gives us: 
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Unfortunately, the integral of (49) has no explicit form. However, ( )erf n  resembles an indicator function 

for large values of n : 
 [ ]erf( ) I( )n

nx x γ≈ ≥  (50) 

Or, for our case: 
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Here, nγ  is an estimate for where the step occurs, given n . Substituting (51) into (49) gives us the 

following approximation: 

( )
2

22 2 2
1 1 12 2

2
2 2 2 2 20

0 0

1 1 1erf I 1 exp
2 2 2

n

Tnn

n n

T T ve d e d e d
θ θ θ

γσ σ σθ θ θ θ
θσ σ γ σ γ

∞ ∞
− − −⎡ ⎛ ⎞⎤ ⎛ ⎞⎡ ⎤ ⎟ ⎟⎜ ⎜⎢ ⎥≈ ≤ = = − −⎟ ⎟⎢ ⎥ ⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦∫ ∫ ∫      (52) 

where /v T σ= . This suggests that the approximation of (51) is accurate for the approximate 

computation of the integral of (52). Since (52) approximates the probability that the block is not 

significant, the probability that the block is significant is of the form: 
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Figure 11. Left two plots: The integrated value of (47) versus the approximation in (53) for different block sizes. 
Right plot:  The variance 2

nγ  in terms of the number of coefficients in the block. 

In the left two plots of Figure 11, Pr{sig( , ) 1}v n =  and its approximation are plotted over various v  and 

block sizes 6n =  and 16n = , which are typical minimum block sizes in quadtree-based coders [20]. As 

can be seen, an approximation of the form in (53) is highly accurate. In order to determine a good 

estimate for nγ , nγ  is fitted for blocks of coefficients for which block significance makes a significant 

contribution to rate or complexity (e.g [4,100]n ∈ ). By estimating the mean squared value of 

v from Pr{sig( , ) 1}T nσ = , nγ  is found to increase monotonically with the dimension of X , i.e. an 

approximation of the form nα  is appropriate. We fitted for α  by finding the best MSE match that returns 

a linear plot for /neγ α  in terms of n . The obtained approximation was:  

 ( )2 1.2961
ln( ) 0.166

2n nγ ≅ −  (54) 

The explicit derivation of high
,bv kχ  given in (9) then follows from (53) with the approximation of 2

nγ  given in 

(54). A comparison of the estimated (via (54)) versus the experimentally-derived value of nγ  computed 

with numerical methods is shown in the right plot of Figure 11.                ■ 
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Appendix B: Derivation of Probability of a Newly Significant Block in a 
High-Frequency Subband 
We begin this section with several lemmas. 

Lemma 1: For all real numbers 2n ≥ , 
 0.5 11 0.5n

n n≤ − <  (55) 

Proof: Rearranging the inequalities, we get ( )0.5 11 1 0.5 (1 )n n
n n− ≥ − > − . These inequalities can be 

proven by expanding the binomials [31].            ■ 

Lemma 2: Let δ +∈  and 0δ → . There exists N +∈ , such that for all integers n N≥  and x +∈ , if 

( )erf( ) nx δ≥  then ( )erf(2 ) 1nx δ≥ − . 

Proof: We prove the existence of the lower bound N +∈  under the following equivalent condition: if 

erf( ) nx δ≥  then erf(2 ) 1nx δ≥ − .  

For 0δ → , we first bound erfc(2 )x  by the following inequality: 

 2 2 2 2 24 3 3

2

2 2 2erfc(2 ) 1 erf(2 ) 2 2 2 erfc( )t t t t x

x x x

x x e dt e dt e dt e x
π π π

∞ ∞ ∞
− − − − −= − = = = <∫ ∫ ∫  (56) 

Let 1m > , satisfying: (1 )mδ δ− = . Choose 1 0N ≥ , such that for ( )11
th1 erf Nx δ−= : 

 
2
th13 1

4
xe

m
− =  (57) 

Combining (56) and (57), we have: 

 ( )
1

2
th13

th1 th1
1erfc(2 ) 2 1 erf( )

2

N
xx e x

m
δ− −< − =  (58) 

Now, choose 2N +∈  such that 2 (1 ) 0.5N mδ− = . Setting ⎡ ⎤1 2max( ,2 )N N N= . Applying Lemma 1 and 

the fact that for any n N> , 
2

2n
N ≥ , we have the following two inequalities: 

 ( )
22

2 21 (1 ) 1 (1 ) 1 0.5
2

NN
N mn mnmn

N
mn

δ δ− − = − − = − ≥  (59) 

 ( )
22

2 21 1 (1 ) 1 0.5
NN

N mn nn
N
n

δ δ− = − − = − <  (60) 

Now, let 1erf ( )nx δ−= . Notice that th1x x≥ since 1Nn δ δ≥ , and 1erf ( )− i  is monotonically increasing. 

Thus, 
2 2

th13 3 1
4

x xe e
m

− −< = . Combining (56), (57), (59), and (60), we get the following: 

 2 23 1 1erfc(2 ) 2 erfc( ) erfc( ) 1 (1 )
2 2 2

n
x nNx e x x

m m mn
δ δ− −< < < < ≤ − −  (61) 

Thus erf(2 ) 1nx δ≥ − . The proof follows for any 1erf ( )nx δ−>  by the fact that erf(2 )x  is an increasing 

function.                   ■ 

Lemma 3:  There exists N , 0N > , such that for all n N> : 

 erf( )
(erf( ))

erf(2 )

n
nx

x
x

⎛ ⎞⎟⎜ ≅⎟⎜ ⎟⎟⎜⎝ ⎠
 (62) 
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Proof: Let 0δ → , and choose a corresponding N  such that Lemma 2 holds, i.e. for 1
th erf ( )nx δ−= , we 

have the following relations: 
 th(erf( ))nx δ=  (63) 
  th(erf(2 )) 1nx δ≥ −  (64) 

For all thx x≥ , we have:  

 ( ) ( )erf( ) erf( )
erf( )

erf(2 ) 1

n n
n x x

x
x δ

⎛ ⎞⎟⎜< ≤⎟⎜ ⎟⎟⎜⎝ ⎠ −
 (65) 

Letting 0δ →  and applying the squeezing theorem [32], (62) holds for x  above the threshold value. 

For the thx x≤ case, we first note that th

th

erf( )
erf(2 ) 1

nx
x

δ
δ

⎛ ⎞⎟⎜ ≤⎟⎜ ⎟⎟⎜⎝ ⎠ −
, which approaches 0 as 0δ → . In order to 

show that erf( )
0

erf(2 )

nx
x

⎛ ⎞⎟⎜ →⎟⎜ ⎟⎟⎜⎝ ⎠
 for all thx x≤ , we need only show that erf( )

erf(2 )
x
x

is monotonically increasing for 

all 0x > . This corresponds to a non-negative derivative for erf( )
erf(2 )

x
x

: 

 
( )

2 24

2

2 4erf(2 ) erf( )erf( )
0

erf(2 ) erf(2 )

x xx e x exd
dx x x

π π
− −−⎛ ⎞⎟⎜ = ≥⎟⎜ ⎟⎟⎜⎝ ⎠

 (66) 

The rewritten inequality can be easily verified, as shown below: 

2 2 2 2 2
2

4 3 3

0 0 0

2 2 2erf(2 ) 2 2 2 erf( )
x x x

t t t t xx e dt e dt e dt e x
π π π

− − − − −= = = >∫ ∫ ∫  (67) 

Thus for all th0 x x< ≤ , th

th

erf( ) erf( )
0

erf(2 ) erf(2 ) 1

n nx x
x x

δ
δ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜< ≤ ≤⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠ −
, and applying the squeezing theorem [32] 

once again gives us the desired approximation.               ■ 

We can now conclude with the proof of Proposition 2.  

Proof of Proposition 2: Consider a block that is insignificant in comparison to threshold 1bT + . The 

conditional probability that the block is also insignificant compared to threshold bT  is of the form: 

 21
1

2 1
0

erf( )1 2Pr{sig( , ) 0 sig( , ) 0}
erf( )

2

bb

n
b

TT

b

T

n n e dT
θ

σσ σ
θ θ

σ
θ

+

∞
−

+

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ∩ = = ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫  (68) 

where 
1

erf( / 2 )
erf( / 2 )

b

b

nT
T

θ
θ+

⎡ ⎤
⎢ ⎥⎣ ⎦ is derived in a similar manner as in Appendix A, and represents the probability that, 

within a block of n  Gaussian-distributed coefficients with variances θ  (doubly-stochastic model), all 

coefficients will be insignificant compared to bT , given that they were insignificant compared to 1bT + . 

The probability that a coefficient is found newly significant is then: 

 

( )

1 1 1

1 1

2 1
2

1
1

2 22
0

Pr{sig( , ) 1 sig( , ) 0} Pr{sig( , ) 0} Pr{sig( , ) 1 | sig( , ) 0}
Pr{sig( , ) 0} (1 Pr{sig( , ) 0 | sig( , ) 0}

1 1erf 1 exp( ) erf

b b bb b

b bb

b

T T TT T

T TT

nT T

n n n n n
n n n

e d

σ σ σ σ σ

σ σ σ

θ
σ

θ σθ θ
σ σ

+ + +

+ +

+

∞
−

= ∩ = = = ⋅ = =
= = ⋅ − = =

⎛ ⎞⎟⎜ ⎡ ⎤ ⎟⎜= − −⎟⎢ ⎥⎜ ⎣ ⎦ ⎟⎟⎜⎜⎝ ⎠∫ ( ) ( )1
2 2

0

erf bb
nT dθ θ θ+

∞⎛ ⎞⎟⎜ ⎡ ⎤ ⎟⎜ ⎟⎢ ⎥⎜ ⎣ ⎦ ⎟⎟⎜⎜⎝ ⎠∫

(69) 
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For the first multiplicative term in (69), we use the approximation of (52). For the second multiplicative 

term, we use Lemma 3 under the assumption of appropriately-large n , and then apply the approximation 

of (52). The final estimate for (69) is: 

 1
2 2

2 2Pr{sig( , ) 1 sig( , ) 0} 1 exp exp
2 2

bb TT

n n

v vn nσ σ γ γ
+

⎡ ⎛ ⎞⎤ ⎛ ⎞⎟ ⎟⎜ ⎜⎢ ⎥= ∩ = ≈ − − −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (70) 
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