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Abstract

Intensive Care Unit (ICU) admission of hospitalized patients, for whom multiple physiological data streams are

being monitored, is a vital and delay-critical clinical decision that has a direct impact on morbidity, mortality, and

resource utilization. In order to improve the timeliness and accuracy of ICU admission decisions, which mainly rely

on physicians, we developed ForecastICU: a prognostic decision support system that monitors hospitalized patients

and prompts alarms for ICU admission. ForecastICU is first trained in an offline stage by constructing a Bayesian

belief system that corresponds to its belief about how trajectories of physiological data streams of the patient map

to a clinical status. After that, ForecastICU monitors a new patient in real-time by observing her physiological data

stream, updating its belief about her status over time, and prompting an alarm whenever its belief process hits a

predefined threshold (confidence). Using a real-world dataset obtained from a large academic medical center, we

show that ForecastICU can predict ICU admissions 9 hours before a physician’s decision (for a sensitivity of 40%

and a precision of 50%). Moreover, ForecastICU performs consistently better than other benchmark algorithms in

terms of sensitivity, precision and timeliness for all settings of the system parameters: it can predict ICU admissions

3 hours earlier, and offers a 7.8% gain for sensitivity, 5.1% gain for precision, and a 8.15% gain for the area under

curve compared to the best benchmark.
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ForecastICU: A Prognostic Decision Support

System for Timely Prediction of Intensive Care

Unit Admission

I. INTRODUCTION

Intensive Care Unit (ICU) admission for hospitalized patients is a vital and delay-critical decision. The timing of

transfer to the ICU is an important determinant of a patient’s outcomes. Various medical studies have demonstrated

that delayed identification of clinical deterioration, leading to delayed admission to the ICU and delayed therapeutic

intervention, results in increased morbidity and mortality [1] [2]. With increasing physician and nursing workloads

and more hand-offs of care, prompt recognition of a deteriorating patient has become increasingly difficult. This

illustrates the urgency to develop automated prognostic decision support systems that alert the medical staff of

impending clinical deterioration, enabling clinicians to intervene at an earlier time, thereby preventing an arrest or

reducing the need for ICU transfer.

An automated system for ICU admission prediction is envisioned to operate in the following manner. The system

will be fed with high-dimensional physiological data streams that belong to a monitored, hospitalized patient. It

will try to infer whether the monitored patient is clinically deteriorating or not in a timely manner, i.e. earlier than

the time at which a physician would normally decide to impend an ICU transfer for that patient. The system can

take advantage of the available electronic health record (EHR) data in order to learn the trends in the physiological

data streams associated with patients who previously got discharged or admitted to the ICU [3].

Designing a system that carries out the steps described above is associated with many practical and technical

challenges. First, while data streams for previously hospitalized patients is recorded in the EHR, the clinical status

of such patients upon their hospitalization differs from one patient to another, thus learning from the labeled patient

examples is not straightforward as the examples themselves entail some ambiguity. Second, not all the data streams

are relevant to the ICU admission decision, and not all of the different streams are sampled with the same rate,

which implies that some values in some of the streams will be missing. Finally, the patients are monitored only for

a finite amount of time, and the time-series observed by the system would eventually stop, thus the system should

issue the prediction with a reasonable amount of time ahead of an unknown deadline, i.e. the actual time when

physicians decide to admit the patient to ICU or discharge her.

In this paper, we develop ForecastICU, a prognostic decision support system that carries out timely predictions

of ICU admissions for hospitalized patients. ForecastICU adopts a Bayesian approach for issuing predictions; by

applying density estimation using the data streams of previously hospitalized patients, ForecastICU constructs a

belief system that corresponds to its belief about the patient’s clinical status as a function of time. ForecastICU

approaches a new patient by observing her physiological data stream, updates its belief about the patient over time
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as it observes more samples from her physiological stream, and prompts an ICU admission alarm whenever the

system’s belief process hits a predefined threshold that quantifies the system’s confidence in the issued alarms.

Our approach hinges on the idea that predicting ICU admissions from temporal physiological streams can be

viewed as an optimal stopping problem; or in other words, it is equivalent to learning an unknown stopping rule

of a stochastic process, i.e. learning how physicians make ICU admission decisions from the recorded temporal

data streams (realizations of a stochastic process) of previously hospitalized patients, and hence promptly issuing

ICU admission predictions (alarms) before the stopping times of these processes (i.e. before the ICU admission

decision that physicians would actually make without ForecastICU). Technically, ForecastICU approaches the ICU

prognosis problem as an optimal stopping problem with uncertainty in the initial clinical status and the distribution

of the physiological data streams.

We have applied ForecastICU to a real-world dataset obtained from a large academic medical center. Experiments

show that, for a sensitivity of 40% and a precision of 50%, ForecastICU can predict ICU admissions as early as 9

hours (on average) before the actual physician’s decision. Moreover, we show that ForecastICU performs consistently

better than other benchmark algorithms (including random forest, LASSO, logistic regression, and SVMs) for all

ranges of the system’s parameters in terms of sensitivity, precision and timeliness: it can predict ICU admissions

3 hours earlier, and offers a 7.8% gain for sensitivity and 5.1% gain for precision with a 8.15% gain for the area

under curve (AUC) compared to the best benchmark algorithm. Such gains can map to significant reductions in

ICU mortality rates and better resource utilization in hospitals.

II. RELATED WORKS

We classify the related works into three categories: previously established methodologies for ICU prognosis in

both the data mining and medical literature, general algorithms developed for time-series classification, and previous

works that utilized the Bayesian learning framework.

A. ICU prognosis

Methods for supporting prognostic clinical decisions have been investigated both in the medical literature and in

the data mining literature. Several clinical studies have investigated the effectiveness of the usage of early warning

scores (EWS) for the detection of patient deterioration [4]. Such methods identifies hospitalized patients who reach

a certain “trigger” threshold [3] [5], and consequently alarms the clinicians to impend an ICU transfer for those

patients. However, since EWS-based methods respond to triggering events that may not signal a truly deteriorating

patient, they suffer from high rates of false alarms (70-95%) [6], which results in alarm fatigue and inappropriate

resource utilization. Recent systematic reviews have demonstrated that EWS-based alarms only marginally improve

outcomes while substantially increasing physician and nursing workloads [7].

Prognostic decision support has been investigated in the data mining literature as well. In [8], [9], and [10], simple

regression models where developed to carry out risk assessment for developing diseases like breast and prostate

cancer based on the patients’ features. However, such predictive models deal with scenarios where predictions

span years rather than hours, i.e. the delay-sensitivity of such models is much coarser and less critical. Prognostic
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decision support for delay-critical settings has been addressed for the context of ICU environments in [11]. [12]

and [13]. However, the objective in these models was to predict the trajectory of physiological data streams using

previously hospitalized patients’ synchronized data streams. Unlike ForecastICU, the models therein have developed

simple auto-regressive models to extrapolate incoming data streams, but have not addressed the problem of timely

classification of incoming patients whose monitored data streams entail an unknown stopping time, and are not

synchronized with the training data.

B. Time-series classification

A wealth of literature on time-series classification exists. Most of the time-series classification algorithms rely on

clustering the time-series in the training data using a distance metric, and then associating incoming series with one

of the clusters. For instance, a 1-nearest neighbor approach was used in [14] and [15], a semi-supervised approach

employing Euclidean distance was used in [16], clustering using dynamic time warping (DTW) as a distance metric

was adopted in [17], and clustering using a Kalman-filter-based approach was introduced in [18]. Methods based on

recurrent neural networks [19], ensemble learning [20], joint classification-regression [21][22], or online prediction

with missing data samples [23] where also investigated. Moreover, various methods for predicting trends of online

content where developed, i.e. in [24] the problem of forecasting the popularity of videos was addressed, whereas

predicting trends in Twitter was investigated in [25] and [26].

Our work departs from this literature in the following aspects. First, unlike the conventional time-series classification

problem, the physiological data stream stops at some point of time (when the patient is discharged or admitted to

ICU), so the goal is not just to issue an early prediction, but to prompt an alarm that precedes the stopping time

of the stream with a long enough time interval. Furthermore, our training data comprises data streams for patients

who were hospitalized with different clinical statuses, thus ForecastICU needs to learn how to “align” the training

data in order to construct its belief system. Finally, since ForecastICU prompts alarms to physicians and nurses, it

needs to guarantee a desirable level of “confidence” in its predictions, which was not considered in any of these

works.

C. The Bayesian Learning Framework

ForecastICU adopts a Bayesian learning framework; by that we mean: it constructs a belief system about how the

status of an ICU patient changes over time using the training data, and applies Bayesian updates for its posterior

belief about the status of monitored patients. The Bayesian learning framework has natural connections with human

cognition [27] [28], and has been extensively studied in the economics literature [29] [30]. Bayesian learning has

been studied thoroughly in that literature assuming that the density function based on which posterior beliefs are

updated is perfectly known, and the goal there is to see whether or not an unknown state-of-the-world (hypothesis)

can be learned over time [31]. The same assumptions were adopted in the optimal stopping problems considered

in the finance literature [32]. However, for the problem of ICU admission prediction, the density function of the

patients’ physiological data streams is unknown, their status at hospitalization is ambiguous and the goal is to learn

in a timely manner the state of that patient. This imposes a set of very different challenges on our learning problem
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that is not encountered in the context of theoretical economics, thus new analyses and learning algorithms that can

deal with these challenges are needed.

III. THEORETICAL FOUNDATIONS FOR FORECASTICU

In this section, we provide a formal model for an abstract forecaster that aims at learning to predict ICU

admissions. The theoretical analysis of such a forecaster will serve as the foundation for the practical forecaster

implementation, the ForecastICU algorithm, which we will present in the next section.

A. Mathematical model

Given a probability space (Ω,F ,P), and a measurable space (S,Ψ), a stochastic process XT comprises a

collection of S-valued random variables on Ω indexed by a totally ordered set T . That is, XT = {Xt}t∈T , where

every Xt is an S-valued random variable on Ω. Given the probability space (Ω,F ,P), a filtration {Ft, t ∈ T }

is a (weakly) increasing collection of σ-algebras on Ω. The filtration Ft is always bounded above by F , i.e.

Ft ⊆ F . The process XT is a martingale with respect to the filtration Ft if E [Xt+1 |Ft ] = Xt. The stopping

time τs of the process XT is a random variable τs : Ω → I, where I is an ordered index set, e.g. I = [0,∞).

A stopping time τs satisfies that {ω ∈ Ω : τs(ω) ≤ t} ∈ Ft, ∀t ∈ I. The stopping time of a process is decided

by some arbitrary stopping rule. The hitting time τh of a process XT is the first time it hits a certain value, i.e.

τh(η) = inf{t ∈ R |Xt ≥ η }.

We consider every patient’s physiological data stream as a stochastic process with respect to the space (Ω,F ,P).

For instance, the blood pressure measurements stream can be viewed as a stochastic process XT that is observed

starting from the time the patient was hospitalized. The stopping time τs of such a process is the time at which

the physician takes a decision regarding the patient: the decision can be either discharging the patient or admitting

her to the ICU, where in both cases the patient is not monitored further. The stopping rule that determines such

a stopping time is simply the physician’s criteria for ICU admission or discharging of hospitalized patients, which

depends on how physicians interpret the physiological data stream.

Patients belong to two categories: stable patients who should be discharged, and clinically deteriorating patients

who should be admitted to the ICU. We assume that the null hypothesis H0 is the hypothesis that the patient is

stable, whereas the alternative hypothesis H1 is the hypothesis that the patient is clinically deteriorating. Depending

on whether the true hypothesis is H0 or H1, a physiological data stream XT will have a different joint distribution

for its data samples with respect to the probability space (Ω,F ,P). We denote the families of finite-dimensional

distributions of the physiological streams under the null and alternative hypotheses as P0 and P1 respectively, i.e.

{Xτ}tτ=0 |Hm ∼ Pt
m,m ∈ {0, 1}, and Pm is the family of distributions Pt

m for all admissible values of t (e.g.

maximum time a patient can stay hospitalized).

B. The Forecaster

1) Formal definition: We formally define the forecaster as a belief system that carries out the mapping Bt :

(Ft,Q0,Q1) → [0, 1], i.e. a map from a filtration to a belief about the monitored patient being clinically deteriorating,
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where Q0 and Q1 are estimates of the families of finite-dimensional distributions P0 and P1. We say that the belief

system is truthful if Qm = Pm,m ∈ {0, 1}, and we say that it is non-truthful otherwise, i.e. the estimated

densities Qm of a non-truthful belief system have a non-zero distance from Pm with respect to any probability

metric. The function Bt (which we will also write as Bt (H1 |Ft )) is denoted as the belief function, whereas the

sequence {Bt}t∈T is called the belief process. Informally, the forecaster is endowed with some information about

the physiological stream generative process, encoded in the distributions Q0 and Q1, and it accumulates information

over time as it observes the monitored patient’s physiological streams, and builds a belief about her clinical status.

Intuitively, the accuracy and timeliness of the forecaster depend on the quality of the estimates Q0 and Q1, and the

way the mapping Bt is implemented given the filtration Ft.

2) Structure of the forecaster: The implementation of the forecaster’s belief system demands two basic modules:

a density estimation algorithm AD, which finds “good” estimates Q0 and Q1 in an offline manner, and a belief

function Bt, which updates the forecaster posterior belief in real-time in response to the information extracted from

the monitored data streams. Formally, given that the forecaster has access to a dataset Xref comprising recorded

data streams of N reference patients in the EHR who are labeled as being admitted to ICU or discharged, the

density estimation algorithms is a mapping AD : Xref → (Q0,Q1) , and the belief function is a real-time mapping

Bt : (Ft,AD
(
Xref

)
) → [0, 1].

EHR data

X
ref
0 ∼ P0

(N reference patients)

AD
(

X
ref

)

Density estimation algorithm

Bt Bt > η

ICU
alarm

X
ref
1 ∼ P1

Offline stage

Forecaster

Monitored patient
data stream

Belief update
algorithm

Real-time stage

(Qo, Q1)

{Xτ}
t
τ=0

Fig. 1. Schematic for a forecaster that learns to issue ICU admission alarms from the EHR data.

3) Alarm strategy and performance: The problem of (timely) predicting ICU admissions can be thought of as

being equivalent to an optimal stopping problem, or a problem of learning an unknown stopping rule of a stochastic

process. Thus, not only does the forecaster face uncertainty in the true hypothesis, but also it is uncertain about

when will the process stop; the forecaster needs to figure out the true hypothesis before the process stops with a

reasonable amount of time.
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ForecastICU adopts a “threshold type” alarm strategy: it prompts an alarm for an ICU admission whenever its

belief process first crosses a predefined threshold η. Thus, the optimal stopping time problem boils down to finding

the optimal threshold that the belief process should hit before an ICU alarm is issued. Selection of the threshold η

is aimed to maximize a clinical value function that comprises a set of accuracy and timeliness measures.

Three measures of performance are clinically relevant to the ICU prognostic setting: timeliness, sensitivity and

precision [33] [5] [7]. Let τs be the stopping time of the patient’s physiological data stream, and let τh(η) be the

hitting time of the belief process {Bt}t∈N given a threshold η. The sensitivity of the forecaster, which is also known

as the true positive rate (TPR), is given by

TPR =
P (τh(η) < τs |H1 )

P (τh(η) < τs |H1 ) + P (τh(η) > τs |H1 )
, (1)

whereas the precision, which is also known as the positive predictive value (PPV), is given by

PPV =
P (τh(η) < τs |H1 )

P (τh(η) < τs |H1 ) + P (τh(η) < τs |H0 )
. (2)

Finally, the timeliness of the forecaster Tp(η) is the average time interval between the hitting time of the belief

process and the stopping time of the physiological data stream for clinically deteriorating patients, which is formally

given by

Tp(η) = E [τs − τh(η) |τh(η) < τs,H1 ] . (3)

The selection of the threshold value η should balance the trade-off between accuracy (in terms of TPR and PPV) and

timeliness; intuitively, one expects that low threshold values would lead to more timely but less accurate decisions,

and vice versa. Formally, we define a general clinical reward function g
(
{Xτ}τh(η)τ=0

)
that quantifies the overall

performance in terms of PPV, TPR and Tp as a function of the alarm strategy η. The ICU prognostic optimal

stopping problem is equivalent to finding an optimal alarm strategy (a threshold η∗) that maximizes a clinical value

function V (η) as follows

V ∗ = sup
η∈[0,1]

EP

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
, (4)

where the optimal clinical value function is V ∗ = V (η∗). Problem (4) is challenging for that P is unknown to the

forecaster, and τs is random. The optimal solution to (4) would balance the value of information in the physiological

stream {Xτ}τh(η)τ=0 and the TPR, PPV and Tp which are reflected in the reward function g. Fig. 1 illustrates the

structure of the forecaster: its offline and real-time components, and its alarm strategy.

C. Bayesian Learning

The forecaster’s alarm strategy is a threshold strategy on its belief process. The forecaster builds the belief process

given observed information using a Bayesian learning approach: it updates its posterior belief in response to new

observations of the physiological data streams as follows

Bt (H1 |Ft ) =
Q ({Xτ}tτ=0 |H1 )Q (H1)∑

i∈{0,1} Q ({Xτ}tτ=0 |Hi )Q (Hi)
,

where {Q(Hm)}m∈{0,1} are the forecaster’s estimates of the discrete priors. The forecaster cannot compute the

optimal threshold in (4) since the belief system is generally non-truthful. Thus, the accuracy and timeliness of
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the forecaster (the value function V (η)) will be affected by the truthfulness of its belief system. In the following

Theorem, we link the truthfulness of the forecaster’s belief system to the timeliness and accuracy of the alarm

strategy in terms of the sample complexity. The proof of this Theorem is given in the Appendix.

Theorem 1: (Probably approximately correct and timely ICU alarm strategies) For every (ϵ, δ) ∈ [0, 1]2, there

exists a polynomial function N∗(ϵ, δ) = poly( 1δ ,
1
ϵ ) and a density estimation algorithm AD, such that for every

dataset with N > N∗(ϵ, δ) reference patients, we have that P (|V (η)− V ∗| < ϵ) ≥ 1 − δ, where V ∗ is optimal

clinical value function of a truthful belief system that has access to the optimal threshold η∗.

Theorem 1 makes a link between our timely (binary) classification problem and the classical probably approximately

correct (PAC) framework for binary classification. The two problems are profoundly different since the ICU

prognosis problem entails timeliness and random stopping of data observation; however, a supervised learning

guarantee can still be realized. The Theorem says that one can compute a sample complexity (the number of

reference patients) that achieves an ϵ-optimal clinical value function (compared to an “oracle” belief system that

has access to the true data streams’ distributions), with an arbitrary level of confidence 1 − δ. That is, the ICU

prognosis problem using the proposed forecaster structure is learnable in the “probably approximately correct and

timely” sense. This motivates the construction of a practical forecaster algorithm in the next section.

IV. THE FORECASTICU ALGORITHM

Practical implementation of the forecaster is confronted with several challenges. First, not all the monitored

physiological streams are relevant to the ICU prognostic decision. Second, the data streams are not sampled with

the same rate. Finally, a crucial aspect of the temporal physiological data is that the data streams of the reference

patients are neither synchronized with each other, nor they are synchronized with the incoming patients since each

patient is hospitalized in a different clinical status.

As shown in Fig. 1, designing a forecaster entails designing a density estimation algorithm AD(Xref ) and a

belief updating procedure. In the following two subsections, we propose a design for both modules as the two

building blocks of ForecastICU.

A. The offline density estimation algorithm AD(Xref )

The algorithm AD(Xref ) takes as an input a dataset Xref with N reference patient entries, associated with each

patient a set of L recorded physiological data streams, and retrieves the estimated finite-dimensional distributions

(Q0,Q1). We denote the ith reference patient by Xref
(i) , where Xref

(i) is an L×Ki matrix, with Ki being the length

of the longest data stream associated with reference patient i. We denote the overall hospitalization period of patient

i as TH
(i). The algorithm implements the following four steps:

a- Non-causal alignment of reference patients’ data streams : Since the reference patients are hospitalized with

different statuses, ForecastICU needs to align their data streams prior to applying density estimation. The stopping

time of the data streams usually follows a rational, consistent stopping rule decided by the physicians, and such a

rule serves as a marker for the clinical status of the patient at the ICU admission time or discharge time. Therefore,

ForecastICU aligns the patients’ data streams in a non-causal fashion: it views the stopping times of all streams
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in the dataset Xref as the reference time (t = 0) of the corresponding stochastic processes. We use the notation

Xref
(i) (m,n) to refer to the data sample of the mth data stream at n time steps ahead of the (reference) stopping

time.

b- Interpolating under-sampled data streams : The different data streams for the same patient can be sampled

with different sampling rates. Thus, the algorithm AD(Xref ) would encounter missing values at some points in

time when carrying out the joint density estimation across the features. To reconstruct the missing samples in under-

sampled data streams, we use an interpolation function h

({
Xref

(i) (m,n)
}K−1

n=0
, Ts

)
: RK×1×R → R⌊KTs

TH
(i)

⌋×1, i.e.

a function that interpolates samples of a data stream and retrieves a stream with a sampling period of Ts instead of
TH
(i)

K . ForecastICU uses cubic spline interpolation function that we denote by hspline. We denoted the interpolated

dataset as X̃ref = hspline

(
Xref

)
, where all the data streams in X̃ref are up-sampled with the sampling rate of

the most frequently sampled data stream.

c- Selecting relevant data streams : ForecastICU applies correlation feature selection (CFS) algorithm on the

interpolated dataset X̃ref (with minimum-redundancy-maximum relevance (mRMR) [34]) to discover the relevant

temporal data streams for forecasting ICU patients. We denote the data stream selection operation as Ỹref =

CFS
(
X̃ref

)
, where Ỹref is a dataset with N reference patients, associated with each a set of R ≤ L data

streams, where R is the number of discovered relevant data streams.

d- Parametric density estimation : We estimate the finite-dimensional distributions (Q0,Q1) based on the

processed dataset Ỹref as follows. Since the dataset is labeled, we separate the reference patients into clinically

deteriorating patients with processed data streams Ỹref
1 , and clinically stable patients with data streams Ỹref

0 . Let

N0 and N1 be the number of entries in Ỹref
0 and Ỹref

1 respectively, and K0 and K1 be the average lengths of the data

streams in Ỹref
0 and Ỹref

1 respectively. Let (Qt
0,Qt

1) be the joint density functions of all the data samples for the R

data streams selected by CFS between the (average) hospitalization time K0 (or K1) and the a time instance that is

t steps away from the hospitalization time. We approximate the finite-dimensional distributions (Qt
0,Qt

1) as Multi-

variate Gaussian distributions, and fit their mean and covariance parameters, i.e. Qt
m ∼ N

(
µ̂t
m, Σ̂t

m

)
,m ∈ {0, 1}

where [
µ̂t
m(j)

]R
j=1

=
1

Nm

Nm∑
i=1

Ỹref
(i),m(j, t), (5)

[
Σ̂t

m

]
k,l

=
1

Nm − 1

Nm∑
i=1

Ȳref
(i),m(k, t)Ȳref

(i),m(l, t), (6)

where k, l = 1, . . ., R, and Ȳref
(i),m(k, t) = Ỹref

(i),m(k, t) − 1
Nm

∑Nm

w=1 Ỹ
ref
(w),m(k, t). Thus, the output of AD(Xref )

is a family of estimated finite-dimensional distributions (Q0,Q1), i.e. a set of Multi-variate Gaussian densities for

different values of the elapsed hospitalization period. The density estimation algorithm passes the density estimates

to the belief function which runs in real-time and applies Bayesian learning using (Q0,Q1) as priors with which

it updates its posterior beliefs.
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B. The real-time belief updating algorithm

The belief function of ForecastICU is updated at time t given a the data stream {Xτ}tτ=to
(or generally, the

information Ft available at time t) of the incoming patient as follows Bt (H1 |Ft ) = Q
(
H1

∣∣∣{Xτ}tτ=to

)
. However,

since ForecastICU faces uncertainty about the clinical status, the reference time to of the stream {Xτ}tτ=to
with

respect to the estimated densities (Q0,Q1) is unknown. Therefore, ForecastICU estimates the belief function as

N1Q
(
{Xτ}tτ=t1o

|H1, T
∗
1 (t)

)
N0Q

(
{Xτ}tτ=t0o

|H0, T ∗
0 (t)

)
+N1Q

(
{Xτ}tτ=t1o

|H1, T ∗
1 (t)

) ,
where tmo = t− T ∗

m(t) + 1, and T ∗
m(t) is the “most likely” estimate for the time remaining until the stopping time

of the process, which is simply given by

T ∗
m(t) = arg max

τ
Q
(
{Xk}τk=τ−t+1 |Hm

)
. (7)

In order to rule out drastic fluctuations and spikes in the belief function, which may result from a belief system

constructed from a small data set, we apply a smoothing phase for the belief process via a simple moving average

filter of length W . The smoothed belief function is given by B̃t =
1
W

∑t
τ=t−W Bτ . ForecastICU prompts an ICU

alarm whenever B̃t exceeds a threshold η. In the following subsection, we show how the threshold η is set.

C. The alarm strategy

ForecastICU follows a threshold-type alarm strategy: it prompts an ICU alarm whenever the smoothed belief

process B̃t hits a threshold η. The fundamental trade-off that ForecastICU balances is the one between the timeliness

of a prediction and its accuracy. We control such a trade-off via two parameters: the threshold η and the size of

the smoothing filter W . In this case, the alarm strategy is defined by a richer set of parameters (η,W ) rather than

being solely determined by η. The threshold η controls to the confidence in the issued alarms, and W controls the

stability of the belief function’s fluctuations, and hence the system’s sensitivity. In order to select desirable values

for η and W , we define a clinical value function V (η,W ) as follows

V (η,W ) = αTPR(η,W ) + (1− α)Tp(η,W ) (8)

where α ∈ [0, 1] is a parameter that balances the preferences over timeliness and sensitivity. By setting a constraint

γ on the system’s precision (which can be determined by physicians), ForecastICU computes the alarm strategy by

solving the following optimization problem:

max
η,W

V (η,W )

subject to PPV (η,W ) ≥ γ. (9)

V. EXPERIMENTS

A. Data Description

ForecastICU was applied to a population of patients admitted to a large academic hospital. The population

considered is fairly homogeneous: most patients were diagnosed with leukemia, lymphoma, multiple myeloma
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and other hematologic malignancies. The majority of the patients were receiving chemotherapy, allogeneic stem

cell transplantation or autologous stem cell transplantation. We have chosen this particular population of patients

for our experiments because these patients were receiving treatments (according to their diagnosis) that cause

severe immunosuppression during their hospitalization, placing them at an extreme risk of developing a clinical

deterioration, which requires ICU admission. This is extremely important as delays in ICU admission in these

patients are associated with increased mortality and morbidity. [1] [35] [2] [33].

The patients’ clinical features comprise 18 temporal physiological data streams which are described in the Appendix.

Each patient’s data stream is associated with a binary label: either discharge (DIS) or ICU Admission (ICU). The

total number of patients is 1065, and the number of patients admitted to ICU is 101 (9.48%). The hospitalization

period ranges from 4 to 2062 hours (85 days and 22 hours).

B. Experiments Setup

We compare the performance of ForecastICU in terms of timeliness, PPV and TPR with respect to four state-of-

the-art machine learning techniques: logistic regression (LR), support vector machines with radial based kernel

(SVMs), regularized logistic regression with Lasso (LASSO) and random forest. Performance measures were

computed via 10-fold stratified cross validation: we run 10 independent cross validations and report the average as

the final performance. Clinicians responsible of ICU admissions in the medical center from which we extracted the

data indicated that ICU alarms would be most helpful if they are at least 4 hours earlier than the standard time

an ICU admission decision would be taken by the clinician, in order to provide sufficient time to safely enact the

transfer and to potentially correct the cause of the underlying clinical deterioration.

C. Experiment Results

1) Performance Comparison with Benchmarks: ForecastICU consistently outperforms the other benchmark al-

gorithms with respect to the PPV for every given value of the TPR as shown in Fig. 2 and Table I. For instance,

for a TPR of 50%, ForecastICU achieves a PPV of 54.7%, which is 5.1% better than the best benchmark algorithm

(random forest). Moreover, given for a PPV of 40%, Forecast ICU achieves a TPR of 68.1%, which is 7.8% better

than the best benchmark algorithm, with 8.15% gain in terms of the area under curve (AUC) as well. Note that

while for different ranges of TPR and PPV, the best benchmark algorithm changes, ForecastICU is consistently

outperforming that best benchmark.

Our algorithm offers a consistent improvement in terms of the rate of “false alarms” and “true alarms” as compared

to the benchmarks; this is crucial in a practical ICU setting as studies suggest that the clinicans’ response to an

alarm is related to their confidence in the signal, which is directly related to how often the alarm correctly warns the

clinician of impending danger [36] [37] [38]. For instance, at a TPR of 50%, ForecasetICU is the only algorithm

among those being compared that could correctly alarm for an ICU admission with accuracy above 50%, whereas

other benchmarks perform worse than what a physician could do with a simple coin flip. The p-value of the

hypothesis test that compares ForecastICU and the best algorithm is less than 0.01. Moreover, our algorithm can
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display the belief threshold for the computed alarm strategy, which itself is a natural measure for the “likelihood”

of the alarm being truthful, and is thus a measure of confidence in the issued alarms.

TABLE I

ACCURACY OF ICU ALARMS FOR FORECASTICU AND THE BENCHMARK ALGORITHMS.

Algorithms TPR(%) PPV(%)

ForecastICU 50.2± 1.45% 54.7± 1.73%

Logistic Regression 50.8± 1.77% 39.7± 1.95%

Lasso Regularization 50.7± 2.01% 42.5± 1.98%

Random Forest 51.1± 2.03% 49.6± 1.55%

SVMs 50.5± 2.12% 29.8± 1.55%

PPV(%)
0 10 20 30 40 50 60 70

T
P

R
(%

)

40

50

60

70

80

90

100
Trade-off between TPR and PPV

ForecastICU               (AUC: 0.4714)
Logistic Regression   (AUC: 0.3491)
Lasso Regularization (AUC: 0.3703)
Random Forest          (AUC: 0.3899)
SVMs                         (AUC: 0.2621)

Fig. 2. Trade-off between TPR and PPV

2) Trade-off between timeliness and accuracy: Fig. 3 and Table II illustrate the trade-off between prediction time

and its accuracy. While the performance of all algorithms naturally degrades as the ICU alarms are prompted at

earlier times, we see that ForecastICU consistently outperforms all the other benchmark algorithms in terms of both

TPR and PPV for all alarm times (every level of timeliness). For instance, the TPR of ForecastICU is 59.2% with a

PPV of 30.3% for a 12-hour early prediction with respect to the actual physician-determined ICU admission event.

This represents a gain of 3.4% with respect to the best benchmark algorithm, which in this case is the LASSO

regularization. Fig. 3 also shows that ForecastICU can consistently predict the ICU admission earlier than the best

benchmark algorithm, raising the alarm around 2 to 3 hours earlier. It can also predict ICU admissions 9 hours

before a physician’s decision for a PPV of 40% and a TPR of 50%.
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TABLE II

ACCURACY OF ICU ADMISSION ALARMS BEFORE 12 HOURS FROM THE ACTUAL PHYSICIAN-DETERMINED ICU ADMISSION TIME

Algorithms TPR(%) PPV(%)

ForecastICU 59.2% 30.3%

Logistic Regression 55.7% 30.7%

Lasso Regularization 55.8% 30.3%

Random Forest 44.5% 31.1%

SVMs 32.3% 29.9%

Time Preceding to ICU events (hours)
-25 -20 -15 -10 -5 0

P
P

V
(%

)
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15

20

25

30

35

40

45

50

55

60
Trade-off between PPV and Prediction TIme

ForecastICU
Logistic Regression
Lasso Regularization
Random Forest
SVMs

2.8 hours*

2.9 hours*

2.3 hours*

Fig. 3. Trade-off between PPV and the prediction time (TPR is fixed at 50%). (*: Earliness of ForecastICU alarms compared to the best

benchmark algorithm)

D. Clinical significance of ForecastICU

The clinical significance of ForecastICU is not only limited to the performance gains discussed earlier, but it

also extends to its ability to handle a versatile clinical value function, which can assist clinicians in managing the

ICU admission procedure. For instance, given a TPR determined by the clinician, ForecastICU is able to warn the

clinician earlier and provide a more confident signal than other existing machine learning algorithms, thus providing

the busy clinician with a safety net for patient care by giving them sufficient time to intervene at an earlier time

in order to prevent clinical deterioration. Moreover, given that the value of PPV is related to the confidence that

the clinician has in the alarm, the clinician’s confidence with ForecastICU would be higher than other off-the-shelf

benchmark algorithms regardless of the sensitivity (TPR) that the clinician decides to set. The PPV gains achieved

by ForecastICU also imply a decrease in the number of patients that are falsely identified as needing ICU admission,

which would reduce the medical reverse effects and unnecessary costs [39].
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VI. CONCLUSION

In this paper, we developed ForecastICU: prognostic decision support systems that monitors hospitalized patients

and prompts alarms for ICU admission. We viewed the problem of ICU prognosis as an optimal stopping time

problem, where a forecaster has to trade-off the value of information gained from monitoring a patient’s physiological

data streams with the timeliness of a potential ICU alarm. We have proposed ForecastICU as a practical algorithm

that solves this problem using Bayesian learning.

ForecastICU was applied to a real-world dataset from a large academic medical center, and we have shown that

it consistently outperforms benchmark algorithms in terms of timeliness, sensitivity and precision. In particular,

ForecastICU can prompt ICU alarms that are around 2 to 3 hours earlier than the best benchmark, and can also

issue ICU alarms 9 hours before a physician’s ICU admission decision for a PPV of 40% and a TPR of 50%.

Sensitivity and precision gains of 7.8% and 5.1% respectively with respect to the best benchmark algorithm were

reported.
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VII. APPENDIX

A. Proof of Theorem 1

In order to prove the Theorem, we first hold the following assumptions on the physiological stream stopping

time and the patients’ hospitalization time (time of admission to hospital), and hospitalization period (time between

admission to hospital and transfer to ICU or discharge). We assume that the maximum hospitalization period

for any patient is T̄H , the hospitalization time tH is random, and the stopping time τs is random where the

distributions of hospitalization and stopping times are given by ftH (tH), fτs(τs |H0 ) and fτs(τs |H1 ), where

supp (ftH (tH)) = [0, T̄H ], supp (fτs (τs |tH )) = [tH , T̄H ].

Let B∗
t and Bt be the belief processes of a truthful and a non-truthful belief systems respectively. A truthful

belief system has access to the joint distributions of the physiological data stream (P0,P1) and knows the stopping

time τs, whereas the non-truthful belief system maintains estimates of the joint distribution of the physiological

data stream (Q0,Q1), where d (Pm,Qm) > 0 for a probability metric d. In the following, we show that both B∗
t

and Bt are martingales with respect to the filtration Ft. Note that

B∗
t (H1 |Ft ) =

P
(
{Xτ}tτ=tH |H1

)
P (H1)∑

i∈{0,1} P
(
{Xτ}tτ=tH |Hi

)
P (Hi)

=
B∗

t−1 (H1 |Ft−1 )P (Xt |H1 )∑
i∈{0,1} B

∗
t−1 (Hi |Ft−1 )P (Xt |Hi )

. (10)

Thus, we have that

E
[
B∗

t+1 |Ft+1

]
= E

[
B∗

t (H1 |Ft )P (Xt |H1 )∑
i∈{0,1} B

∗
t (Hi |Ft )P (Xt |Hi )

]

=
∑

Xt∈Xt

B∗
t (H1 |Ft )P (Xt |H1 )P(Xt)∑
i∈{0,1} B

∗
t (Hi |Ft )P (Xt |Hi )

=
∑

Xt∈Xt

B∗
t (H1 |Ft )P (Xt |H1 )

= B∗
t (H1 |Ft )

∑
Xt∈Xt

P (Xt |H1 )

= B∗
t (H1 |Ft ) . (11)

Since E
[
B∗

t+1 |Ft+1

]
= B∗

t (H1 |Ft ) , then the truthful belief process is martingale. Now we focus on the non-

truthful belief process Bt, which we can write as

Bt (H1 |Ft ) =
Bt−1 (H1 |Ft−1 )Q (Xt |H1 )∑

i∈{0,1} Bt−1 (Hi |Ft−1 )Q (Xt |Hi )
. (12)

Thus, we have that

E [Bt+1 |Ft+1 ] = E

[
Bt (H1 |Ft )Q (Xt |H1 )∑

i∈{0,1} Bt (Hi |Ft )Q (Xt |Hi )

]

=
∑

Xt∈Xt

Bt (H1 |Ft )Q (Xt |H1 )P(Xt)∑
i∈{0,1} Bt (Hi |Ft )Q (Xt |Hi )

= Bt (H1 |Ft ) . (13)
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Fig. 4. Depiction for the belief process as computed by a truthful and a non-truthful belief systems.

Now define the threshold type strategies η∗ (a threshold on B∗
t ) and η̄ (a threshold on Bt) as follows:

η∗ = arg sup
η∈[0,1]

EP

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
, (14)

and

η̄ = arg sup
η∈[0,1]

EQ

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
. (15)

As shown in Fig. 4, the non-truthfulness of the belief system may lead for instance to a delay in the ICU alarm.

Now we focus on a certain realization of the stopping time τs. Since supt Bt = supt B
∗
t = 1, and inft Bt =

inft B
∗
t = 0, then E [Bt] < ∞ and E [B∗

t ] < ∞, i.e. Bt and B∗
t are bounded martingales. Thus, by Doob’s

martingale convergence theorem, we know that Bt → B∞ and B∗
t → B∗

∞ almost surely, where E [B∗
∞] < ∞, and

E [B∞] < ∞. It is easy to show that the sequence B∗
t −Bt is also a martingale with respect to the filtration Ft, i.e.

E [B∗
t + 1−Bt + 1 |Ft ] = B∗

t −Bt. Now recall that we want to show that P (|V ∗ − V (η̄)| < ϵ) > 1− δ. To prove

this, it suffices to show that there exists ϵ
′ ∈ [0, 1], such that P

(
|η∗ − η̄| < ϵ

′
)
> 1− δ. This is equivalent to show

that the martingale sequence B∗
t − Bt converges to a value less than ϵ

′′ ∈ [0, 1] with a probability 1 − δ. This is

satisfied if for N∗(ϵ, δ), there exists an algorithm AD that if used to estimate Q, it will prompt a distribution that

is within a Kolmogorov-Smirnov distance of ∆(ϵ) from the true distribution P. By Dvoretzky-Kiefer-Wolfowitz

inequality, we know that if the algorithm AD just computes Q as the empirical distribution, then we have that

Pr

(
sup

t∈[tH ,tH+τs]

∣∣Qt
m − Pt

m

∣∣ > ∆(ϵ)

)
≤ 2exp

(
−2N∆2(ϵ)

)
.

Thus, we can find N∗(ϵ, δ) by equating 1− δ with the RHS in the equation above, and for any N > N∗(ϵ, δ), we

have that P (|V ∗ − V (η̄)| < ϵ) > 1− δ.
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B. Pseudo-code of ForecastICU

Offline Stage:

Input: Xref
0 ,Xref

1 , Ts

1) Data Reconstruction

for i = 1 to N do

X̃ref
(i) = hspline({Xref

(i) (m,n)}K−1
n=0 , Ts)

end for

2) Relevant Feature Selection

Ỹref = CFS(X̃ref ),

3) Parametric density estimation

[µ̂t
m(j)]Rj=1 = 1

Nm

∑Nm

i=1 Ỹ
ref
(i),m(j, t)

[Σ̂t
m]k,l =

1
Nm−1

∑Nm

i=1 Ȳ
ref
(i),m(k, t)Ȳref

(i),m(l, t)

Real-time Stage:

Input: {Xτ}T
H

τ=0, γ, η,W

for t = 1 to TH do

1) Current State Estimation

for m = 0 to 1 do

T ∗
m(t) = arg maxτ Q({Xk}τk=τ−t+1|Hm)

end for

2) Belief Update Algorithm

Bt(H1|Ft) = Q(H1|{Xτ}tτ=to)

=
N1Q({Xτ}t

τ=t1o
|H1,T

∗
1 (t))

N0Q({Xτ}t
τ=t0o

|H0,T∗
0 (t))+N1Q({Xτ}t

τ=t1o
|H1,T∗

1 (t))

B̃t(H1|Ft) =
1
W

∑t
τ=t−W Bτ (H1|Fτ )

3) Sequential Decision Making

Decision(t) =

H1 if B̂t(H1|Ft) ≥ η

H0 otherwise
end for

Fig. 5. Pseudo-code of ForecastICU
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C. Features of the Dataset

TABLE III

ENTIRE FEATURE INFORMATION

NO FEATURE NAME

Time Dependent Continuous Features

1 SYSTOLIC BLOOD PRESSURE

2 DIASTOLIC BLOOD PRESSURE

3 HEART RATE

4 RESPIRATORY RATE

5 TEMPERATURE

6 O2 SATURATION

7 WHITE BLOOD CELL

8 HEMOGLOBIN

9 PLATELET COUNT

10 SODIUM

11 POTASSIUM

12 CHLORINE

13 CO2 SATURATION

14 BLOOD UREA NITROGEN

15 CREATINE

16 GLUCOSE

Time Dependent Discrete Features

17 O2 DEVICE (BINARY)

18 BREATH ASSIST DEVICE (49 CATEGORIES)

Time Independent Features

19 AGE

20 ETHNICITY

21 RACE

22 GENDER

23 TRANSFER (BINARY)

24 ADMITTED SOURCE

1) Entire feature information:
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TABLE IV

RELEVANT FEATURES FOR ICU ADMISSION PREDICTION

Rank Acronym Relevant Features

1 RR Respiratory Rate

2 HR Heart Rate

3 BUN Blood Urea Nitrogen

4 GLU Glucose

5 Breath Oxygen Supply Device (Binary)

6 DBP Diastolic Blood Pressure

7 SPO2 O2 Saturation

2) Relevant Features for ICU Admission Prediction: Based on the correlation feature selection (CFS) algorithm

with minimum redundancy and maximum relevance (mRMR) criterion, we discover 7 relevant features among the

entire 24 features which are highly correlated with ICU admission but poorly correlated with each other. Table IV

explicitly lists 7 relevant features and these can be justified by the medical references [40] [41] [42]. Note that all

of the relevant features are time dependent features.
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D. Model Justifications

1) Martingale Properties: In the paper, we assume that physiological data streams of ICU and DIS patients

can be modeled as stochastic processes with sub/supermartingales and martingales properties, respectively. Fig. 6

illustrates four representative physiological data streams of ICU patient that tend to increases/decreases when the

actual ICU event time approaches (sub/supermartingales). On the other hand, the representative physiological data

streams of DIS patient are consistent within the entire hospitalization periods (martingales).
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Fig. 6. The average temporal physiological data streams

February 6, 2016 DRAFT



22

2) Multivariate Gaussian Distribution Approximation: In this paper, we also assume that the joint distribution of

the physiological data streams can be modeled as a Multivariate Gaussian process. Fig. 7 illustrates the histogram of

the systolic blood pressure and heart rate extracted by the reconstructed dataset of ICU and DIS patients, respectively.

As it can be seen, these can be indeed modeled as Gaussian distributions - the fitting error is less than 10%. Fig.

8 shows that the joint distributions between the physiological features can indeed be modeled using a Multivariate

Gaussian distribution..
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Fig. 7. Histograms of diastolic blood pressures and heart rates at 10 hours before ICU/DIS events.

Fig. 8. Joint distribution of diastolic blood pressure and heart rates
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E. Extension of ForecastICU: Patient Risks Tracking Systems (PRTS)

ForecastICU can be extended to patients risks tracking systems (PRTS) which keeps tracking the ICU belief

(risks of ICU admission) until the actual ICU admission or discharge event. This system is useful in real clinical

setting because PRTS helps doctors to focus on the real-time high risk patients based on the ICU belief provided

by the algorithm. In this subsection, we illustrate the performance of ForecastICU in PRTS setting.

ForcastICU has a consistently higher PPV in comparison to other benchmarks which is represented in Table V

and Fig. 9. For instance, given 70% TPR, ForecastICU achieves 80.1% PPV which is 5.2% better than the second

best algorithm (Lasso Regularization). Moreover, with 70% PPV, Forecast ICU achieves 78.0% TPR which is 4.7%

better than the second best algorithm. AUC values are also 1.5% higher than the second best algorithm and the

p-value of the hypothesis test comparing ForecastICU and the second best algorithm is ≤ 0.01.

TABLE V

PERFORMANCE COMPARISON OF ICU PREDICTION IN PRTS SETTING

Algorithms TPR(%) PPV(%)

ForecastICU 70.3± 1.75% 80.1± 1.23%

Logistic Regression 70.5± 1.13% 73.5± 2.09%

Lasso Regularization 70.1± 1.49% 74.9± 1.98%

Random Forest 70.7± 1.34% 56.1± 1.24%

SVMs 70.0± 1.28% 44.9± 1.74%
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Fig. 9. Trade-off between TPR and PPV in PRTS setting

February 6, 2016 DRAFT



24

F. Additional Experiment Results
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Fig. 10. Trade-off between TPR and the prediction time (fix PPV 30%)
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