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A Pricing Mechanism for Resource Allocation in
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Abstract—We consider the problem of multiuser resource alloca-
tion for wireless multimedia applications deployed by autonomous
and noncollaborative wireless stations (WSTAs). Existing resource
allocation solutions for WLANs are not network-aware and do
not take into account the selfish behavior of individual WSTAs.
Specifically, the selfish WSTAs can manipulate the network by
untruthfully representing their private information (i.e., video
characteristics, experienced channel conditions, and deployed
streaming strategies). This often results in inefficient resource
allocations. To overcome this obstacle, we present a pricing
mechanism for message exchanges between the WSTAs and the
Central Spectrum Moderator (CSM). The messages represent
network-aware resource demands and corresponding prices. We
prove that the message exchanges reach the Nash equilibrium and
that the resulting equilibrium messages generate allocations which
are efficient, budget balanced, and satisfy voluntary participation.
The simulation results verify that these properties hold when the
WSTAs behave strategically. Additionally, we evaluate the impact
of initial prices and network congestion level on the convergence
rate of message exchanges.

Index Terms—Game theory, multiuser wireless multimedia
streaming, pricing mechanism, resource allocation.

I. INTRODUCTION

WIRELESS networks are envisioned to play a crucial role
in the delivery of various delay-sensitive multimedia

services to homes, enterprises, and campuses. A fundamental
problem in enabling the large scale deployment of such net-
works is the absence of effective resource allocation schemes,
which can arbitrate the division of the scarce wireless resource
among competing (high-bandwidth and delay-sensitive) mul-
timedia users.

There are two main challenges in designing efficient resource
allocation schemes for wireless media. First, in current wireless
standards, multimedia users are able to unfairly compete for
resources by misrepresenting their Quality-of-Service (QoS)
requirements [1]. For instance, in existing WLANs, such as
IEEE 802.11a Point Coordination Function (PCF) [2] and

Manuscript received November 1, 2006; revised May 7, 2007. This work
was supported by NSF CAREER Award CCF-0541867 and CCF-0541453, and
grants from UC Micro. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Adriana Dumitras.

F. Fu and M. van der Schaar are with the Electrical Engineering Department,
University of California, Los Angeles, CA 90095-1594 USA (e-mail: fwfu@ee.
ucla.edu; mihaela@ee.ucla.edu).

T. M. Stoenescu is with the NASA Jet Propulsion Laboratory, Pasadena, CA
91109 USA (e-mail: tudor@caltech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2007.901519

802.11e Hybrid Coordination Function (HCF) [3], the available
resources are divided among competing stations through a
polling-based mechanism. This mechanism is deployed by a
Central Spectrum Moderator (CSM), e.g., the access point,
and it is based on resource reservation requests that are ne-
gotiated by the autonomous wireless stations (WSTAs) when
they first join the network. The CSM, often implemented at
the Medium Access Control (MAC) layer, is assumed to be
able to take into consideration information from other layers
when determining policies to divide the available resources. In
current state-of-the-art reservation (admission-control) based
schemes, each wireless station tries to acquire as much of the
network resource as possible by declaring a traffic specification
(TSPEC) based on worst-case traffic estimates [3]. In wireless
networks arbitrated by the recently standardized 802.11a/e
WLAN admission control protocols, if some users misrepre-
sent their TSPEC requirements, the performance of the entire
wireless network may degrade considerably [4].

Recently, several fair resource allocation algorithms [35],
[36] have been proposed for wireless multimedia applications.
In [35], a max–min fairness allocation is presented using a
combination of the bandwidth reservation and bandwidth bor-
rowing to provide the network users the required QoS. In [36],
a Nash bargaining solution is proposed to divide the available
resources in order to achieve a utility-fair allocation. However,
these proposed algorithms assume that all WSTAs truthfully
reveal their resource requirements. This is not always true when
the wireless users are selfish [1].

A second challenge in the design of resource management
schemes for WLANs comes from the informationally decen-
tralized nature of the wireless resource allocation [3], [4]. Each
WSTA can derive different video quality benefits based on
the various resources allocated by the CSM. For each WSTA,
the quality benefit depends on its private information, which
is represented by its video characteristics, channel conditions,
as well as its deployed streaming strategies. In general, the
private information of each user is not known by the CSM
or other WSTAs. Also, the users are not directly aware of
the other WSTAs requesting resources from the CSM. To
address the informationally-decentralized nature of the net-
work, pricing-based distributed resource allocation algorithms
have been extensively investigated [6], [7], where the price
reflects the congestion in the network and the network users
adjust their traffic based on the resource price. However, the
algorithms assume that the network users are “price-takers,”
i.e., the users accept the price announced by the network and
do not consider the effects of their actions on the network price.
If the network users anticipate these effects (we refer to such
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users as “strategic” players), the above algorithms will lead to
an inefficient allocation [38]. Such resource allocations among
strategic players have been extensively studied by mathematical
economists in the context of mechanism design [17], [27].

In this paper, we focus on the problem of autonomous wire-
less stations (WSTAs) that are deployed by various noncollabo-
rative and strategic users. From now on, we use the expressions
“WSTA” and “user” interchangeably. These stations compete
for wireless resources (transmission time) in order to transmit
video data in real-time over a shared wireless LAN (WLAN)
infrastructure. To address the abovementioned challenges, new
schemes for resource allocation in multimedia environments
need to be devised, which i) maximize the network utilization;
ii) take into account the “self-interested” behavior of individual
users that may try to selfishly influence the resource allocation
process; and iii) satisfy the informational constraints imposed
by the informationally decentralized nature of the investigated
resource allocation problem.

In this paper, to enforce WSTAs to declare their resource re-
quirements truthfully and to act in a socially optimal way, we
adopt a game-theoretic pricing mechanism for the CSM to im-
plement the time allocation in polling-based WLANs. In this
mechanism, each WSTA communicates with the CSM. Hence,
unlike existing WLAN standards, where a single message is
transmitted for the resource allocation (i.e., the TSPEC), in our
proposed scheme, each WSTA transmits to the CSM two mes-
sages: a resource demand and a corresponding price. The CSM
announces then back to the WSTA three messages: the average
price announced by the other WSTAs, the resources consumed
by the other WSTAs, and the update step size of the price. Fi-
nally, this process is repeated until the message equilibrium
(which represents the set of users’ demands and resource prices
from which no user would like to deviate) is reached. After the
equilibrium is reached, the CSM allocates the negotiated trans-
mission opportunities (TXOPs) to the WSTAs. The proposed
mechanism can generate efficient TXOP allocations when the
WSTAs behave “strategically.”

Unlike other resource allocation schemes, which are based on
Vickery–Clarke–Groves (VCG) mechanisms [17] and study the
resource allocation problem from a dominant strategy perspec-
tive, the proposed mechanism implements the solutions in Nash
equilibrium. The proposed approach enables us to provide solu-
tions for the wireless multimedia resource allocation that are not
only simpler in terms of communication and computational cost,
but also satisfy the important properties of voluntary participa-
tion (i.e., users prefer to participate in the resource exchange
rather than not participate) and are budget balanced (i.e., all the
money users pay to the wireless network is allocated back to
them). The budget balanced property is very important for ex-
isting WLANs since it prevents the CSM from behaving as a
profit maker and trying to alter the users’ allocations in order to
maximize its revenue. Such a requirement holds in most of the
aforementioned wireless multimedia applications.

In summary, our paper makes the following contributions.
1) It adds a new dimension to existing wireless systems by en-

abling them to proactively compete for the limited wireless
resources based on their video characteristics and channel
conditions.

2) It introduces a novel pricing-based mechanism for resource
allocation and management in multiuser wireless environ-
ments, where WSTAs are allowed to compete for the avail-
able resources. The proposed mechanism, while taking into
account the strategic behavior of individual users, gener-
ates allocations that i) maximize the sum of the users’ ex-
pected received video quality, ii) are budget balanced, and
iii) satisfy the property of voluntary participation.

3) It leads to allocations that are easier to enforce and are su-
perior from a “fairness” standpoint [1] than the ones gen-
erated by the existing multiuser wireless multimedia re-
source allocation mechanisms such as IEEE 802.11e [3].

The paper is organized as follows. In Section II, we describe
the wireless system for multimedia applications and formulate
the centralized resource allocation problem. In Section III, we
present the expected received video quality-resource function
using the priority queuing model, which is required for the
multimedia users to strategically maximize their own utilities.
In Section IV, we propose a pricing mechanism to implement
the decentralized resource allocation. In Section V, given the
resource allocated by the pricing mechanism, we illustrate
the real-time transmission strategies that are deployed by the
WSTAs to stream their video packets over the wireless medium.
In Section VI, we present the simulation results, followed by
the conclusions in Section VII.

II. SYSTEM DESCRIPTION

We consider autonomous WSTAs that are
streaming video content in real-time over a shared one-hop
WLAN infrastructure. These WSTAs are competing for the
available wireless resource , which in our system rep-
resents the amount of time (e.g., TXOPs) that can be allocated
to the WSTAs. We assume that a polling-based mechanism
(similar to that adopted in the QoS-enabled MAC of IEEE
802.11e [3]) is deployed by the CSM to divide the available
resources among the competing WSTAs. The total available
wireless resource is allocated to the WSTAs, each of
which receives resources with . Thus, the
resource allocation vector is denoted as .
Note that , where the inequality is due to the over-
head of signaling and synchronizing in the wireless network.
However, for simplicity, in this paper we ignore the proportion
of time used for signaling and synchronization (as this can be
easily subtracted from the total available wireless resources).
The multimedia users are modeled as selfish and strategic users
that try to maximize their utility benefits. Given a resource
allocation , each multimedia user has an expected received
video quality, denoted as , which depends on the
video traffic characteristics, deployed transmission strategies
as well as experienced channel conditions. In Section III, we
will discuss how to determine .

User ’s utility function is summarized by a quasi linear utility
function of the form . The term

is the “numeraire” commodity, which represents the tax
incurred by the user when participating in the resource man-
agement game. Although the numeraire commodity generally
represents money, in our problem it can be any type of tradable
resource that is available to the users. In general, a constraint



266 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 2, AUGUST 2007

on the availability of the numeraire commodity needs to be im-
posed. In particular, we assume that each user should possess
enough numeraire commodity to be able to afford to pay for the
excess amount of resource needed to achieve an optimal wire-
less resource allocation.

The resource allocation aims to maximize the “social” wel-
fare [1], which in our problem is characterized by the sum of
the users’ utilities, as in [17]. Formally, the resource allocation
problem can be formulated as

(1)

with being the tax vector for all the users.
The last constraint in the problem in (1) comes from the fact
that the amount of numeraire commodity in the system after the
allocation cannot exceed the amount before the allocation. The
above optimization problem can potentially be solved in a cen-
tralized fashion by the use of linear and nonlinear programming
techniques [28], [29]. Unfortunately, due to the informational
constraints involved in the noncollaborative multiuser wireless
multimedia transmission, this is not possible unless the CSM
knows all the users’ private information. Hence, a decentralized
negotiation process is required to find the optimal solution to
our problem.

To transmit multimedia over the current WLANs, the WSTAs
are required to submit their TSPECs to the CSM based on their
traffic models [2], [3] before they actually start transmitting the
video data. Based on the submitted TSPECs, the CSM allocates
the wireless resources. After this resource allocation is final-
ized, the WSTAs begin to transmit their video packets. Note
that the WSTAs only submit the TSPECs when they join the
network. During the transmission, the WSTAs can deploy var-
ious transmission strategies to cope with the dynamics of the
source characteristics and channel conditions [4]. However, in
reality, in order to maximize their own utilities, the users will
strategically anticipate the impact of their own actions on the
network resource allocation. To prevent the users from misusing
the network resource in this manner, we propose an efficient
negotiation process (i.e., message exchanges between the users
and the CSM) which explicitly considers the strategic behaviors
of WSTAs. Similar to the TSPEC used in current WLANs, the
message exchanges between the WSTAs and the CSM are com-
posed of several scalar numbers representing the resource de-
mand and corresponding prices based on their video quality-re-
source models. In Section III, we present such a video quality-
resource model. However, we note that the proposed message
exchange framework can be applied to other video quality-re-
source models. The message exchange is performed iteratively
until the equilibrium is reached. In Section IV, we describe in
detail the message exchange procedure. Similar to the resource

negotiation performed in existing WLANs, the proposed mech-
anism takes place only when large variations occur in the net-
work, e.g., new WSTAs join the wireless network. Again, sim-
ilar to the current approach in existing WLANs, while the re-
source renegotiation is finalized, the WSTA will continue trans-
mitting their video packets based on the newly negotiated re-
sources.

III. EXPECTED RECEIVED VIDEO QUALITY

FOR MULTIMEDIA USERS

To analyze the interaction between the multimedia users and
the CSM, a model for determining the expected received video
quality for user is required. In this section, we will
derive based on a priority queuing model. Specifically,
in Section III-A, the video packets from user are divided into
several priority classes based on their different contributions to
the video quality. In Section III-B, a priority queuing model is
used to model the video transmission. In Section III-C,
is derived for user based on the proposed priority queuing
model.

A. Priority Video Classes

In [4], [8], it has been shown that partitioning the packets
into different priority classes and correspondingly adjusting the
transmission strategies for each class can significantly improve
the overall received quality and provide graceful degradation as
congestion levels and channel conditions change. Similarly, in
this paper, we will divide the packets of each encoded video
stream into several priority classes based on their impact on the
video distortion and their delay constraints. For instance, the
video data can be divided into different priority classes1 using
data partition [33], [34] for hybrid video coders (e.g., H.264)
or using spatio–temporal-SNR layering for 3-D wavelet video
coders [9]. The packets belonging to the same class compose
one priority class and are assumed to have the same contri-
butions to the reconstructed video quality (i.e., the same “pri-
ority”). The number of priority classes for user equals .
We assume that each packet of class has the
quality contribution . Note that the quality contribution
depends on the underlying content characteristics, encoding pa-
rameters, etc. and typically increases with the importance or dis-
tortion impact of the packet and can be determined as in [25].
We assume that the packets are prioritized in descending order
of their quality contribution, i.e., . For
simplicity, we assume that the packet length (which includes
the various packet headers, etc.) is constant for a specific WSTA
. The optimal packet length can be determined as in [30].

B. Priority Queuing Model for Packet Transmission

Before starting to stream their video packets over the wireless
network, multimedia users are required to submit their resource
requirements to the CSM. For example, in WLAN 802.11e, the
users are required to submit their TSPECs, which include mean

1It should be noted that the particular prioritization schemes do only affect
the video quality performance of the wireless stations, and not the proposed
mechanism for resource allocation. Our proposed pricing mechanism is generic
and can be applied in a similar manner to different video coders.
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data rates, peak data rates and delay bounds, to the CSM. How-
ever, in our resource allocation game, user has to proactively
determine its over the set of potential resource alloca-
tions in order to determine the messages it should exchange
with the CSM. We note that the TSPEC only captures the worst
case resource requirement and does not explicitly represent the
resulting quality experienced by the user, i.e., . On the
other hand, the received video quality is influenced by many
factors, e.g., video traffic characteristics, transmission strate-
gies, experienced channel conditions, allocated resources, etc.
All these factors are actually not known a priori and can only be
estimated during the actual real-time transmission. Hence, we
introduce a priority queuing model for the video packet trans-
mission based on which a WSTA can estimate the resulting

. The priority queuing model is especially useful for
deriving for the following reasons.

i. Using priority queuing models, the uncertainty of video
packets’ arrivals and transmission time can be analyt-
ically described and can be explicitly deter-
mined.

ii. The transmitted packets have different contributions
to the reconstructed video quality, and thus applying
priority-aware transmission strategies to the different
packet classes can significantly improve the received
video quality.

iii. The priority queuing model captures the steady state per-
formance, e.g., waiting time distribution, and packet loss
probability, which directly impact .

It is worthwhile to note that the more accurate the models are
for the video traffic, transmission strategies and channel con-
ditions, the more accurate the quality estimation be-
comes. On the other hand, the queuing models should also be
easy to compute for each WSTA.

1) Priority Queuing Assumptions: The adopted priority
queuing analysis is based on the following assumptions.

i. The packet arrivals of each priority class
from user is assumed to be a Poisson process as

in [31], i.e., the distribution of the duration, denoted as
, between two sequent packet arrivals from the

same class is assumed to be exponential [10]. Thus, the
average packet arrival rate can be computed as

. We note that a more complicated packet
arrival model can also be applied [11]. However, as men-
tioned before, the tradeoff between the model complexity
and accuracy has to be taken into account.

ii. The highest priority packets present in the buffer will be
the first to be transmitted whenever the transmission op-
portunities are available. As in [4], a packet with higher
priority will be transmitted repeatedly until it reaches the
destination or it expires due to its delay constraint. More-
over, while a packet is being sent, its transmission will
not be interrupted by the newly generated higher priority
packets arriving in the transmission buffer. This transmis-
sion policy is denominated nonpreemptive priority trans-
mission policy [11]. Hence, the packet service (transmis-
sion) time, , is a function of the allocated resource

, which can be approximated by a geometric distri-
bution [10]. The service time can be determined based

on the experienced channel conditions expressed by the
SNR and the allocated transmission opportunities (e.g.,
TXOP). Based on these, the maximum transmission rate

and the packet error probability, , can be easily
computed, as shown in [12]. Using the geometric distri-
bution, the first and second moments of the service time
can be approximated by [10]

(2)

(3)

iii. Different video packets have different delay deadlines.
Each packet in priority class is assumed
to have the same maximum allowable delay, .

iv. We assume that the queue waiting time dominates the
overall delay (i.e., the transmission time is small [3], [4]).

2) Priority Queuing Analysis: Let be the average
waiting time of the packets in priority class before they are
transmitted. For a nonpreemptive priority M/G/1 queue, the Pol-
laczek–Khinchin equation gives the following result [13]:

(4)

Based on this expected average waiting time, the tail distribution
of the waiting time can be calculated by:

(5)

In (5), we adopt the G/G/1 tail distribution approximation based
on the work of [14], [15]. Note that we assume that

(6)

In Section III-C, we will describe how the average packet ar-
rival rate can be controlled such that the above inequality holds
and, meanwhile, the expected received video quality is maxi-
mized. The probability of packet loss due to the delay deadline
expiration, , for priority class can be computed
based on the tail distribution of the waiting time:

(7)

where represents the admitted average
packet arrival rate and is the maximum allowable
delay for priority class .



268 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 2, AUGUST 2007

TABLE I
GREEDY ALGORITHM THAT INCREASES THE INPUT RATE GIVEN THE RESOURCE ALLOCATION � FOR WSTA i

C. Expected Received Video Quality-Resource Function

Given a certain resource allocation , reducing the average
packet arrival rate leads to a decreased
number of packets for transmission, but also a lower packet loss
probability . This tradeoff can be formulated as an
optimization problem as follows:

(8)

where is the maximum average packet arrival rate of pri-

ority class , and represents the de-
pendency of the current class on classes . By
solving the optimization problem, we can get the expected re-
ceived video quality-resource function . However, this
is a difficult nonlinear problem. Due to the nonpreemptive ser-
vice policy, the higher priority packets arriving into the queue
have to wait until the service of the lower priority packet being
served is finished. Hence, reducing the arrival rate of the lower
priority class will decrease the packet loss probability of the
higher priority class. Based on this observation, we propose a
suboptimal algorithm, which greedily increases the packet ar-
rival rate from the highest priority class to the lowest priority
class. The algorithm is illustrated in Table I. Using this algo-
rithm, the suboptimal for various resource allocations
can be determined. The expected received video quality func-
tion is a concave and increasing function with the in-
creased resource allocation (see e.g., [16]).

IV. MECHANISM DESIGN FOR RESOURCE ALLOCATION

As mentioned in the introduction, the major challenge in de-
vising methods for allocating and managing resources in mul-
timedia applications comes from the informationally decentral-
ized nature of these problems and the strategic behavior of the

users. In this section we introduce a pricing mechanism, which
solves the problem in (1) in the decentralized way, while taking
into account the strategic behavior of individual users. In Sec-
tion IV-A, we provide the motivation and describe some of the
desired properties of mechanisms. In Section IV-B, we develop
a pricing mechanism that solves the problem in (1) using Nash
equilibrium messages and satisfies the desired properties pre-
sented in Section IV-A. In Section IV-C, we discuss the conver-
gence issue of the message exchanges.

A. Mechanism Design

1) Motivation: In the resource allocation for multimedia
applications, each usergenerally desires to acquire as much of the
network resource as possible [1]. There are several reasons for
this phenomenon: i) is assumed to always be improved
by increasing the amount of resources allocated; ii) if given more
resources, the users might be able to cope with sudden variations
in channel conditions or source characteristics; and iii) users
can lower their processing power usage via over-provisioning
because it allows themtodeploy lesscomplexchannel codingand
protection schemes. Unfortunately, in multimedia applications,
the information related to , such as the video source,
underlying channel conditions as well as transmission strategies,
is private to each user. Also, as discussed in Section I, The
informationally decentralized nature of the network and the
strategic behavior of the users make the design of resource
allocation mechanisms a challenging research problem.

2) Mechanism Components: In solving such informationally
decentralized problems one needs to devise a message exchange
process between the problem’s agents (i.e., the users and the
CSM), at the end of which all agents agree on a resource allo-
cation which corresponds to an optimal solution to the problem.
We call such a process of communication, decisions and actions
a resource allocation mechanism [21]. In this paper, we investi-
gate the design of mechanisms that are able to provide solutions
to the problem in (1) and take into account the strategic behavior
of individual users.
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Fig. 1. Mechanism framework for the resource allocation in wireless multi-
media applications.

Formally, a resource allocation mechanism is formed by a
“game form” along with an “equilibrium message con-
cept”. is called the message space, and represents the set of
all the allowable messages that can be transmitted in the system,
while , called the outcome function, represents a mapping from
messages to allocations. In the context of the problem in (1),

, represents the set of messages user is al-
lowed to transmit, and maps messages
to possible allocations , with and .
The mechanism framework can be deployed for wireless multi-
media resource allocation as shown in Fig. 1.

The equilibrium message concept plays a key role in the de-
sign of a mechanism. Given a set of specific users’ utility func-
tions (which are “private” to each user) and the designed game
form (which is proposed by the mechanism designer),
the equilibrium message concept will induce a map from the set
of users’ utility functions to that of equilibrium messages. The
role of the outcome function is to map equilibrium messages to
optimal resource allocations.

Before we proceed to describe some of the desired proper-
ties of mechanisms, we present two equilibrium concepts gener-
ally used in mechanism design: Nash equilibrium and dominant
strategy equilibrium [17].

Nash equilibrium: A message profile
is said to be a Nash equilibrium

message if for every user ,

(9)

where and
corresponds to the allocation under

the message profile . In words, every user
receives an allocation that maximizes its own utility when

transmitting message over any other possible message
, given that the messages of other users are fixed.

Dominant strategy equilibrium: A message profile
is said to be a dominant strategy equilib-

rium message if for every user ,

(10)

In other words, for every user , a message is a dominant
strategy if given any other users profile, the user cannot im-
prove its utility for the allocation received by transmitting a mes-
sage that is different from . A dominant strategy equilib-
rium is a profile in which every user picks a dominant strategy.
The dominant strategy equilibrium is a stronger concept than
Nash equilibrium.

3) Mechanism Properties: In the resource allocation for
bandwidth-intense multimedia applications, the available re-
source is quite limited and the involved users have the freedom
to join or leave the resource allocation game. The outcomes
of the mechanism for the multimedia applications should i)
maximize the sum of the users’ expected received video quality,
ii) be budget balanced, and iii) satisfy the property of voluntary
participation. Although these have been well established in the
mathematical economics community [19], we would like to
present them here for completeness as well as to establish the
link with our multiuser wireless resource management problem.
Thus, in this subsection, we provide some definitions for these
properties.

Feasibility: An allocation vector is said to be fea-
sible if it satisfies the constraints in the problem in (1), i.e.

(11)

where
.

Voluntary participation: A feasible allocation vector
is said to satisfy the property of voluntary partici-

pation if

(12)

The voluntary participation of can be interpreted as
follows: after the resource allocation process, no user can be
worse off than before in terms of the gained utility.

We now present several “efficiency” criteria which can be
used as objectives for our wireless resource allocation mech-
anism.

Pareto efficiency: A feasible allocation vector
is said to be Pareto efficient if there exists no other allocation

such that

(13)

and the inequality is strict for some .
Utility-maximizing: A feasible allocation vector

is said to be utility-maximizing if it satisfies

(14)
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Quality-maximizing: A feasible allocation vector
is said to be quality-maximizing if it satisfies

(15)

It is easy to show that utility-maximizing allocations imply
Pareto efficient allocations. If the utility functions are quasi-
linear and concave as in our problem, the Pareto efficient alloca-
tions are also utility-maximizing. To address the relationship be-
tween utility-maximizing and quality-maximizing, we first de-
fine the budget balance for the allocation.

Budget balance: A feasible allocation vector is
said to be budget balanced if it satisfies

(16)

The budget balance condition has the following interpreta-
tion: the amount of numeraire commodity in the system prior
to the resource allocation process equals to the amount of nu-
meraire commodity in the system after the resource allocation
process. In other words, the numeraire commodity held by the
multimedia users are redistributed among them, and none of it
is “thrown” away or taken away by the CSM.

The relationship between utility-maximizing and quality-
maximizing is addressed in the following lemma:

Lemma 1: In the case of quasi-linear utilities, an allocation
is utility-maximizing if and only if it is quality-maximizing and
budget balance.

Sketch of proof: Given the quasi-linear form of the utili-
ties, the social welfare can be rewritten as

. Since , we have
. If the allocation

is quality-maximizing and budget balanced, then we have
that and hence, the
allocation is also utility-maximizing. On the other hand, if
the allocation is utility-maximizing, and the budget
is not balanced, i.e., , we define a new tax

. Note that the new allocation
is also feasible since satisfies the first two con-

straints of the problem stated in (1) and satisfies the last
constraint in the same problem. Since , we also have
that . This contradicts the
optimality assumption of . Thus, the allocation
is budget balanced. Since the allocation is budget balanced, we
have that which automat-
ically implies that the allocation is also quality-maximizing.
The reader is referred to [20] for more details about this proof.

In the context of our problem, quality-maximizing allocations
are the ones which maximize the sum of expected received video
quality over all the users, i.e., producing the maximum amount
of video quality. However, quality-maximizing allocations are
not concerned with how the numeraire commodity is being allo-
cated, and particularly if any of the numerarie from the system
has been thrown away or allocated outside of the system (i.e.,

given to the CSM). Utility-maximizing allocations do not only
maximize the obtained video quality, but they also ensure that
the numeraire commodity is not “wasted” during the allocation
process.

B. Pricing Mechanism Implemented in Nash Equilibrium

In this subsection, we present a pricing mechanism that im-
plements the problem in (1) using Nash equilibrium messages,
and generates allocations that are feasible, individually rational
(i.e., satisfying the property of voluntary participation) and
utility-maximizing.

1) Implementation of the Pricing Mechanism: The pricing
mechanism [20] is implemented in the considered multiuser re-
source allocation in four stages:

Stage 1: The endowment stage: At the first stage of the
mechanism, each user is endowed a certain amount of resource

, where .
This initial user endowment will not affect the final re-

source allocation received by each user. Instead, it will affect
the amount of numeraire commodity that each user will be
charged in order to attain his/her optimal resource. The ini-
tial endowment is determined before playing the resource
allocation game. If no information is known about the users’
utilities, this initial endowment can be equal for all users (i.e.,

).
Stage 2: Communication stage (information exchange):

We note that at the mechanism’s first stage, some users will
have been endowed a resource larger than the optimal resource,
while others will have been endowed a resource that is too
small. At this stage of the mechanism all users are allowed to
trade resources in order to achieve the desirable amount.

The users and the CSM are allowed to communicate with each
other by repeating the following two steps until the message
equilibrium is reached:
Step 1) Each user submits to the CSM a message ,

where represents the amount of resource desired,
and represents the user’s evaluation of the “price”
per unit of resource.

Step 2) After receiving the messages from all the users, the
CSM conveys the following messages to
each user , where

(17)

represents the average of the other users price per
unit of resource, and

(18)

is the excess demand when the th user’s demand is
eliminated, and is a positive number interpreted
as the update rate of the price that is enforced by the
CSM when the excess demand is nonzero. This will
be further discussed in Section IV-C.
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To choose the demand and the price , the user should be
able to know the tax form which is used by the CSM to charge
the users. The tax form2 in this paper is defined as

(19)

where

(20)

In (19), the first term on the right hand side is the amount of nu-
meraire commodity charged in order to purchase/sell
amount of resource from/to the other users. The second term is
the penalty the user should pay due to the mismatch of the
user’s price to . is introduced here to prevent the fol-
lowing set of messages, which generate nonefficient allocations
from becoming Nash equilibrium messages: i) for all the
users and ii) the total demand exceeds the available resource,
i.e., .

At each iteration, given the message , the user
chooses by maximizing its own utility , i.e.

(21)

Note that , and
. The optimization in (21). can be decom-

posed into two subproblems by solving and independently:

(22)

and

(23)

Note that is determined by the CSM based on the revealed
messages in the previous iteration.

Stage 3: Allocation stage: Given an equilibrium set
of messages , where and

, each user is allocated the amount of
resource and is taxed as follows:

(24)

2The tax t computed by the CSM equals �� .

Stage 4: Real-time video transmission: After the resource
allocation is performed, the CSM polls the multimedia users
based on the allocated resource. When they are polled, the mul-
timedia users will deploy their real-time transmission strate-
gies to stream the delay-sensitive video packets. The real-time
streaming will be discussed in Section V.

The following theorem proves that even in the case when
the users behave strategically, the allocations generated by the
mechanism presented above are utility-maximizing.

Theorem 1: The mechanism implemented in stages 1–4 gen-
erates the allocation in Nash equilibrium for the multiuser wire-
less video resource allocation problem in (1).

Proof: See Appendix I.
Lemma 2: The mechanism implemented in stages 1–4 satis-

fies voluntary participation.
Proof: Given the message , user maximizes

its own utility. To show that the allocation satisfies voluntary
participation, we only need to show the maximum utility for
user is not less than 0.

(25)

Since the above inequalities hold for any given messages
, the allocations generated by our mechanism satisfy

the voluntary participation property.
2) Comparison Between the Pricing Mechanism and VCG

Mechanism: We would like to compare now the presented
pricing mechanism with another well-known game-theoretic
mechanism—the VCG mechanism [17], which implements the
resource allocation in dominant strategy equilibrium (rather
than Nash equilibrium) as defined in Section IV-A2. The VCG
mechanism is based on the “revelation principle”, which in our
multimedia applications has the following interpretation [18]:
the CSM requests each user to “reveal” its utility function. For
a profile of utility functions, the CSM computes the optimal
allocations and the individual VCG tax for each user.

Next, we compare the VCG mechanism and the proposed
pricing mechanism for the studied wireless video resource al-
location.

i) Under the VCG mechanism, only a single message ex-
change between the users and the CSM is needed. Alter-
natively, in our pricing mechanism, an iterative message
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exchange between the users and the CSM is required in
order to determine the allocation.

ii) In the VCG mechanism, however, the users are required
to compute the expected received video quality over all
the possible resource allocation and convey the entire
quality-resource allocation profile to the CSM. Although
the expected received video quality can be parameterized
as shown in [18], the number of parameters is still large.
Thus, transmitting them to the CSM will require a large
overhead. Moreover, the WSTAs might not want to de-
clare their entire quality-resource allocation profile to the
CSM due to privacy issues. Alternatively, in our pricing
mechanism, the users are only required to reveal their re-
source demands and corresponding prices, leading to a
very limited overhead (as quantified in Section IV-D).

iii) In the VCG mechanism, the optimization for the resource
allocation problem is computed by the CSM, thereby re-
sulting in a high complexity cost for the wireless infra-
structure provider. In our pricing mechanism, the CSM
is only required to compute the average price and excess
demand for each user.

iv) In the VCG mechanism, the allocation is feasible,
quality-maximizing and satisfies the voluntary partic-
ipation property, but it is not budget balanced. In our
pricing mechanism, the resource allocation is feasible,
utility-maximizing (implying quality-maximizing),
budget balanced and also satisfies the voluntary par-
ticipation property. Hence, the VCG mechanism can
be deployed to perform the resource allocation in the
quality-maximizing sense, but not in the utility-max-
imizing sense. In the investigated wireless resource
allocation problem, quality-maximizing allocations that
are not utility-maximizing are undesirable because the
wireless coordinator (CSM) aims solely at assisting the
resource allocation and not at making any profit.

C. Discussion of Convergence

In the previous section we have presented a pricing mecha-
nism that generates optimal allocations to problem (1). In de-
scribing the pricing mechanism, we presented an iterative pro-
cedure that converges to a set of Nash equilibrium messages.
The key assumption in this procedure is that each WSTA will
communicate its best response messages at each stage (i.e., for a
set of messages received from the CSM, each WSTA communi-
cates the messages that maximize its utility function). However,
the convergence of the presented pricing mechanism depends
on the parameter , which appears in the tax function in (19).
The parameter can be interpreted as the step size in the price
update procedure. The value of is inversely proportional to
the amount by which the prices of the users are being updated.
While for large values of the pricing mechanism converges
slowly, if is too small, the resource negotiation process may
lead to oscillations and it will never converge. To understand this
phenomenon, we need to consider the change rate of the subgra-
dients3 [16] of the around the optimal allocation: if the
change rate is large, then a limited change in the user demand
may generate a large change in its price. Since the is

3The subgradients are used because the Q (� ) may not be differentiable
at some points.

nondecreasing and concave, the change rate of the subgradients
decreases with the amount of allocated resources. Hence, when
a limited amount of resources is allocated to the users, the pa-
rameter should be large to ensure that the resource exchange
procedure convergences.

The convergence rate of the above procedure is affected not
only by the parameter , but also by the initial price an-
nounced by the CSM and the network congestion level (e.g.,
the number of users in the network). Even though the pricing
mechanism will converge independently of the initial price ,
this will affect the number of iterations required before the equi-
librium is reached. Moreover, the congestion level also affects
the value of the parameter required to ensure convergence.

In the results section, we will assess how various settings of
the parameters and impact the convergence rate under
different transmission scenarios.

D. Message Exchange Overhead

In this section, we quantify the overhead associated with the
message exchanges described in Section IV-B. At each itera-
tion, each WSTA transmits to the CSM two messages: a re-
source demand and a corresponding price . Subsequently,
the CSM responds to the WSTA with two messages: the av-
erage price announced by the other WSTAs and the re-
sources consumed by the other WSTAs. The update step
size of the price , is kept fixed during the iteration and hence,
it can be announced once by the CSM at the first iteration.
Thus, in addition to the update step size , only four scalar
numbers are exchanged between WSTA and the CSM. This
scalar message can be encapsulated into the control packets that
are transmitted between WSTA and the CSM, as in the cur-
rent 802.11e WLAN standards [2], [3]. As discussed in Sec-
tion II, the message exchange is only performed when large
variations occur in the network, e.g., new WSTAs joining the
network. In Section VI-C, we quantify the negotiation overhead
under different wireless transmission scenarios by determining
the number of iterations required to converge to the optimal
allocation. Note that while the wireless resources are renego-
tiated by the WSTAs, the WSTAs that are already present in
the network are continuing to transmit their video packets using
the previously negotiated transmission opportunities. Hence, the
reallocation will not delay the wireless video transmission al-
ready taking place. The WSTAs will only start transmitting their
packets based on the newly allocated transmission opportunities
after the new resource allocation is finalized.

V. REAL-TIME TRANSMISSION STRATEGY

As discussed in Section II, user can strategically play the re-
source allocation game using message exchanges based on the
pricing mechanism illustrated in Section IV. Given the resource
allocation , user adapts its real-time transmission strategies
to the time-varying content characteristics and channel condi-
tions as shown in Fig. 1. Various existing real-time transmis-
sion strategies can be employed for this purpose. In [26], it was
shown that optimized transmission strategies involve joint adap-
tation across the various layers of the protocol stack. Also, as
shown in [22], the packet scheduling has a significant impact
on the performance of delay-sensitive multimedia applications.
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Hence, in this section, we mainly focus on the real-time packet
scheduling that can be deployed at the application layer for opti-
mized transmission. For the transmission strategies at the lower
layers (MAC and physical layers), such as adaptive retransmis-
sion and modulation and coding mode selection, the interested
reader is referred to our prior work in [4], [26].

The scheduling policy decides the packet transmission order
(which packet should be transmitted) and time (when the packet
should be transmitted) based on the estimated channel condi-
tion. In other words, the optimal scheduling policy is to choose
a subset of available packets to transmit at the successive trans-
mission opportunities such that the received video quality is
maximized. It has been proved that the scheduling problem is
in general NP-complete [23] and no optimal algorithms for this
exist in polynomial time. Several heuristic algorithms providing
suboptimal solutions have been developed [24], [25]. In [24], the
authors introduced a virtual playback delay instead of the actual
one to compute the subset of packets to be sent by trading-off the
number of transmitted packets and the packet loss probability.
In [25], the packet interdependencies are expressed as a directed
acyclic graph and an iterative descent algorithm is developed to
find a suboptimal scheduling by trading off the expected trans-
mission rate and expected reconstruction distortion. However,
in our proposed system, we deploy a simpler real-time sched-
uling policy based on the video packet priority classes.

The scheduling policy will be optimized every (group of) ser-
vice interval(s) (SI) [2] to take into consideration the informa-
tion (e.g., the channel conditions and the available packets in the
transmission buffer) learned or measured during the previous
transmission opportunities. Hence, the scheduling policy will
be able to capture the time-variation of both the video traffic
and the channel conditions. In the following, we refer to the
real-time scheduling policy as , where represents
the set of possible scheduling policies.

We assume that the packets from GOPs are present in the
transmission buffer. The current time is assumed to be 0. Within
GOP , the number of available packets in class
equals . The delay deadline4 for all packets (after which the
packets will be expired) in class in GOP is denoted as .
(Note that the delay deadline is different from the maximum al-
lowable delay as discussed in Section III-B.) The maximum al-
lowable delay is the maximum waiting time before the packet is
available for transmission. The scheduling policy assigns the
transmission opportunities to the different classes of packets in
the considered GOPs. Let be the
number of packets in class in GOP that are assigned transmis-
sion opportunities before their delay deadline expires. The sched-
uling policy can be interpreted as choosing for all the
classes, i.e., . Since the resource
allocation is already known during the real-time scheduling, the
expected received video quality is now expressed as a function of
the scheduling policy , i.e., , instead of the allocated
resource . Hence, can be expressed as

(26)

4Note that this deadline is relative to the current time.

Given the resource allocation and the channel conditions,
the transmitted rate and the packet error probability
can be computed as in [12] by assuming that the channel con-
ditions are constant during the current scheduling period (e.g.,
one SI). Then, the average service time for repeatedly
transmitting one packet until it is successfully received is again
computed as in (2). Based on the expected transmission time for
each packet, the optimal scheduling policy can be found by
solving the following optimization under the delay constraints:

(27)

where the first constraint comes from the fact that any packets
assigned the transmission opportunities should not be expired.
For the prioritized video packets available in the WSTA’s trans-
mission buffer, we can develop a greedy but optimal algorithm
to the above optimization problem.

To specify the algorithm, let us consider the transmission op-
portunities assignment to class in GOP , i.e., determining

. The amount of transmission opportunities which could
be assigned to class in GOP is determined by the amount of
transmission opportunities assigned to classes of
all the GOPs and the classes with priority of GOPs

which are already computed prior to class in GOP , i.e.,
and are known.

The average starting time, , to transmit the packets in
class in GOP equals the sum of the transmission opportuni-
ties assigned to the classes transmitted prior to class in GOP

, i.e.

(28)

The ending time, at which we stop transmitting the
packets in class in GOP is the minimum value of the delay
deadline, , of class in GOP and the time that will not
lead to the delay violation of the classes in the
GOPs , i.e.

(29)

The “max” term above is interpreted as the maximum time to
start transmitting the packets in class 1 in the GOP such
that the packets already assigned transmission opportunities in
classes in GOPs are not expired.
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TABLE II
RESOURCE ALLOCATIONS AND VIDEO QUALITIES OF THE ADMISSION CONTROL-BASED RESOURCE ALLOCATION APPROACH

WHEN WSTAS TRUTHFULLY DECLARE THEIR RESOURCE REQUIREMENTS OR NOT

We use “video quality” to represent the “expected received video quality” for simplicity in the simulation results.

TABLE III
RESOURCE ALLOCATIONS, UTILITIES AND VIDEO QUALITIES OF OUR PROPOSED PRICING MECHANISM WHEN WSTAS STRATEGICALLY PLAY THE GAME OR NOT

The number of packets, , in class in GOP can now
be computed as

(30)

By determining for the classes from the highest priority
to the lowest priority as above, we can automatically obtain the
optimal scheduling policy to the optimization problem in (27).

VI. SIMULATION RESULTS

To be able to efficiently stream video over wireless networks,
each WSTA needs to be able to cope with instantaneous band-
width variations due to time-varying channel conditions and net-
work congestion due to many competing WSTAs. In order to
adapt to the time-varying availability of resources, the video bit-
streams need to be compressed in a prioritized scalable manner.
In this paper, we used data partitioning [33] for H.264/AVC
video coders [40] and spatio–temporal-SNR layering for 3-D
wavelet video coders [9].

A. Assessing the Impact of Selfish Behavior of WSTAs

In the introduction section, we mention that existing WLAN
resource allocation approaches assume that all WSTAs truth-
fully reveal their own resource requirements. This is not true
when the WSTAs are selfish. In the following experiments, we
will assess the impact of the selfish behavior of WSTAs on the
resource allocation, the expected received video qualities and
utilities of WSTAs.

We consider five WSTAs concurrently streaming video se-
quences over a one-hop 802.11a/e WLAN test-bed [12]. The
video sequences streamed by the five WSTAs are “Foreman” at
CIF resolution 30 Hz. The first video sequence is encoded using
a 3-D wavelet codec [9] and the last four sequences are encoded

with the H.264/AVC codec [40]. The channel conditions expe-
rienced by the five WSTAs are assumed to be similar, having an
average SNR of 23 dB and a variation across the duration of the
transmission of around 5 dB. We compare our proposed pricing
mechanism to the resource allocation approach existing in ex-
isting 802.11e WLANs [3], [4].

We consider two cases: i) the WSTAs are assumed to truth-
fully submit their TSPECs [4]; ii) WSTA 1 exaggerates its re-
quirement by 100% but other WSTAs truthfully declare their
requirements. Table II shows the resource allocations and video
qualities for the current 802.11e allocation in the two scenarios.

To evaluate our pricing mechanism, we also simulate two
cases: a) the WSTAs strategically submit their resource de-
mands and corresponding prices by maximizing their utilities at
each iteration; b) WSTA 1 submits a fixed but higher resource
demand at each iteration and other WSTAs behave as in case
a). Table III shows the resource allocations, utilities and video
qualities for our pricing mechanism.

From Table II, we note that, by exaggerating its requirement,
WSTA 1 increases its final expected received video quality
around 4 dB, while decreasing the other WSTA’s performance
around 1 dB. In this case, the improvement of WSTA 1’s
performance does not incur any penalty for WSTA 1. However,
from Table III, we note that, although WSTA 1 increases its
expected received video quality more than 4 dB, the final utility
of WSTA 1 is actually reduced from 29.5179 to 25.6559. This is
because WSTA 1 does not submit the optimal resource demand
(i.e., it is unaware of the price) at each iteration and hence, it has
to pay a much higher tax than when it strategically responds.
In other words, our pricing mechanism enforces all the WSTAs
to truthfully declare their optimal resource demands and cor-
responding prices at each iteration. The pricing mechanism
also penalizes the selfish WSTAs that exaggerate their resource
demand by imposing higher taxes. Based on these experiments,
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TABLE IV
RESOURCE ALLOCATIONS AND VIDEO QUALITY OF THE CENTRALIZED OPTIMIZATION, AND THE RESOURCE ALLOCATIONS, PRICES,

TAXES, UTILITIES AND VIDEO QUALITIES OF OUR PRICING MECHANISM FOR ALL THE WSTAS IN SCENARIO 1

TABLE V
RESOURCE ALLOCATIONS AND VIDEO QUALITY OF THE CENTRALIZED OPTIMIZATION, AND THE RESOURCE ALLOCATIONS, PRICES,

TAXES, UTILITIES AND VIDEO QUALITIES OF OUR PRICING MECHANISM FOR ALL THE WSTAS IN SCENARIO 2

we would like to emphasize that the used coder does affect the
video quality performance experienced by the wireless stations,
but not the proposed mechanism for the resource allocation.

B. Verifying the Properties of the Pricing Mechanism

In this subsection, we verify the properties of the pricing
mechanism proposed in Section IV (i.e., the allocations pro-
duced i) are utility-maximizing, and ii) satisfy voluntary par-
ticipation), and we explore the behavior of the WSTAs in dif-
ferent wireless transmission scenarios. To show that the allo-
cation is utility-maximizing, we need to show that it is fea-
sible, quality-maximizing and budget balanced. The feasibility
of the resource allocation can be easily checked, i.e.,

. We can compare the resource alloca-
tion produced by our pricing mechanism (denoted as “decentral-
ized” in the following simulations) to the allocation produced by
the centralized optimization (denoted as “centralized”) to check
if the allocations are quality maximizing. Since the expected re-
ceived video quality is a concave function, the centralized op-
timization will generate the global optimal resource allocation.
If our pricing mechanism generates the same resource alloca-
tion, then it is quality-maximizing. To verify the budget balance
condition, we need to check whether the summation of the tax
of all the WSTAs is zero. Finally, if all the values of the utility
functions of all the WSTAs are non-negative at the equilibrium,
we conclude that the WSTAs voluntarily participate our pricing

mechanism. Tables IV and V corresponding to Scenarios 1 2,
respectively, show the resource allocations and the expected
received video quality based on the centralized optimization5

as well as the resource allocations, the corresponding prices,
tax, utilities, and expected received video quality of our pricing
mechanism at the equilibrium message. In the remaining exper-
iments, the video sequences are encoded using a 3-D wavelet
codec [9].

Scenario 1: To assess the properties of the pricing mecha-
nism, we consider five WSTAs concurrently streaming video
sequences. The video sequences streamed by the five WSTAs
are: “Foreman,” “Foreman,” “Coastguard,” “Coastguard,” and
“Mobile,” respectively, at CIF resolution 30 Hz. All the video
applications are considered to tolerate a maximum delay of 533
ms [39] corresponding to the duration of one GOP. The channel
conditions experienced by the five WSTAs are assumed to be
similar, having an average SNR of 23 dB and a variation across
the duration of the transmission of around 5 dB. The initial
resource allocations are assumed to be the same, i.e.,

. By observing the resources allocated by the
proposed pricing mechanism in Table IV, we note that they are
feasible, i.e., . By com-
paring the resource allocations and the sum of expected received
video qualities generated by the centralized optimization and

5The optimization problem in (1) is also solved in the centralized way by
using the convex optimization.
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our pricing mechanism, we find that the results are very similar.6

This verifies that our pricing mechanism is quality-maximizing.
The fact that the sum of the taxes of all the WSTAs equals zero
shows that our allocations are budget balanced. We also note
that, in equilibrium, the values of the utility functions of all the
WSTAs are greater than zero. This demonstrates that our pricing
mechanism satisfies the property of voluntary participation.

Scenario 2: In this scenario we verify the properties of our
pricing mechanism, and we investigate how the resource alloca-
tions and prices change when the number of users in the network
increases. For this, we consider eight WSTAs in the network
having channel conditions similar to those in Scenario 1. The
first three WSTAs stream the “Foreman” sequence, the WSTAs
4, 5, and 6 stream the “Coastguard” sequence and the last two
WSTAs stream the “Mobile” sequence. The sequence formats
are all at CIF resolution 30 Hz. The initial resource allocations
are assumed to be the same, i.e., .
It is easy to check, from Table V, that our pricing mechanism
generates allocations that are feasible, utility-maximizing, and
satisfy voluntary participation.

Comparing to Scenario 1, in this scenario the number of par-
ticipating WSTAs is increased. This implies that the amount
of resource allocated to each WSTA becomes smaller. Hence,
each WSTA can only transmit the most important video packets.
In particular, the results in this scenario show how our pricing
mechanism is able to scale with the number of WSTAs in the
network.

C. Assessing the Convergence and Convergence Rate

In Section IV-C, we discuss the convergence and corre-
sponding rate of our pricing mechanism, which will be verified
in the following experiments. By determining the convergence
rate in different scenarios, we quantify the negotiation overhead
of the message exchanges discussed in Section IV-D.

1) The Impact of on the Convergence: In this experiment
we assess how affects the convergence of the message ex-
change. The simulation setup is the same as in Scenario 1 of
Section VI-B. From the results in Table IV, we know that the
equilibrium price is 24.9203. Fig. 2 shows the announced prices
to WSTA 1 for , 5 and 20, respectively, from which, we
note that the small value of leads to the iteration oscil-
late and never converge, while large values of results
in slow convergence. Hence, it is important for delay-sensitive
multimedia applications to choose an appropriate .

The convergence rate for our decentralized and delay-sensi-
tive multimedia applications is also very important. The larger
the number of iterations (i.e., message exchanges) needed to de-
termine an optimal solution, the longer it takes to perform the
resource allocation. From Fig. 2, we note that a large value of
leads to slow convergence.

2) The Impact of the Initial Price on the Convergence Rate:
In this experiment we assess how the initial price affects the con-
vergence rate of the message exchange. The simulation setup is
the same as in Scenario 1 of Section VI-B. In this experiment

6The difference of the resource allocation between the centralized optimiza-
tion and our pricing mechanism comes from the fact that we stop our mechanism
after a finite number of steps, i.e., when the update step size of the price is small
enough.

Fig. 2. Announced price to WSTA 1 for various  .

Fig. 3. Number of iterations as a function of the initial price set in the pricing
mechanism.

we vary the initial price from 0 to 50 and record the number
of iterations required before reaching the equilibrium message.
From the results in Table IV we know that the equilibrium price
is 24.9203. In Fig. 3, given various initial prices, we show how
many iterations are needed in order to converge to the equilib-
rium price. From this figure we conclude that the number of
iterations increases as the distance between the initial price and
the equilibrium price becomes larger.

From the results in Scenario 2 of Section VI-B, we know that
by increasing the number of the WSTAs in the network, the
equilibrium price will also increase. This tells us that if the CSM
has an estimate of the type of traffic desired and the number
of users requesting service, it may be able to choose an initial
price that is closer to the equilibrium price. By employing such
strategies the speed of convergence of the mechanism may be
drastically increased. A detailed investigation of this issue is part
of our future research.
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Fig. 4. Announced price to WSTA 1 for various iterations.

3) The Impact of the Number of WSTAs on the Convergence
Rate: From the results in Scenario 2 of Section VI-B, we know
that the increasing number of WSTAs raises the equilibrium
price. In this experiment we assess how the increasing number
of WSTAs affects the convergence rate of the message exchange
process. We compare the network with five WSTAs and the
network with eight WSTAs, as in Scenarios 1 and 2 of Sec-
tion VI-B, respectively. Since we assume that the CSM has no
prior information about the network we set the initial prices for
both cases to zero. Fig. 4 shows the announced prices to the
WSTA 1 at each iteration of the message exchange. When the
announced prices converge to the equilibrium price, the mes-
sage equilibriums are reached. From the figure we see that the
network with eight WSTAs converges slower than the one with
five WSTAs. The slow convergence of the larger network comes
from the fact that the second order derivative of the quality func-
tions of the WSTAs is larger for smaller amounts of resource
allocation. A large second order derivative of the quality func-
tion can correspond to prices that are far apart even though the
resource allocations are close. For this reason, the values of the
prices converge slower in a more congested network.

VII. CONCLUSIONS

In this paper we model the wireless resource allocation
problem as a “game” played among strategic WSTAs that are
streaming video in real-time over a shared wireless network.
We propose a pricing mechanism which takes into account
the strategic behavior of individual WSTAs. This mechanism
allows the WSTAs to exchange with the CSM a limited number
of messages to reach the Nash equilibrium. The resulting Nash
equilibrium messages generate the optimal resource alloca-
tions. After the allocation, each WSTA deploys a real-time
transmission strategy to efficiently transmit its video bitstream.
Our simulations verify that the allocations generated by the
pricing mechanism i) are utility-maximizing and ii) satisfy
voluntary participation. Using the proposed pricing mecha-
nism, the WSTAs are able to appropriately “sell” or “buy” the
resource based on the equilibrium price. Moreover, our results

show that the equilibrium price is gracefully scales with varying
channel conditions and the video traffic requirements of the
WSTAs as well the number of WSTAs involved in the network
(i.e., network congestion level). The convergence rate is also
discussed and our simulation results show that the information
about the video traffic and the number of WSTAs can accelerate
the convergence rate.

APPENDIX I

In proving this theorem we proceed as follows. First
we present the necessary and sufficient conditions for the
utility-maximizing allocations of the problem in (1). Then
we show that the Nash equilibria of mechanism presented in
Section IV-B satisfy the utility-maximizing conditions. In order
to determine an optimal solution of Problem (1) we first write
the Lagrangian function:

(31)
At an optimal allocation , the

necessary and sufficient Karush–Kuhn–Tuker (KKT) conditions
for optimality [32] are

(32)

(33)

(34)

(35)

where represents the set of subgradients7 of at in
the th coordinate, and and are the Lagrange multipliers for
the capacity and budget constraints, respectively. Substituting
(33) into (35), the KKT conditions can be reduced to

(36)

(37)

(38)

where (36) states that at optimality the marginal utility equals
to the Lagrange multiplier , (37) is the capacity constraint, and
(38) states that the allocation must be budget balanced. We are
now going to investigate the Nash allocations generated by the
mechanism presented in Section IV-B. In order to show that the
mechanism implements in Nash equilibria the resource alloca-
tion in (1), we need to show that the Nash allocations satisfy

7Let S be a nonempty convex set , and let f : S 7! R be concave. Then
� is called a subgradient of f at x 2 S if f(y) � f(x) + � (y � x) for all
y 2 S.
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(36)–(38). Note that, given a fixed , user picks
and such that its individual utility function is maximized:

(39)

At a Nash equilibrium message, (39) is maximized for each
user . Assume that is a Nash equi-
librium message. By the first order conditions for each

we have that

(40)

(41)

where

(42)

and

(43)

Substituting (41) into (40), the first order conditions become:

(44)

Since (41) has to be satisfied for all , by sum-
ming over all we have

(45)

where the first line of (45) follows by (41), the second line by the
definition of , and the third line by simplification. Equation
(45) implies that

(46)

and
(47)

This, along with (41) and the definition of , implies that
at Nash equilibrium

(48)

(49)

Substituting (48) and (49) in (44) and (41), we can derive that

(50)

(51)

By letting , (36) and (37) of the KKT first order condi-
tions are satisfied. We now only have to show that the Nash equi-
librium messages generate allocation which satisfy (38) (i.e., are
budget balanced):

(52)

where the second line of (52) follows from (19), the third line
follows from (48), (49), and (46).

This establishes that the Nash equilibrium allocations are
balanced, which proves that the mechanism presented in Sec-
tion IV-B implements in Nash equilibria the resource allocation
described in (1).
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