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Abstract—In this paper, we systematically formulate the prob-
lem of multi-user wireless video transmission as a multi-user
Markov decision process (MUMDP) by explicitly considering the
users’ heterogeneous video traffic characteristics, time-varying
network conditions as well as, importantly, the dynamic coupling
among the users’ resource allocations across time, which are often
ignored in existing multi-user video transmission solutions. To
comply with the decentralized wireless networks’ architecture,
we propose to decompose the MUMDP into multiple local MDPs
using Lagrangian relaxation. Unlike in conventional multi-user
video transmission solutions stemming from the network utility
maximization framework, the proposed decomposition enables
each wireless user to individually solve its own local MDP (i.e.
dynamic single-user cross-layer optimization) and the network
coordinator to update the Lagrangian multipliers (i.e. resource
prices) based on not only current, but also the future resource
needs of all users, such that the long-term video quality of
all users is maximized. This MUMDP solution provides us
the necessary foundations and structures for solving multi-
user video communication problems. However, to implement
this framework in practice requires statistical knowledge of the
experienced environment dynamics, which is often unavailable
before transmission time. To overcome this obstacle, we propose
a novel online learning algorithm, which allows the wireless
users to simultaneously update their policies at multiple states
during each time slot. This is different from conventional learning
solutions, which often update the current visited state per time
slot. The proposed learning algorithm can significantly improve
the learning performance, thereby dramatically improving the
video quality experienced by the wireless users over time. Our
simulation results demonstrate the efficiency of the proposed
MUMDP framework as compared to conventional multi-user
video transmission solutions.

Index Terms—Multi-User Video Transmission, Markov Deci-
sion Process, Lagrangian Relaxation, Online Learning.

I. INTRODUCTION

AS MULTIMEDIA applications continue to proliferate,
wireless network infrastructures often need to support

multiple simultaneously running applications. Key challenges
associated with the robust and efficient multi-user video trans-
mission over wireless networks are the dynamic allocation of
the scarce network resources among heterogeneous users expe-
riencing different time-varying network conditions and traffic
characteristics and, given the network resource allocation, the
dynamic adaptation of the cross-layer transmission strategies
of the individual users.
Existing wireless video transmission solutions can be

broadly divided into two categories: single-user video trans-
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mission solutions, focusing on packet scheduling, error pro-
tection or cross-layer adaptation in order to maximize the re-
ceiving user’s video quality [1][4] and multi-user video trans-
mission, emphasizing multi-user resource allocation among
multiple users simultaneously transmitting video and sharing
the same wireless resources [5][7]. However, most existing
solutions in both categories do not explicitly consider both the
heterogeneous characteristics of the video traffic and the time-
varying network conditions (e.g. time-varying channel condi-
tions, dynamic multi-user channel access, etc.), thereby often
leading to suboptimal performance for wireless media systems.
For example, in the single-user video transmission category,
most solutions employ Unequal-Error-Protection (UEP) tech-
niques [3] to differentially protect the video packets, or deploy
rate-distortion optimization to schedule the video packets [1]
based on their distortion impact and delay deadline and the
packets’ dependencies. However, these solutions assume only
simplistic underlying network (channel) models and they do
not consider the adaptation of transmission parameters at the
other layers of the network stack, besides the application layer.
To deal with the wireless network dynamics, cross-layer adap-
tation methods [2] have been proposed to optimize on-the-fly
the transmission parameters at various layers, based on current
observations of channel conditions. However, these cross-layer
solutions are myopic and result in suboptimal performance
because they do not account for the future channel conditions
and video traffic.

In the multi-user video transmission category, many current
techniques [7][8] are based on the network utility maximiza-
tion (NUM) framework [6]. In the NUM framework, the basic
assumption is that each user has a static utility function of the
(average) allocated transmission rate (or QoS). For example,
the authors in [7] simply consider the utility to be a function
of the average allocated rate. The solutions in [8] defined the
utility function (i.e. the average video quality or distortion) as
a function of the average rate and packet loss. To deal with the
dynamic wireless channel conditions, the resource allocation
among the multiple users is repeatedly performed to maximize
the current video quality. However, similar to the cross-layer
optimization for the single-user video transmission [2][4],
these solutions only myopically maximize the video quality for
all the users at the current time and do not predict the impact
of the current resource allocation on the future video quality
of all the users. Therefore, it is crucial to judiciously allocate
the limited resources to individual wireless video users such
that their long-term utility (i.e. video quality) is maximized.

To address the abovementioned challenges associated with
efficient multi-user video transmission over the time-varying
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wireless network, we propose a systematic framework for dy-
namically and foresightedly optimizing the cross-layer trans-
mission strategies (e.g. packet scheduling and resource acqui-
sition, etc) of multiple users coexisting in the same wireless
channel in order to maximize their long-term video quality. In
the proposed framework, unlike existing video transmission
solutions, we explicitly consider the heterogeneous video
traffic characteristics, experienced time-varying network con-
ditions, as well as the dynamic coupling among the users’
transmission strategies across time. Our contributions are:

• To characterize the heterogeneous video data, we define
a traffic state for each user which considers the number
of data units (e.g. video frames or video packets) to
be transmitted, their distortion impacts, and the depen-
dencies between them at each transmission time. The
traffic state together with the network state (e.g. chan-
nel conditions) characterizes the environment dynamics
experienced by each user. Using this state definition, we
are able to dynamically optimize the resource acquisition
and packet scheduling for video transmission over time-
varying networks.

• We further formulate the optimization of the packet
scheduling and resource allocation for the dynamic multi-
user video transmission system as a weakly-coupled
MUMDP [10] problem. The MUMDP formulation allows
each user to make foresighted transmission decisions
by taking into account the future impact of its current
decisions on the long-term utilities of all the users.
Unlike the conventional centralized solutions [9] to the
MDP which have very high computation complexity and
unacceptable communication overheads, we propose to
decompose this weakly-coupled MUMDP problem using
Lagrangian relaxation into multiple local MDPs, each
of which can be separately solved by the individual
users. This decomposition is different from the conven-
tional dual solutions [7] to the multi-user NUM-based
video transmission problem in two ways: (i) instead of
maximizing the static utility at each transmission time,
our approach allows each wireless user to solve the
dynamic cross-layer optimization problem (formulated as
the local MDP), which is vital for the delay-sensitive
video applications; (ii) instead of updating the Lagrangian
multipliers only based on the current resource require-
ments of all users, our approach updates the multipliers
based on not only current, but also future resource needs,
such that the long-term video quality of all the users is
maximized. To the best of our knowledge, this is the first
attempt to formalize the multi-user video communication
problem using MUMDP and decompose the MUMDP
such that it can be solved in a decentralized manner by
autonomous, yet collaborative, users.

• To overcome the obstacle of the unknown environmen-
tal dynamics (e.g. state transition probabilities) in real-
time video applications operating in dynamic multi-user
networks, the MUMDP framework provides the neces-
sary foundations and principles for how the users can
autonomously learn on-line to cooperatively optimize the
global long-term video quality. Specifically, to deal with
the unknown dynamics, each wireless user will deploy

online reinforcement learning [16], and the network coor-
dinator will update the resource price dynamically using
stochastic subgradient methods [15]. Unlike conventional
online learning algorithms [16], which often update the
policy for only the visited state during each time slot, our
proposed learning algorithm can simultaneously update
multiple states during each time slot, which can signifi-
cantly improve the learning performance. This approach
has two advantages: (i) it does not require each user to
know the statistical distribution of channel conditions and
incoming video traffic beforehand; and, (ii) the wireless
user and the network coordinator need to perform only
very simple computations in each time slot.

The paper is organized as follows. Section II defines the
traffic states, the state transition and the utility function for
each wireless user at each time slot. Section III formulates the
single-user cross-layer optimization as an MDP and proves
that the utility function is concave. Section IV formulates
the multi-user video transmission problem as an MUMDP.
Section V presents how the MUMDP can be decomposed into
multiple local MDPs using the Lagrangian relaxation method
and develop the corresponding subgradient method to update
the resource price. Subsequently, Section VI describes the
proposed distributed online learning algorithm to deal with
the unknown video characteristics and channel conditions.
Section VII presents numerical results to validate the proposed
framework. The conclusions are drawn in Section VIII.

II. MODELS FOR HETEROGENEOUS VIDEO TRAFFIC

Unlike traditional traffic models [19], which only charac-
terize the rate changes of video traffic, in this section we
aim to develop a general model to represent the encoded
video traffic with heterogeneous characteristics (e.g. various
delay deadlines, distortion impacts, dependencies, etc.). Using
this video traffic model, we will be able to dynamically
optimize the resource acquisition and packet scheduling for
video transmission over time-varying networks.

A. Attributes of data units

In this section, we discuss how the heterogeneous attributes
of the video traffic can be modelled. The video data is
often encoded periodically using a Group of Pictures (GOP)
structure, which lasts a period of T time slots. The video
frames within one GOP are encoded interdependently using
motion estimation, while the frames belonging to different
GOPs are encoded independently. Note that the prediction-
based coding schemes can lead to sophisticated dependencies
between the video data.
After being encoded, each GOP contains N data units

(DUs), each of which represents one type of DU (e.g. I, P,
B frames) and indexed by j ∈ {1, 2, · · · , N} . The types
of DUs are determined based on its distortion impact, delay
deadline, and dependencies which are illustrated below. We
assume that the GOP structure is fixed (i.e. the types of DUs
are fixed at each GOP). The set of DUs within GOP g ∈ N is
denoted by {fg

1 , · · · , fg
N}. The attributes of DU fg

j are listed
below.
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Size: The size of DU fg
j is denoted as lgj (measured in

packets1), where lgj ∈ [1, lmax
j ], and lmax

j is the maximum
allowable size for the j-th DU at each GOP. The size of
DU fg

j is determined when DU fg
j is encoded. To simplify

the exposition, lgj is generated from an i.i.d. random variable
2 with the probability mass function PMFj(l) . Note that
PMFj(l) is the same for the j-th DU across different GOPs,
but is different for different types of DUs.
Distortion impact: Each DU fg

j has a distortion impact qg
j

per packet, which is assumed to be the same for all the GOPs,
i.e. qg

j = qg′
j , ∀g, g′.

Delay deadline: We define the delay deadline of DU fg
j

as the time by which the DU should be decoded in order to
be displayed. We denote by dg

j the delay deadline of DU fg
j .

Since the GOP structure is fixed, the difference between the
delay deadlines of the two DUs within one GOP is constant,
i.e. dg

j − dg
j′ = Δdjj′ > 0 where j > j′, and the delay

deadlines of the same DUs from different GOPs satisfy dg
j −

dg−1
j = T . In other words, the delay deadline dg

j is periodic
with the period of T , which is the length of one GOP.
Dependency: When one DU fg

j is encoded based on the
prediction from the other DU fg

j′ , we say that DU fg
j depends

on DU fg
j′ . Note that the dependencies between DUs only

occur within one GOP and DUs from different GOPs can be
decoded independently (i.e. no dependency between them.).
The dependencies between the DUs within one GOP are
expressed as a directed acyclic graph (DAG) [1]. The DAG
remains the same for a fixed GOP structure. In this paper, we
assume that, if DU fg

j depends on DU fg
j′ (i.e. there exists a

path directed from DU fg
j to DU fg

j′ and denoted by j′ ≺ j
), then dg

j ≥ dg
j′ and qg

j ≤ qg
j′ . In other words, DU fg

j′ should
be decoded prior to DU fg

j and DU fg
j′ has higher distortion

impact. One illustrative example of DAGs for video data is
given in Figure 1.

B. Traffic state representation in each time slot

In this subsection, we discuss how to represent the video
traffic which can be potentially transmitted in each time slot.
At time slot t, as in [1], we assume that the wireless user will
only consider for transmission the DUs with delay deadlines
in the range of [t, t + W ], where W is referred to as the
scheduling time window (STW) and assumed to be given a
priori3. In this paper, we further assume that STW is chosen
to satisfy the following condition: if DU fg

j directly depends
on DU fg

j′ (i.e. there is a direct arc from fg
j to fg

j′ in the
DAG), then fg

j − fg
j′ < W . This assumption ensures that DU

fg
j and fg

j′ can be within one STW.
We denote by the set of DUs whose delay deadlines are

within the range of Ft = {fg
j |d

g
j ∈ [t, t + W ]}. This set Ft is

referred to as the DU-type state at time slot t. Since the GOP

1For simplicity, we assume in this paper that each packet has the same
length, but this does not affect our proposed solution. It just simplifies our
exposition given the space limitations.
2The DU size can also be modeled as a random variable depending on the

previous DUs [17].
3The STW can be determined based on the channel conditions experienced

by the user in each time slot. For example, the STW can be set small when
the channel conditions are poor (low SNR regime), and to be large whenever
the channel condition are good.

structure is fixed, it is easy to show that Ft is periodic with
the period of T , which means that, for any fg

j ∈ Ft, there
exists fg+1

j ∈ Ft+T and vice versa. Hence, Ft and Ft+T have
the same types of DUs and the same DAG between these
DUs. For example, as shown in Figure 1, Ft = {fg

1 , fg
2 , fg

3 }
and Ft+3 = {fg+1

1 , fg+1
2 , fg+1

3 } where T = 3. It is clear
that the DAG between the DUs in Ft is also the same as
the one between the DUs in Ft+3. Due to the periodicity,
there are only T different DU-type states. The transition of Ft

is deterministic and denoted by δ(Ft+1 − Next(Ft)) where
Next(Ft) represents the next DU-type state following Ft and
δ(x) = 1 if x = 0 and otherwise, 0. For example in Figure 1,
Next(Ft) = {fg

2 , fg
3 , fg

4 , fg
5 }.

Furthermore, for each DU fg
j ∈ Ft, we denote by bg

j the
amount of packets remaining for transmission at time slot t.
Note that bg

j ≤ lgj which means the remaining packets must
be less than the amount of the originally available packets.
If DU fg

j is undecodable, bg
j = −1. We denote the buffer

state of the DUs in Ft by Bt = {bg
j |f

g
j ∈ Ft}. The traffic

state Tt = (Ft, Bt) of the video application is then defined as
representing the types of DUs, the dependencies between them
and the amount of packets remaining for transmission. Hence,
the traffic state Tt is able to capture heterogeneous video traffic
and is a super-set of existing well-known single-buffer models
(i.e. which ignore packet dependencies and delay deadlines)
or multi-buffer models (i.e. which ignore packet dependencies
or delay deadlines).

C. Packet scheduling, state transition and immediate reward

Given a transmission rate4 rt at time slot t, the wireless
user has to determine the amount of packets to be transmitted
for each DU in Ft, which we refer to as packet scheduling.
The scheduling policy π maps the current traffic state Tt and
transmission rate rt into the amount of packets transmitted
during each time slot, yt = [yg

j |f
g
j ∈ Ft], i.e. π(Tt, rt) = yt

. Formally, the scheduling policy π satisfies the following
conditions5: (i) Underflow constraint: 0 ≤ yg

j ≤ bg
j , ∀fg

j ∈ Ft;
(ii) Rate constraint:

∑
fg

j ∈Ft
yg

j ≤ rt. In other words, we
allow partial DUs to be scheduled for transmission. The set
of possible policies in each traffic state Tt given a certain
transmission rate rt is denoted by P(Tt, rt). In this paper,
we assume that the packet scheduling policy π(Tt, rt) is a
vector of nonnegative real number, i.e. π(Tt, rt) ∈ R

|Ft|
+

where |Ft| represents the number of DUs in Ft. This type of
packet scheduling policy can be implemented by mixing the
packet scheduling policies taking an integer number of packets
to transmit. In the rest of paper, we assume that π(Tt, rt)
takes values from the nonnegative real number set. P(Tt, rt)
represents the set of feasible mixed packet scheduling policies.
In the following, we discuss the transition of the traffic

state Tt, given the transmission rate rt. First, as discussed in
Section II.B, the DU-type state has the deterministic transition
δ(Ft+1−Next(Ft)), which is independent of the transmission

4The transmission rate can be determined by the allocated network resource
and transmission strategies at the layers below application layer.
5Similar constraints are also considered in [18]. However, the authors

therein did not consider the time-varying transmission rate and foresighted
packet scheduling decisions aimed at maximizing the long-term video quality.
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Fig. 1. DAG-based dependencies and traffic states at each time slot using IBPBP GOP structure

rate rt. However, the buffer state transition is determined by
the scheduling policy, the dependencies between DUs and the
PMF of the incoming DUs.
In order to compute the transition from Bt to Bt+1, we

divide the DUs in Ft+1 into two disjoint subsets: Ft∩Ft+1 and
Ft+1/Ft

6. Specifically, Ft∩Ft+1 represents the set of DUs that
are not expired at time slot t + 1, and Ft+1/Ft represents the
newly arriving DUs at time slot t+1. We can also divide Ft+1

into two subsets: the decodable set F d
t+1 and undecodable set

Fu
t+1. F d

t+1 represents the set of DUs whose parent DUs in
the DAG (if any) have been successfully transmitted, and is
computed as F d

t+1 = {fg
j |f

g
j ∈ Ft+1&∀j′ ≺ j, bg

j′ = 0}.
Fu

t+1 represents the set of DUs that cannot be decoded (i.e.
bg
j′ = −1 or bg

j′ > 0 where j′ ≺ j), and is computed as
Fu

t+1 = {fg
j |f

g
j ∈ Ft+1&∃j′ ≺ j, bg

j′ 	= 0}. Let Bt+1 =
{b̂g

j |f
g
j ∈ Ft+1} be the buffer state at time slot t + 1. We are

now ready to compute the transition probability of the buffer
state from Bt to Bt+1, as shown below.

p(Bt+1|Bt,yt) =
∏

fg
j ∈F u

t+1

δ(b̂g
j + 1)

∏
fg

j ∈F d
t+1∩(Ft+1∩Ft)

δ(b̂g
j − (bg

j − yg
j ))

∏
fg

j ∈F d
t+1∩(Ft+1/Ft)

PMFj(b̂
g
j ) (1)

where the first product in the right hand side represents the
buffer state transition probability of the undecodable DUs,
the second one represents the transition probability of the
remaining decodable and unexpired DUs, and the third one
represents the transition probability of the decodable and
newly arriving DUs. The transition of the traffic state Tt is
then computed as

pT (Tt+1|Tt,yt, rt) = δ(Ft+1 − Next(Ft))p(Bt+1|Bt,yt).
(2)

From the computation in Eq. (2), we know that the traffic
state transition is Markovian. Given the scheduling policy
yt = π(Tt, rt) and transmission rate rt, the distortion reduc-
tion experienced by the wireless user is:

ut(Tt,yt, rt) =
∑

fg
j ∈Ft

qg
j yg

j . (3)

III. DYNAMIC OPTIMIZATION FOR A SINGLE USER

In this section, we first consider the optimization of both
the packet scheduling and resource acquisition for a single

6Here Ft+1/Ft = Ft+1 − Ft+1 ∩ Ft

wireless video user experiencing a slow fading wireless chan-
nel. In each time slot, the wireless user experiences a channel
condition ht. We assume that the channel condition remains
constant within one time slot, but varies across time slots.
The changes of can be modelled as a finite state Markov
chain (FSMC) [13] with the state transition probability given
by ph(ht+1|ht), which is independent of the traffic state
transition. The transmission rate attained by the wireless user
is determined by rt(ht, xt), where xt ∈ X represents the
amount of network resource (e.g. the transmission time in the
TDMA-like network [14] as discussed in Section IV) acquired
by the wireless user from the network and X represents the
set of possible resource allocations. As we will discuss in
Section IV for the multi-user video transmission, the resource
acquisition will be affected by other users. The transmission
rate function rt(ht, xt) is assumed to be a convex increasing
function of xt, given the channel condition ht.
We define the state for the wireless user at time slot t as

st = (Tt, ht) ∈ S, which includes the video traffic state and
channel state. The state st satisfies the Markovian property
since both the traffic state and channel state are Markovian.
Then, the wireless user state transition is expressed by

p(st+1|st,yt, xt) = pT (Tt+1|Tt,yt, rt)ph(ht+1|ht). (4)

At each state st, the wireless user takes the actions including
the resource acquisition xt and scheduling yt, thereby leading
to the immediate utility ut(st,yt, xt) − λstxt, where λst is
interpreted as the resource price as in [1]. Note that we express
ut(Tt,yt, rt(ht, xt)) as ut(st,yt, xt) to emphasize that the
immediate utility is a function of the state st, scheduling action
yt and allocated time xt.
In this section, we assume that λst is determined a priori.

In Section V, we will discuss how the resource price can
be determined in a multi-user scenario. The wireless user’s
objective is to maximize its expected discounted accumulated
utility7 (we call this ”single-user primary problem (SUP)”):
SUP:

max
{yt∈P(st,xt)

xt≥0,t≥0 }

∑
s0∈S

v(s0)E

{ ∞∑
t=0

αt(ut(st,yt, xt) − λstxt)|s0

}

where α is the discounted factor in the range8 of [0, 1), and
v(s0) is the distribution of the initial state. The reasons why

7In this formulation, we interchangeably express the set of admissible
policies as P(Tt, rt) and P(st, xt).
8Our solutions discussed below are also applicable to the problem of

maximizing the average accumulated utility by allowing α → 1.
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we consider the discounted accumulated utility are: (1) for our
considered delay-sensitive applications, the data needs to be
sent out as soon as possible to avoid missing delay deadlines;
and (2) since a wireless user may encounter unexpected
environmental dynamics in the future, it may care more about
its immediate reward rather than the future reward. Based
on the discussion in Section II, the transition of the state st

only depends on the current action at = (xt,yt). Hence, the
problem above can be formulated as an MDP.
Note that unlike the previous video transmission solutions

in [2][3][4], here we explicitly take into consideration the het-
erogeneous characteristics of video traffic (represented by the
traffic states) and time-varying channel conditions (represented
as channel states). Similar to the work in [1], we optimize
the trade-off between the consumed resource and the received
reward in terms of distortion reduction, but unlike in [1] we
focus on a dynamic setting. The optimization of SUP is called
a foresighted optimization for video transmission because it
considers the impact of current decisions on the future utility.
Based on [9], the optimization of SUP can be solved using the
Bellman’s equations (5), where U(s, λ) is the optimal reward-
to-go starting at state s, given λ = [λs]s∈S . The Bellman’s
equations can be solved using the value iteration or policy
iteration methods [9].
We define (6). Given the resource price λ, H(s, λ, x)

represents the utility function the wireless video user obtains
in state s under the optimal mixed packet scheduling policy.
The optimal mixed packet scheduling policy is characterized
in detail in [23] which leads to a concave utility function
H(s, λ, x).
Lemma 1: H(s, λ, x) is a concave function of the allocated

resource x.
The proof is given in Appendix A.
The concavity of the utility function H(s, λ, x) plays an

important role in deriving the optimal resource allocation so-
lution in the multi-user video transmission, which is presented
in the subsequent sections.

IV. MULTI-USER WIRELESS VIDEO TRANSMISSION
FORMULATION

In this section, we aim to formulate the problem of multi-
user multimedia transmission over a slowly-fading wireless
channel by considering both the heterogeneous traffic and
time-varying channel conditions experienced by the users. The
users are indexed by i ∈ {1, · · · , M}, where M is the number
of users sharing the channel. Similarly, we define the state for
the wireless user i at time slot t as si

t = (T i
t , hi

t) ∈ Si (the
superscript i represents user i and the same in the below),
which includes the video traffic state T i

t and channel state
hi

t. As discussed in Section II, the traffic state T i
t models

the heterogeneous characteristics of the delay-sensitive video
data. The channel state hi

t represents the channel conditions
experienced by the wireless user i. The channel state transition
probability ph(hi

t+1|hi
t) is independent of the traffic state

transition and also other users’ state transition.
We assume that the multiple users access the shared channel

using the TDMA-like protocol [14]. At each time slot, the por-
tion of time allocated to user i is denoted by xi

t ∈ [0, 1]. The

allocations to all the users satisfy the following inequalities:∑M
i=1 xi

t ≤ 1, ∀t, which are referred to as the stage resource
constraints. Here one stage means one time slot.
We consider a collaborative multi-user video transmission

problem aimed at maximizing the expected discounted accu-
mulated video quality of all the users under the stage resource
constraints (we call this problem ”the multi-user primary
problem with stage resource constraints - MUP/SRC”):
MUP/SRC:

U∗ = max
yi

t,xi
t,i=1,··· ,M∑

s1
0∈S1,··· ,sM

0 ∈SM

M∏
i=1

v(si
0)E

[ ∞∑
t=0

M∑
i=1

αtui
t(s

i
t,y

i
t, x

i
t)|s0

]

s.t.yi
t ∈ P i(si

t, x
i
t),

M∑
i=1

xi
t ≤ 1

where v(si
0) is the distribution of the initial state of user i and

is assumed to be independent of other users’.
The multi-user transmission problem in MUP/SRC can be

formulated as an MUMDP. Specifically, we define the state
of the multi-user system as mathbfs = (s1, · · · , sM ). The
action performed by each user is ai = (yi, xi) and the action
profile for all the users is a = (a1, · · · , aM ). It is easy to
verify that p(s′|s, a) =

∏M
i=1 pi(si′|si,yi, xi) since the traffic

state and channel state are independent across the users. The
reward at each time slot is given by ut =

∑M
i=1 ui

t(s
i
t,y

i
t, x

i
t).

We note that, when α = 0 (i.e. all users make myopic
decisions), the MUMDP problem reduces to the traditional
multi-user NUM-based resource allocation problems for video
transmission [6]-[8], which is performed repeatedly. However,
we consider here the dynamic optimization for the multi-user
video transmission by taking into account the resource allo-
cation and corresponding scheduling across time (i.e. α 	= 0).
From [9], we know that, for this multi-user MDP problem,

there is at least one optimal stationary policy that only depends
on the current multi-user system state. Hence, in this paper, we
restrict our focus to the stationary policies, i.e. the policy only
depends on the current state. Then, solving the maximization
problem in MUP/SRC is equivalent to solving the following
Bellman’s equations [9]:

U(s) = max
yi∈Pi(si,xi),i=1,··· ,M,

P
M
i=1 xi≤1[

M∑
i=1

ui(si,yi, xi) + α
∑
s′

M∏
i=1

p(si′|si,yi, xi)U(s′)

]
, ∀s (7)

and U∗ =
∑

s1
0∈S1,··· ,sM

0 ∈SM

∏M
i=1 v(si

0)U(s0).
Based on these Bellman’s equations, we can make the

following observations: (i) to solve the Bellman’s equations,
we can use the centralized value iteration or policy iteration
[9] to find the optimal state function U(s) for the multi-user
MDP problem. However, this solution requires knowing all the
users’ information (state spaces, action spaces, transition prob-
abilities, and utility functions) and also has a prohibitively high
computation complexity. Hence, this centralized solution is
not applicable for the multi-user wireless video transmission;
(ii) we note that the coupling among the multiple users’ video
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U(s, λ) = max
{y∈P(s,x)

x≥0 }

[
u(s,y, x) − λsx +

∑
s′

αp(s′|s,y, x)U(s′, λ)

]
, (5)

H(s, λ, x) = max
y∈P(s,x)

[
u(s,y, x) − λsx +

∑
s′

αp(s′|s,y, x)U(s′, λ)

]
(6)

Single-user video 
transmission (MDP)

(Section III)

Multi-user video 
transmission with 
stage resource 

constraint (MUMDP)
(Section IV)

Dual solution with per-
state resource price

(Section V.A)

Multi-user video 
transmission with 

accumulated resource 
constraint (MUMDP)

(Section V.B)

Dual solution with 
uniform resource price 

(Section V.B)

Subproblem with 
scalar resource price

(local MDP)

Dual with zero 
duality gap

Dual with zero 
duality gap

Upper 
Bound

Upper 
Bound

Fig. 2. Relationship between the various proposed solutions for the
considered multi-user MDP problem

transmission is only through the resource allocation performed
at each time slot. The optimal scheduling policy performed by
each user i depends on the multi-user system state through the
resource allocation xi. Then, given the resource allocation xi,
the scheduling policy is independent of other users’ states.
This type of MUMDP is weakly-coupled MDP [10] and thus,
the decomposition into multiple local MDPs is possible.
In the next section, we will discuss how the multi-user MDP

problem can be decomposed when the resource allocation is
dynamic and depends on the multi-user system’s state. The
relationships among the proposed solutions are illustrated in
Figure 2.

V. DUAL DECOMPOSITION OF MUMDP

In this section, we will relax the per-stage resource con-
straints and show how we can decompose the MUMDP.
First, in Subsection A, we introduce a per-state Lagrangian
multiplier associated with the resource constraint at each state.
This dual solution leads to the zero duality compared to
the primary problem MUP/SRC, but requires a centralized
solution since the resource price depends on multi-user state
which cannot be observed by each individual user. Then, in
Subsection B, we impose a uniform resource price, which is
independent of the multi-user state. With this uniform resource
price, the MUMDP problem can be decomposed into multiple
local MDPs, each of which represents a dynamic cross-layer
optimization problem that can be separately solved by each
individual user. This decomposition is promising since (i)
it enables each user to perform the cross-layer optimization
independently of other users; and (ii) the network coordinator
only needs to simply update the resource price, which involves
only very few computations.

A. Dual solution with per-state resource prices

At each state st, we introduce a Lagrangian multiplier λst

associated with the resource constraint
(∑M

i=1 xi
t − 1

)
at each

state st. Then the dual function is given by

U(λ) = max
{yi

t∈Pi(si
t,xi

t),x
i
t≥0

i=1,··· ,M,t≥0 }

∑
si
0∈S1,··· ,sM

0 ∈SM

v(si
0)

E

[ ∞∑
t=0

αt
M∑
i=1

(
ui

t(s
i
t,y

i
t, x

i
t) − λstx

i
t +

λst

M

)
|s0

]
, (8)

with λ = [λs]. We refer to λs as ”pre-state resource price”.
Then, λsx

i is the cost user i has to pay in state s and
λs · 1 is the amount of revenue received by the multi-user
system by allowing the users to consume the resources (i.e.
access the wireless channel). However, we should note that,
in the considered collaborative communication scenario, the
resource price is used in order to efficiently allocate the limited
resource, instead of maximizing the revenue of the multi-user
system.
The multi-user dual problem with the per-state resource

price (MUD/PSRP) is then given by
MUD/PSRP

Uλ,∗ = min
λ≥0

U(λ).

The following proposition proves that the dual problem
MUD/PSRP has zero duality gap compared to the primary
problem in MUP/SRC and thus, the optimal time allocation
and scheduling policies corresponding to the optimal resource
price λs at each state are also optimal policies for the primary
problem.
Proposition 2: Uλ,∗ = U∗

The sketch of the proof is given in Appendix B.
Similar to the Bellman’s equations in Eq. (7) for the

primary problem MUP/SRC, we have the following Bellman’s
equations corresponding to the dual function in MUD/PSRP:

U(s, λ) = max
yi∈P(si,xi),xi≥0,i=1,··· ,M[{∑M

i=1(ui(si,yi, xi) − λsx
i + 1

M λs)+

α
∑

s′
∏M

i=1 p(si′|si,yi, xi)U(s, λ)

}]
, ∀s. (9)

We note that, by setting α = 0, the Bellman’s equations
above degrade to the dual solutions [6][7] to the conven-
tional multi-user video transmission. The degraded Bellman’s
equations can be decomposed into multiple sub-equations,
each corresponding to one user, by letting the user know the
resource price. However, in general, this Bellman’s equation
cannot be decomposed into independent subproblems which
can be autonomously solved by each user, since the Bell-
man’s equations are coupled through the resource price λs,
which varies with the state of the multi-user system. Hence,
a centralized solution has to be deployed by the network
coordinator, which requires all users’ information, as in the
primary solution to MUP/SRC.
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B. Dual solution with uniform resource price

In this subsection, we consider a scenario where the same
price (referred to as ”uniform resource price”) is imposed in
all the states of the multi-user system, i.e. λs = λ, ∀s. Then,
the dual function is given by

U(λ) = max
{yi

t∈Pi(si
t,xi

t),x
i
t≥0

i=1,··· ,M,t≥0 }

∑
s1
0∈S1,··· ,sM

0 ∈SM

M∏
i=1

v(si
0)

E

[ ∞∑
t=0

αt
M∑
i=1

(
ui

t(s
i
t,y

i
t, x

i
t) − λxi

t +
λ

M

)
|s0

]
(10)

By minimizing over the uniform resource price λ, we
have the multi-user dual problem with uniform resource price
(MUD/URP):
MUD/URP

Uλ,∗ = min
λ≥0

U(λ)

We would like to note that the Lagrangian relaxation using
uniform resource price has been also proposed in [10][11]
to decompose a weakly-coupled MUMDP problem. In the
below, we mathematically derive the duality and propose a
systematic way to compute the subgradient for updating the
Lagrangian multiplier which is not explicitly addressed in
[10][11]. Interestingly, by setting the uniform resource price,
the dual problem MUD/URP is not dual to the primary
problem in MUP/SRC. Instead, it is dual to the following
problem:
MUP/ARC

Û∗ = max
yi

t,x
i
t,i=1,··· ,M

∑
s1
0∈S1,··· ,sM

0 ∈SM

M∏
i=1

v(si
0)

E

[ ∞∑
t=0

M∑
i=1

αtui
t(s

i
t,y

i
t, x

i
t)|s0

]

s.t.yi
t ∈ P i(si

t, x
i
t),

∞∑
t=0

M∑
i=1

(xi
t −

1
M

) ≤ 0

We call this optimization - ”the multi-user primary problem
with accumulated resource constraint (MUP/ARC)”. The dual-
ity between MUD/URP and MUP/ARC can be easily verified.
Similar to Proposition 1, we can prove that the duality gap
between MUD/URP and MUP/ARC is zero.
We further notice that the resource constraint in the primary

problem MUP/SRC satisfies the following condition:{
xi

t, i = 1, · · · , M, t ≥ 0|
M∑
i=1

xi
t ≤ 1

}
⊂

{
xi

t, i = 1, · · · , M, t ≥ 0|
∞∑

t=0

M∑
i=1

xi
t −

1
M

≤ 0

}
, (11)

which means that the feasible resource allocations in the
MUP/SRC is a subset of the feasible resource allocations in the
MUP/ARC. Then, comparing to the dual solution with state-
wise prices, we have the following proposition which shows
that Uλ,∗ serves as an upper bound of the optimal value for
the primary problem.
Proposition 3: Uλ,∗ = Û∗ ≥ U∗ = Uλ,∗

The proof is given in Appendix C.

The following theorem shows that the Bellman’s equations
corresponding to the dual function in Eq. (10) can be decom-
posed into M local Bellman’s equations, each corresponding
to one user.
Theorem 4: Given λs = λ, ∀s, the optimization in Eq. (10)

is given by

U(λ) =
M∑
i=1

∑
si
0

v(si
0)U

i(si
0, λ), (12)

with U i(si, λ) satisfying the local Bellman’s equation:

U i(si, λ) = max
xi≥0,yi∈P(si,xi)[{

ui(si,yi, xi) − λxi + 1
M λ+

α
∑

si′ p(si′|si,yi, xi)U i(si′, λ)

}]
(13)

The proof is given in Appendix D.
The key result of Theorem 4 is that U(λ) can be de-

composed into M local Bellman’s equations, which can be
solved in a distributed fashion. Each user can solve its own
Bellman’s equations (and accordingly solve its own cross-
layer optimization problem) provided the resource price λ.
This local Bellman’s equations correspond to the local MDP,
which is the single-user cross-layer optimization solved by
each individual user (see Figure 2).
Next, we discuss how the resource price can be updated.

Given the resource price λ, each user can solve its own Bell-
man’s equations using e.g. value iteration, which results in the
optimal resource allocation xi,∗(si, λ) and scheduling policy
yi,∗(si, λ). Note that the resource acquisition is independent
of other users’ state given the uniform resource price. In the
following proposition, we formally compute the subgradient
with respect to the resource price λ for the dual problem
MUD/URP, which will be used to update the resource price
in each iteration.
Proposition 5: The subgradient with respect to λ is given

by
M∑
i=1

Zi − 1
1 − α

, (14)

where Zi =
∑

si
0∈Si v(si

0)e
T
si
0
(I − αP i)−1xi(λ) is the ex-

pected discounted accumulated resource consumption (note
that the expectation is taken over all the possible sample
paths), and P i is the state transition probability matrix, and
esi is the vector with the si component being 1 and others
being zero.
The proof is given in Appendix E.
Using the subgradient method, the resource price is then

updated as follows:

λk+1 =

[
λk + βk(

M∑
i=1

Zi − 1
1 − α

)

]+

(15)

where βk is a diminishing step-size which satisfies the follow-
ing conditions:

∑∞
k=1 βk = ∞,

∑∞
k=1(β

k)2 < ∞ [15]. One
example is βk = 1

k . We notice that the subgradient computed
in Eq. (14) accounts for not only the current resource con-
straint, but also the future constraints, since MUMDP aims
to maximize the long-term utility. The subgradient method
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Fig. 3. Message exchange in the dual method with uniform price for the
multi-user wireless video transmission

shown in Eq. (15) converges to the optimal dual solution due
to the concavity of the objective function. The advantages of
the proposed decomposition for multi-user video transmission
are: (i).given a uniform resource price, each wireless user can
solve its own local MDP independently of other users. This
enables us to decompose the multi-user video transmission
problem by enabling each user to autonomously optimize its
packet scheduling and resource acquisition; (ii) this decompo-
sition allows the network coordinator to simply update the
scalar resource price. Furthermore, the proposed approach
only requires two scalar messages (as shown in Figure 3)
to be exchanged between the wireless users and the network
coordinator at each iteration. This significantly simplifies the
design of the network coordinator (e.g. access points) and
reduces the cost of building a wireless network to support
video applications.
Previously, we enforced a uniform price for all the states,

which enables a decomposition of the dual function computa-
tion and provides an upper bound on the utility function U∗.
However, the solution to the dual problem may be infeasible
(i.e. it may violate the resource constraint in each time slot,∑M

i=1 xi,λ,∗(si) > 1). Recall that the optimal allocation is
given by the solution to Eq. (7). We can approximate the
optimal allocation by solving a one-stage multi-user resource
allocation problem at each time slot in which we replace the
optimal U(s′) in Eq. (7) with the approximated state value
function

∑M
i=1 U i(si′, λ). This one-stage resource allocation

problem becomes:

U(s) = maxP
M
i=1 xi≤1

M∑
i=1

V i(si, xi), (16)

where

V i(si, xi) = max
yi∈Pi(si,xi){

ui(si,yi, xi) + α
∑
si′

p(si′|si,yi, xi)U i(si′, λ)

}
(17)

This one-stage multi-user resource allocation problem is sim-
ilar to the traditional multi-user NUM-based resource alloca-
tion problems. The difference is that, in our formulation, the
utility function V i(si, xi) is the long-term utility instead of
the immediate utility as in the conventional NUM formulation.
Since the resource allocation is a one-stage optimization and
the network is decentralized, it can neither be solved using
distributed iteration-based methods as in the conventional
NUM, nor directly by the network coordinator, which requires
the state transition probability and state value function to

compute V i(si, xi). From Section V.B, we know that each user
is able to compute its optimal resource acquisition xi,∗(si, λ)
with respect to the current uniform price λ. Comparing Eq.
(17) to Eq. (13), we note that

xi,λ,∗(si, λ) = argmax
xi

{
V i(si, xi) − λxi

}
(18)

Instead of directly solving the one-stage resource allocation
in Eq. (16), we propose a heuristic method by scaling down
the resource acquisition computed in (18) and weighted by the
average gradient of each user, i.e.

x̂i,λ(s) =
xi,λ,∗(si, λ)ΔV̄ i∑M

j=1 xj,λ,∗(sj , λ)ΔV̄ j
(19)

where ΔV̄ i = 1
2

[
ΔV i(si, 0) + ΔV i(si, xi,λ,∗)

]
=

1
2

[
ΔV i(si, 0) + λ

]
. Here we note that ΔV i(si, xi,λ,∗) = λ

from Eq. (18) and ΔV i(si, 0) can be computed by user i.
We call the resource allocation in Eq. (19) the gradient-based
resource allocation scaling where the gradient is the average
derivative of the long-term utility of each user.
This scaling can be performed by the network coordinator as

follows: at the beginning of each time slot, the users submit
the weighted resource acquisition xi,λ,∗ΔV̄ i to the network
coordinator, and the coordinator performs the resource allo-
cation scaling as in Eq. (19). After the scaling, the network
coordinator polls the users according to the scaled resource
allocation [14]. Note that, the resource allocations x̂i,λ(s), ∀i
satisfy the resource constraints and hence, it provides the lower
bound on the optimal utility. In Section VII.B, we qualify the
duality gap by showing the upper and lower bounds on the
cross-layer optimization performance.

VI. DISTRIBUTED ONLINE LEARNING

When implementing the distributed solution proposed in
Section V.B in practice, we face the following difficulties: (i)
in this distributed solution, each user still has to solve its own
local MDP problem for each updated resource price, which
still leads to a very high computation complexity for each user;
(ii). the multiple iterations introduce the latency which may
not be acceptable for real-time video transmission; (iii) the
channel state transition probability and incoming DUs’ distri-
bution are often difficult to characterize a priori, such that the
single-user MDP cannot be explicitly solved online; However,
the proposed distributed solution to the MUMDP provides
the necessary foundations and principles for how the users
can autonomously learn on-line to cooperatively optimize the
global long-term video quality. We aim in this section at de-
veloping an online learning algorithm. Specifically, we deploy
a modified reinforcement learning algorithm [16] to solve the
single-user MDP and the stochastic subgradient method [15]
to update the uniform resource price. The advantages of the
online learning solution are: at each time slot, the wireless
user only needs to perform a few simple computations (i.e.
incurs a low computation complexity); and, most importantly,
there is no a priori knowledge requirement for the channel
states and incoming DUs dynamics.
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A. Post-decision state-based online learning

Given the uniform resource price λ, user i is able to solve
the local MDP problem as in Eq. (13). As discussed in
Section II, the incoming data is independent of the buffer
size. Furthermore, from Section III, we know that the traffic
state transition is also independent of the channel state. In this
section, we define a post-decision state s̃i

t = (T̃ i
t , h̃i

t) for user
i. The post-decision traffic state T̃ i

t = (F̃ i
t , B̃

i
t) represents the

traffic state after the packet scheduling but before the expired
DUs are deleted and the new DUs arrive. The post-decision
channel state h̃i

t is the same as the current channel state, i.e.
h̃i

t = hi
t. It is clear that F̃ i

t = F i
t because the DU types are

not changed after the packet transmission. However, the buffer
state B̃i

t changes: B̃i
t = Bi

t − yi
t. With the post-decision state

in mind, the Bellman equation in Eq. (13) to solve the local
MDP can be rewritten as

U i(s̃i
t, λ) =

∑
bi,g

j ,F i
t+1,hi

t+1

∏
fg

j ∈F i,d
t+1∩(F i

t+1/F i
t )

PMF i
j (b

i,g
j )

δ(F i
t+1 − next(F̃ i

t ))p(hi
t+1|h̃i

t) max
xi

t+1≥0,yi
t+1∈Pi(si

t+1,xi
t+1)[{

ui(si
t+1,y

i
t+1, x

i
t+1) − λxi

t+1 + 1
M λ+

αU i(((F i
t+1, B

i
t+1 − yi

t+1), h
i
t+1), λ)

}]
, (20)

where the next post-decision state is s̃i
t+1 = ((F i

t+1, B
i
t+1 −

yi
t+1), h

i
t+1) and U i(s̃i

t, λ) is the post-decision state value
function. Using the post-decision state, we are able to separate
the expectation (corresponding to the first line in the right hand
side of Eq. (20)) from the optimization. At each time slot, we
first perform the cross-layer optimization without worrying
about the expectation. After the optimization, we then take
the expectation over all the possible state si

t. This separation
provides us a new way to learn the optimal resource allocation
and packet scheduling online, which is discussed below.

B. Batch update of post-decision state value function

From the discussion in Section VI.A, we note that the
channel state transition and incoming data dynamics are
independent of the buffer state, the resource allocation and the
packet scheduling. In the conventional reinforcement learning
(e.g. Q-learning, actor-critic learning [16]), the state-value
function can be updated only one state per time slot, which
leads to slow convergence rate. However, in our context, we
are able to update the post-decision state value function at
multiple states per time slot.
Specifically, at time slot t, the DU type is F i

t and channel
state is hi

t, and the set of the feasible post-decision states

at time slot t is S̃i
t =

{
((F i

t , B̃i
t), hi

t), ∀B̃i
t

}
. Note that the

realized post-decision state s̃i
t belongs to S̃i

t . When the expired
DUs are deleted, the new DUs arrive and the new channel
state hi

t+1 is realized, any post-decision state s̃ ∈ S̃i
t transits

to the normal state si′ = ((F i
t+1, B

i
t+1), h

i
t+1) ∈ Si

t+1. In
conventional reinforcement learning, the state value function
is often updated in the current normal state si

t. In contrast, in
our cross-layer optimization problem, we can update the post-
decision state value function in all the possible post-decision

state s̃i ∈ S̃i at time slot t + 1 as follows:

U i(s̃i, λ) = (1 − γi
t)U

i(s̃i, λ) + γi
t max

xi≥0,yi∈Pi(si′,xi)[
ui(si′,yi, xi) − λxi +

1
M

λ + αU i(si′, λ)
]

, ∀s̃i ∈ S̃i.

(21)

where s̃i′ = ((F i, Bi − yi), hi) and γi
t satisfies

∑∞
k=1 γi

k =
∞,
∑∞

k=1(γ
i
k)2 < ∞. The maximization in Eq. (21) is per-

formed to obtain the optimal packet scheduling and resource
acquisition at the normal state si′ which is transited to from
the post-decision state s̃i. Further, to enforce the convergence
of the resource price and state value function, γi

k should also
satisfy limk→∞

βk

γi
k

= 0 as shown in [20]. One example

is γi
l = 1

k0.7 . Then, the optimal resource allocation and
packet scheduling corresponding to the normal state si

t+1 is
implemented at time slot t + 1, which leads to the actual
packet transmission. However, the optimal resource allocation
and packet scheduling corresponding to other states is only
computed but not implemented. The batch update of the post-
decision state-value function in Eq. (21) can significantly
improve the learning performance (i.e. it reduces the number
of time slots required to achieve a specific distortion reduction)
as compared to the conventional on-line learning algorithm.
Furthermore, we note that the batch update of the post-
decision state value function is not affected by the allocated
resource by the network coordinator. Actually, it is only
affected by the announced resource price.

C. Stochastic subgradient-based resource price update

From Section V.B, we notice that the subgradient of the
dual problem with uniform price is computed as in Eq.
(14), which is the expected discounted accumulated resource
consumption. Since each wireless user does not know the
transition probability, we only use the realized sample path
to estimate the subgradient of the dual problem (i.e. using the
stochastic subgradient). Specifically, we update the Lagrangian
multiplier as follows:

λk+1 =

[
λk + κk

(
M∑
i=1

∞∑
t=0

αtxi
t −

1
1 − α

)]+

(22)

where
∑∞

t=0 αtxi
t is the stochastic subgradient approximating

the subgradient Zi and κk is a diminishing step-size sat-
isfying

∑∞
k=1 κi

k = ∞,
∑∞

k=1(κ
i
k)2 < ∞ . One example

is κk = 1
k . However, in practice, we cannot wait for an

infinite time to update the Lagrangian multiplier. Instead, we
update the multiplier every K time slots, i.e. we use Z̃i =∑(k+1)K−1

t=kK αt−kKxi
t instead of

∑∞
t=0 αtxi

t. The proposed
online learning algorithm is illustrated in Figure 4. It can
be shown that the batch update on the post-decision state
value function and subgradient-based resource price update
will converge to the optimal solution [21].

VII. SIMULATION RESULTS

In this section, we present simulation results highlighting
the efficiency of the proposed single-user and multi-user video
transmission solutions compared to existing solutions. To
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Fig. 4. Flowchart of the online learning algorithm

compress the video data, we used a scalable video coding
scheme [12], which is attractive for wireless streaming appli-
cations because it provides on-the-fly application adaptation to
channel conditions, support for a variety of wireless receivers
with different resource capabilities and power constraints, and
easy prioritization of various coding layers and video packets.

A. Dual solutions with uniform price

In this section, we will verify the convergence of the dual
solution with uniform price to the proposed MUMDP. We will
further compare the performance of our approach to that of
the conventional multi-user dual solution. We first consider
three wireless users: User 1 streams the video sequence
”Foreman” (CIF resolution, 30 Hz), User 2 streams the video
sequence ”Coastguard” (CIF resolution, 30 Hz) and User 3
streams the video sequence ”Mobile” (CIF resolution, 30 Hz).
We compare our proposed dual solution with uniform price
to the conventional dual solution [7] based on the NUM
framework. Figure 5 shows the convergence of the resource
prices with various initial price selections. We notice that, our
proposed dual solution with uniform price shows much faster
convergence (less than 25 iterations) than the conventional
dual solution (having more than 100 iterations). We also note
that our solution converges to a lower resource price than
the conventional one. This is because that the conventional
solution myopically maximizes the video transmission over
each time slot. Hence, to achieve a feasible resource allocation,
it has to increase its resource price to ensure that the resource
allocations over all the states are feasible (corresponding to the
worst case scenario.) However, in our solution, we relax the
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Fig. 5. Convergence of the dual solutions under various initial resource price
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stage resource constraints into the accumulated resource con-
straint (shown in the problem of MUP/ARC) and the resource
price is reduced. We scale down the resource acquisition at
each multi-user system state to enforce the feasible allocation.
Figure 6 shows the improvements in terms of PSNR when the
price converges (i.e. User 1 receives 0.5dB higher PSNR, User
2 receives 1dB higher PSNR and User 3 receives 1.1dB higher
PSNR). The improvement is due to the foresighted decisions
in our solution, as compared to the myopic decisions in the
conventional NUM-based solution.

B. Duality gap of proposed dual decomposition

In this section, we illustrate the duality gap of the proposed
the dual decomposition with uniform price. As we know, the
resource acquisitions xi,λ,∗(si), ∀i with respect to the optimal
uniform price λ∗ provide the upper bound on the optimal
utility U∗, while the feasible resource allocations x̂i,λ(s), ∀i
provide the lower bound on U∗. Thus, the duality gap must
be less than the difference between the utilities obtained by
xi,λ,∗(si), ∀i and x̂i,λ(s), ∀i.
The simulation settings are the same as in Section VII.A.

We consider two scenarios in which the users experience
average channel conditions of 22dB and 28dB, respectively.
The upper and lower bounds of the received video qualities
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for the users are illustrated in Figures 7 and 8. It shows that,
when the average channel condition is 22 dB, the difference
between the upper bound and the lower bound is 0.5dB, 0.9dB
and 1.3 dB for the three users, respectively. While the average
channel condition is increased to 28dB, the difference becomes
0.3dB, 0.7dB and 0.7dB, respectively. These simulation re-
sults show that, when the channel conditions improve, the
difference between the upper and lower bounds decreases.
This is because, when the channel conditions improve (or
the available resource is more plentiful), the stage resource
constraints become loose and the dual decomposition proposed
in Section V provides a more accurate approximation on the
optimal utility.

C. Online learning

In this section, we will verify the convergence rate of our
proposed online learning algorithm and corresponding impact
on the video transmission. We also compare our algorithm
to the conventional online learning algorithm [16], which is
often used to improve the wireless transmission strategies with
unknown dynamics [22]. We consider three wireless users
streaming video sequences as in Section A. Different from
the settings in Subsection A, we assume that all the users
initially do not have any statistical information about the
channel conditions and incoming data, thereby not knowing
the state transitions. Using the proposed online learning, the
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wireless users keep improving their own resource acquisition
policy. The resource price is updated every 2 time slots. Figure
9 shows the average reward received by each user deployed
with the proposed online learning and the standard online
learning, separately. From this figure, we notice that, compared
to the conventional learning algorithm, our proposed method
can significantly increase the learning curve (i.e. significantly
increasing the average reward). Figure 10 shows the received
video quality (in terms of PSNR) of each user over time
when using these two learning algorithms. This result further
confirms that our proposed learning algorithm can improve
the video quality of all the users over time. On average, our
proposed algorithm improves the video quality of User 1 by
0.9 dB, User 2 by 1.2 dB and User 3 by 1.4dB in terms of
PSNR. This improvement is due to the fact that our proposed
approach can update the policy at multiple states during one
time slot and hence, exhibits a fast convergence rate.

VIII. CONCLUSION

In this paper, we systematically formulate the dynamic
multi-user video transmission as an MUMDP problem in
order to account for the heterogeneous video traffic charac-
teristics and dynamic wireless network conditions. This MDP
formulation allows the wireless users to make foresighted
decisions in order to maximize the long-term video quality
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instead of the immediate reward, which is essential for video
applications. The proposed distributed dynamic optimization
approach using Lagrangian relaxation with an uniform re-
source price allows each wireless user to maximize its own
video quality given the resource price. To deal with the
unknown video characteristics and channel conditions, and
to reduce the computation complexity for each user, a novel
online reinforcement learning algorithm has been developed,
which allows wireless users to update their transmission policy
in multiple states during one time slot, thereby significantly
accelerating the learning speed and improving the received
video quality.

APPENDIX A
PROOF OF LEMMA 1

Proof : To prove the concavity of H(s, λ, x), we only need
to show that the optimal mixed packet scheduling policy
always schedules the packet with the highest marginal utility
(i.e. the immediate utility minus the future utility if the packet
is delayed for transmission, which is computed as in [23]).
First, we note that the optimal mixed packet scheduling policy
will always schedules the packet which has no parent packets
or whose parent packets have been transmitted. This is because
scheduling this packet will lead to successful decoding at the
receiver side. If j′ ≺ j, then qj′ > qj . When both DUs j′ and j
are available for transmission, the optimal packet scheduling
policy transmits DU j′ first due to this dependency, which
automatically leads to a higher net utility contribution. If DUs
j′ and j do not depend on each other, the optimal mixed packet
scheduling policy will choose the DU with the higher marginal
utility for transmission. The utility function is the summation
of the marginal utility of the transmitted packets. Hence, the
optimal mixed packet scheduling policy gives a concave non-
decreasing utility functionH(s, λ, x) at state s. The properties
of optimal packet scheduling policy are described in detail in
[23].

APPENDIX B
PROOF OF PROPOSITION 2

Sketch of proof : To prove the zero duality gap, we only need
to show that the primary MUMDP is a convex optimization
with the resource allocation variable x under the mixed packet
scheduling policy. We first notice that the constraint on the
variable x is convex. To prove the concavity of the objective
function, we can use the backward induction. We note that
the optimal mixed packet scheduling policy always transmits
first the packet with higher marginal utility as shown in [23].
Then, at each stage t, given the state value function Ut+1(s)
computed at stage t+1 with initial value being 0, the utility at
each state is non-decreasing and concave which is computed
as follows.

Ht(s,x) = max
yi∈Pi(si,xi),i=1,··· ,M[

M∑
i=1

ui(si,yi, xi) + α
∑
s′

M∏
i=1

p(si′|si,yi, xi)Ut+1(s′)

]
, ∀s.

This is because that the utility function is the summation of
the marginal utility of all the transmitted packets.

APPENDIX C
PROOF OF PROPOSITION 3

Proof : From Proposition 2, we know that there is no duality
gap between MUP/SRC and MUD/PSRP. We can further show
that there is also no duality gap between MUP/ARC and
MUD/URP). We also note the fact that the feasible resource
allocations in MUP/SRC is a subset of the feasible allocations
in MUP/ARC as shown in Eq. (11). Hence, the optimal value
given by MUP/SRC is not greater than the one obtained by
MUP/ARC, which proves the statement in proposition 3.

APPENDIX D
PROOF OF THEOREM 4

Proof : We prove this by induction.
We define

U0(s, λ) = max
yi∈Pi(si,xi),xi≥0

M∑
i=1

[
ui(si,yi, xi) − λxi +

1
M

λ

]
.

It is easy to verify that U0(s, λ) =
∑M

i=1 U i
0(s

i, λ) with

U i
0(s

i, λ) = max
yi∈Pi(si,xi),xi≥0

[
ui(si,yi, xi) − λxi +

1
M

λ

]

Similarly we have U1(s, λ) =
∑M

i=1 U i
1(s

i, λ) with

U i
1(s

i, λ) = max
yi∈Pi(si,xi),xi≥0[

ui(si,yi, xi)−λxi +
1
M

λ+α
∑
si′

p(si′|si,yi, xi)U i
0(s

i′, λ)

]

Recursively, we have

U(s, λ) = lim
n→∞

Un(s, λ) = lim
n→∞

M∑
i=1

U i
n(si, λ) =

M∑
i=1

U i(si, λ).

where

U i(si, λ) =
∑

yi∈Pi(si,xi),xi≥0[
ui(si,yi, xi)−λxi +

1
M

λ+α
∑
si′

p(si′|si,yi, xi)U i(si′, λ)

]

APPENDIX E
PROOF OF PROPOSITION 5

Proof : For each given λ, suppose that xi,∗(si, λ) and
yi,∗(si, λ), i = 1, cdots, M maximize the dual Bellman’s
equations in Eq. (13) and hence, maximize the objective in
Eq. (10). Denote the state transition probability matrix of
user i under the actions of xi,∗(si, λ) and yi,∗(si, λ) by
P i. P i

si is the row vector corresponding to the state si. Let

Uλ′,∗
i = [Uλ′,∗

i (si)]si∈S being the column vector. Then, we



320 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 3, APRIL 2010

have

Uλ′,∗(s) =
M∑
i=1

max
yi∈Pi(si,xi),xi≥0{[

ui(si,yi, xi) − λ′xi + λ′ 1
M

]

+ α
∑
si′

p(si′|si,yi, xi)Uλ′,∗
i (si′)

}

≥
M∑
i=1

{
Ũ i

0(s
i, λ)+(λ − λ′)(xi(si, λ) − 1

M
)+αP i

siUi,λ′,∗
}

,

Where

Ũ i
0(s

i, λ) =
M∑
i=1

[
ui(si,yi(si, λ), xi(si, λ))−λxi(si, λ)+λ

1
M

]
.

Recursively applying this inequality into U i,λ′,∗(si′), we fur-
ther have

Uλ′,∗(s) ≥
M∑
i=1{{

Ũ i
0(si, λ) + αP i

siŨi
0 + (λ − λ′)[

xi(si, λ) − 1
M + αP i

si(xi − 1
M )
]
+ α2P i

siP iUi,λ′,∗

}}
.

Finally, we have

Uλ′,∗(s) ≥ Uλ,∗(s)+

(λ − λ′)

(
M∑
i=1

eT
si(I − P i)−1xi(λ) − 1

1 − α

)

where esi is a vector with the si component being 1 and others
being zero. Hence, the subgradient with respect to λs′ is given
by (

M∑
i=1

eT
si(I − P i)−1xi(λ) − 1

1 − α

)
.
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