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Abstract —In this paper, we study the problem of multi-user
channel selection in  multi-channel wireless networks.
Specifically, we study the case in which the autonomous users
deploy delay-sensitive applications. Existing centralized
approaches result in efficient allocations, but require intensive
message exchanges among the users (i.e. they are not
informationally efficient). Current distributed approaches do
not require any message exchange for collaboration, but they
often result in inefficient allocations, because users only
respond to their experienced contention in the network.
Alternatively, in this paper we study a distributed channe
selection approach, which does not require any message
exchanges, and which leads to a system-wise Pareto optimal
solution by enabling a foresighted user to predict the
implications (based on their beliefs) of their channel selection
on their expected future delays and thereby, foresightedly
influence the resulting multi-user interaction. We model the
multi-user interaction as a channel selection game and show
how userscan play an ¢ -consistent conjectural equilibrium by
building near-accurate beliefs and competing for the
remaining capacities of the channels. We analytically show
that when the system has the foresighted user, this self-
interested leader can deploy a linear belief function in each
channel and manipulates the equilibrium to approach the
Stackelberg equilibrium. Alternatively, when the leader is
altruistic, the system will converge to the system-wise Pareto
optimal solution. We propose a low-complexity learning
method based on linear regression for the foresighted user to
learn its belief functions.

Keywords: autonomous channel selection; foresighted
decision making; conjectural equilibrium; distributed resource
management; informationally efficient resource management.

l. INTRODUCTION

In this paper, we provide an autonomous channekmulti-channel

selection method for multi-channel MAC protocolsatth

[27]) and efficiently minimize their expected futudelays
in a foresighted manner. We investigate the perémoa of
the resultinge -consistent conjectural equilibrium obtained
when these users interact based on their conjecalieut
the future remaining capacities when selecting ohbmn
The proposeds -consistent conjectural equilibrium is a
relaxed version of the conventional conjecturalildgium
[18], which allows us to characterize the equililni
obtained when network users are able to build aeawrate
conjectures.

A. Related work

The channel selection problem was first studied in
cellular networks. Various channel assignment s&sem
have been proposed (see e.g. [5] for an excelleney).
However, most of these channel assignment schenees a
based on centralized solutions, which do not staléhe
network size and/or are not suitable for wirelestmorks
without a fixed infrastructure, such as ad hoc lesse
networks. Moreover, centralized approaches arecedfpe
not desirable for delay-sensitive applications assidered
in this paper. The reason is that these centrakodations
require propagating control messages back and tforth
network coordinator, thereby incurring delays thia often
unacceptable for delay-sensitive applications [9].

To cope with these challenges, distributed channel
selection schemes without a network manager hase al
been proposed in various types of wireless netwalsh
as wireless ad hoc networks [1]-[3], wireless mestworks
[4], and cognitive radio networks [6]-[9], etc. Fmstance,
in wireless ad hoc networks, Nasipuri et al. [1pgosed a
carrier sense multiple access (CSMA)
protocol that identifies the set of idle channetsl @elects

aims to minimize the delays of delay-sensitive siser the best channel for transmission based on the nethan

transmitting their packets through a multi-chanwekless
network. Since the delay of a user is impacted ty t
channel selection strategies of the other netwsetgy it is
important that users consider the impact of théseraisers
while determining their own channel selection stggt We
model the multi-user interaction as a channel selegame
played by users who are capable of making conjestur
about how their transmission actions (i.e. theiarutel
selection) will impact other users and eventualiypact
their future performance. Specifically, we endow tisers
with the ability to build beliefs about the aggregeesponse
of the other users to their actions (the aggregegponse in
this paper is the remaining capacity in each chiaihia¢ can

be measured based on the throughput estimationocheth

condition observed at the transmitter side. Jairalef2]
assumed a separate control channel and proposed an
alternate multi-channel CSMA protocol that seldhts best
channel based on the channel condition observetheat
receiver side. So and Vaidya [3] proposed a saiutfat
allows users to perform request-to-send (RTS)/dieaend
(CTS) negotiation without a separate control channe
However, these solutions are myopic, because tleesus
only adapt to their latest network measurement. (iellg
channel set, channel condition). These solutions loca
inefficient, since the users only react to thedat®ntention
measurements experienced in the different wireless
channels.

In emerging cognitive radio networks, a key chajkeis



how the secondary users can select their transmissi benefits resulting from their voluntary collabooati with
channels in order to optimize their performanceerthand the other users. We investigate in this paper théi-mser
Cao [7] provided five rule-based spectrum managémencommunication scenarios under which a system-wise
schemes where users measure local interferencerqmtt optimal solution can be reached by the autonomesassu
and act independently according to the prescrilnesr J. B. Contribut d ati f1h
Huang et al. [8] proposed a spectrum sharing scheineze . ontribu |on§ and organization ot the paper )
users can select multiple channels to transmit gtac&nd This paper considers how autonomous users canntiins
exchange interference prices for each channel. eThesdelay'SenSitiVe traffic over the same multi-channekless
distributed schemes assume that users cooperateénto ~ Network. The autonomous users will dynamically cietbe
efficiently coordinate their channel selection wtgies. channels in which they should send their traffic an
However, as discussed in e.g. [13], users can demid distributed and strategic manner, by estimatingirthe
deviate from the rules prescribed by the MAC protsms  €xpected utilities from taking various transmissastions
long as they derive a higher utility when deviatiipat is, ~Pased on their available conjectures about the
users in the network may not have incentives tqpecate ~ COmmunication system.
and maximize a network/system performance, bectnise ~ We are able to analytically show that when the esyst
would not maximize their own utilities. Non-coopgve ~ has a foresighted user, this user can deploy arlibelief
games were proposed to characterize and analyze tHenction to model the aggregate response of theratsers.
performance of self-interested users interactingifferent ~ In [17], a foresighted user is assumed to modeintiaeket
communication systems. For example, Lee et al. [22pprice also as a linear function of its desired dedna
showed that the current back-off based MAC prowaain ~ However, we note that using the linear model isefyur
be modeled as a non-cooperative channel access gamme heuristic in [17]. In this paper, we will show thstich a
distributed channel selection problem was studigd b linear belief function is able to capture the sfedaitructure
Fe|egyhazi et al. [12], who showed that users m]‘tm‘us|y of the COQSIdered mu|.tl—userllnt.eraCtI0n. We shbat tvhen
selecting channels in non-cooperative multi-channelthe foresighted user is altruistic (e.g. whenetexcts as a
wireless networks converge to the Nash Equilibrigng). ~ network leader), it can drive the system to theesyswise
However, it is well-known that the NE can oftenfareto- ~ Pareto optimal solution by modeling the reactiofisthe
inefficient. For instance, it is possible that somiethe  Other myopic users. Alternatively, if the foresigtituser is
selfish users will improve their performance at st of ~ Self-interested, we show that this user will beniielf at
degrading the system-wide performance. To optintiee  the expense of (some of) the myopic users incredskeys.
multi-user system utility, a Network Utility Maxirmation The paper is organized as follows. Section Il dises the
(NUM) framework has been introduced in [21]. It HEeen considered wireless network model and formulates th
shown that by allowing users to exchange messahes, foresighteo_l channel sglection problem as a gamSeMion
can determine a wireless channel access strategy th!ll, we define the conjecture-based channel selactiame
reaches a Pareto-efficient solution in a distriduteanner. ~ for the foresighted users and theconsistent conjectural
Similar concepts have been proposed in [11] foriisted ~ €quilibrium of the game. In Section IV, we inveatig the
channel Se'ection, where pricing has been dep'o‘ymder case when there is Only one fOI‘eSIghted user iméteork.
to enable users to maximize the system throughpua i \We provide a learning algorithm for the foresightesér to
distributed manner. To determine the resource priceupdate its belief. The numerical results are shmw®ection
message exchanges among users are necessary. Howewéand Section VI concludes the paper.
such message exchanges among users can be undesirab
due to their increased computational and commuipicat Il PROBLEM FORMULATION FORFORESIGHTED
overhead, or simply due to security issues, prdtoco CHANNEL SELECTION
limitations, etc. Moreover, the incentives for thsers to )
add a penalty term in their utility functions inder to A Channel selection game model
collaborate with each other are not addressedrrdiwely, We assume that there aié¢ autonomous users sharing
a distributed channel access scheme using simpldona the same  multi-channel  wireless network. Let
access algorithms without message exchanges wa¥ = {v,,i = 1,..., M} represent the set of these users. User
discusseo_l in [23]. Howev_er, this solution can adhieve a v; is composed by a source-destination pair, i.e.
near optimal system-wise throughput if there are no s 4 .
message exchanges among the participating users. v = (v/,v]") . We assume that there ale non-overlapping
In this paper, we develop an autonomous channethannels for these users to transmit their delagitee
selection scheme for multi-channel wireless netwarking ~ applications. Letr = {r;,j = 1,..., N} represents the set of
conjecture-based channel selection game. We shaivit tis all these non-overlapping frequency channels.
possible for users to achieve a system-wise optimiaition
without the need for message exchanges when users a We assume that each user wants to serve an
able to make foresighted decisions based on thgird  application with traffic ratez; (bps). Each frequency
expected utilities. Their foresighted interactionsoa
provides them the necessary incentives to collabpra
because they can now determine their own perforeanc



channelr; has a capacityV; ! (bps). In this paper, we

assume an unsaturated network condition, in whiehtatal
capacity is more than the total traffic rate of theers, i.e.

e U is the utility set of the system, where
U = {Uy,...,Uy} . We denote the utility of a usef as

U;(o), which is a function of all the users’ actions.

N M . .
Zj:lw/j > ;. Each wireless channel access can As in [16], we assume that each user deploys an

then be modeled as a queue [16].
condition can ensure that a user can always find a
unsaturated channel to transmit its traffic, andcee the
queuing delays can be bounded. The network queuin
model is illustrated in Figure 1. For each wirelehannel,
the maximum channel service rate i§;, =W, /L

(packets/second), wherg is the average packet length.

When more users access the same channel, the thanne

service rate reduces due to the contention. Theltirgg
service rate is measured by userwhen accessing channel

r; and it is referred to the remaining capadity in this

paper. This is regarded as the local informatiomsxr v, ,

e.g. the throughput estimation method proposed2ifi, [
based on which it makes its channel selection @gtis

We denote the probability of user to select the channel
r; as the actiony; € [0,1]. Leta; = [a;,...,a;v] € [0,1]Y
be the channel selection probability distributidruser v, ,
where ZL% = 1. The traffic rate from usew; through

the channelr; is denoted as\; (packet/second), where

\j = za; /L and Z;V:l/\ij =u;/L , and we denote

ij
o, = [N\;,Vr;] € A; as the traffic distribution of user, ,
and o_; as the traffic distribution for the other usersept

v; (o = [o;,0_;]). The total traffic rate on the channel

is denoted as\; and \; = Zfil)‘ij .

¢ Channels

{ Sources CI1T+-® — { Destinations|
~@ !
Wy @+ @
@t . ®
w, @
| CI-m IR

Fig. 1 Considered queuing model for multi-user ctehn
acces.

Definition 1: Channel selection gamé&Ve consider the
channel selection game by the following tupé, A, U) .

e A is the action space of
A=A, x...x Ay . The action of user; is defined as

the traffic distributiono; = [\;,Vr;] € A; .

! For simplicity, we assume that each virtual quéwzs the same
capacity for every user. However, the analysis ioiexV in this paper can
be generalized to the case when each virtual qoaselifferent capacities
for different users by adopting a more sophistitapgeuing model.

Such unsaturater% at the delay through each frequency channel can b

the system, where

plication generating a Poisson packet arrival.as&ime

modeled using an M/M/1 queuing model. The expected

8elay through the channe] can then be expressed as:

1
— if C; >\
ED;)=1C; = A T 1)
oo, otherwise
The delay of usev; is defined as:
N L XN A
Ui g;,,0_;) = G7ED1 = — +,(2)

where C;;(o_;) is the measured remaining capacity (an

aggregate response of the other users’ channetiselefor
a specific usemw; using channel; . Since in a wireless

channel E[D;;] = E[D;], following equation (1) and (2),
we haveCy(o_;) = C; —> A °. Note that in the

considered network, there is no information excleang
among the users. We assume that if usechanges its
traffic A\; in channelr;, another usew; can measure

the resulting changes in the remaining capacitgh@nnel
r, as Cpj(aNy) = Ch; —aN; , where Cf; is the
remaining capacity when); = 0.

B. Achieving Pareto-optimal in a collaborative setting

To achieve Pareto efficient solutions, all the sser
collaboratively optimize the same “system welfare’g.
they minimize the weighted summation of users'itigs,

ie. Ulo) = Zj\ilwiUi(U) , where w; represents the
weighting parameters.

Definition 2: Pareto boundary Given different users’
weights w = [w;,i = 1,.... M | w; > O,Zilwi =1], the

Pareto boundary is formed by the solutions of tileing
multi-user multi-channel selection problem:

P _ . M
ol (w) = argmin} -~ (o)

s.t. ZN

j=1
In order to perform the above optimization, thersseeeds

- ©)
AU = T; /L, for V’Uj

to collect  the global network information
Z, = [{C;,Vri} Az, Vv },{w;,Yv;}] . Specifically, in this
paper, we define the system-wise utility as

ZWe assume that this remaining capacity can be uneésby user;

based on the throughput estimation method as if. [Pfis value is
analytically true when the M/M/1 queuing model ack channel is valid.

3



M N M
Ufai'r'(o.) _ Z TT7. _ Z ZL IAU .

i=1 =1C; —2,71 Aj
Little's formula [26], this utility represents thetal queue
size of theseV M/M/1 queues for theV channels.

Based on

Definition 3: System-wise Pareto optimal solutiohhe
system-wise Pareto optimal solution is then defiagd

P

_ : Ufair
o arg min (o)

s.t. Zj\;l

The system-wise Pareto optimal solution is on theet®
boundary where the users’ weights are proportitmaghe
traffic rates of the users. However, such collateea
approach may be undesirable in many settings dubeto
high message overhead required for exchangingaheat
information. Hence, we consider a non-collaborasigting,
where there is no message exchange among the users.

- 4)
N; = z; [ L, for Vv,

C. Nash equilibrium in a non-collaborative setting

In a non-collaborative setting, the goal of useris to
minimize its own delay over all possible wirelesgenels
that it chooses. Note that without message exchangee
non-collaborative setting, the traffic distributiohthe other
userso_; is not be observable for user, but v; can

measure the aggregate resporsg(o_;) . To perform
equation (5), user; needs to observe the local information
Z; = [{C};,¥1;},{C;,¥r;},2;} . Based on it, the following
best response is adopted by every user in the netwo

mi(Zi) = argminUj(o;, Z;)

. 5
s.t. Z?;)‘U =uz; /L ©

Note that {C},Vr;} and z; is time-invariant, and
{Cy, To reach the NE,
repeatedly measure the remaining capacif@g, Vr;} and

interact with each other using the best responsguation
(5). Specifically, usew; will update its traffic rate om; as:

Vr;} s time-variant. users

t—1
CU

>, O
(7)

However, the resulting NE is Pareto inefficient][18ence,
in this paper, we investigate how to improve thigceincy
of the multi-user interaction to achieve the systgise
Pareto optimal solution in a non-collaborative nemwWe
endow users with the ability to build belief fumets
B,(a;) on the remaining capacitigs;; (instead of using
the latest measurement) for userto take into account the
impact of o; on C; . We refer to this approach as

foresighted decision making because it enablessuser
predict how their channel selection will impact dhecision

of the other users and thereby, impact the futamsaining

capacities. Next, we discuss this distributed figtesd

resource management approach.

N = min{0,C5" — a;(CHHR} oy =

D. Foresighted decision making for delay-sensitivasise
By adopting a belief functioB,(o;), the distributed
optimization in equation (5) is formulated as

w/(B,.Z, ) = argminU, (o, B,(c),

677
N

where B,(o;) represents the conjecture (belief) of usgr
on the expected remaining capacity over each fregue

L)
. (8)
=uz;/L

where m; represents the policy for channel selection. Thechannel when the traffic distributiom; is taken. This belief

solution to the problem in equation (5) will leada unique
NE, as proven in [14] for a network routing sceoari
similar to the considered channel selection setfaged on
[14], the optimal channel selection probability faser v;

to transmit in channet; can be expressed as

a;; = )\Z;L/xi, and/\Z} = max{0,C;; — o;R;},

where R; = ZW}EQL Cy —z; /L represents the overall

remaining capacity after user sends its trafficz; , €
represents the set of channels for whigh> 0, and

o o= NG
1]
ZT/GQL\/CU

terms of minimizingU; ), based on whiclR; is allocated to

represents the optimal fraction (in

channelr;. The difference between the measured remaining m

capacityC;; and o R; is the optlmal)\q for userv; to put
on T’j .

is built based on the measurement history

of ={(\; 0",k =1,...,8,7 =1,..,N}, whereS§ is

the observation window size. In Figure 2, we previ
block diagram to highlight the main differencesvien the
myopic channel selection approaches and the prdpose
foresighted channel selection.

@ ()

: User U;
Latest ];
Meas_uremenl
_ history Network

Learn and

Delay determine
minimization belief

VB,

o
Delay 2
minimization

Fig. 2 Block diagram of the (a) myopic channel sétm and
(b) foresighted channel selection.

CONJECTUREBASED CHANNEL SELECTION GAME AND
THE CONJECTURALEQUILIBRIUM

In a network, there are users who adopt the myopic

4



channel selection or adopt the foresighted chaselektion.
We formalize the multi-user interaction in a mukiannel
network using the following repeated game.

Definition 4: Conjecture-based channel selectiomgaWe
consider the conjecture-based channel selectiore gesma
stage game represented by the following tyfeA, s, U) .

e V is the set of players (users), and we assumetibed
are two types of users in the network: a set cédighted

users inVY and a set of myopic users M , i.e.
vV = {VvIi v1},

A is the action space of the system, where
A=A, x...x Ay, . The action of user; is defined as
the traffic distributiono; = [\;,Vr;] € A, .

S =8 XS X ... X Sy . The conjectureof userwv; is

& is the conjecture space of all the users, i.e.

selection game Following the definition in [17], the
conjectural equilibrium (CE) is defined as < A, if for
each userv; € V , the following two conditions are
satisfied:

(a) The expected remaining capacities at the dwjiith are
the actual remaining capacities, i®;(a;) = Cj;(a),Vr;.

(b) The action at the equilibriume; minimizes

The belief functionB!(a!) may not be perfectly

estimated at the equilibrium in practice. Howeweruser
can still keep selecting the same action with irfgabelief
estimation, as long as that action consistentlyimizes the
expected utility. For this, we define an extensionthe
well-known CE, where users’ actions converge to the
equilibrium based on their “imperfect” beliefs.

defined as its belief about the expected remainingDefinition 6: ¢ -consistent conjectural equilibrium of the

capacities B, = [C*jj()\ij),wj] € S; . We will discuss
how to construct the functio@';()\;) in Section IV. B.

This function models the remaining capacities fegrw; .

Such models implicitly provide the user with an
aggregate belief regarding the coupling of its aito
that of the other users.
e U is a delay
U = [U(04,B;),Yv;].
The stage game is played repeatedly by the uséhsthe
following two types of belief updating methods:
a) Myopic users’A myopic userv; will update its belief
function usingB} = [C};!,Vr;] in the repeated game. As a

vector of the users, i.e.

result, usery; will select its new actiorr! based on the
latest measurements obtained about the remainraritees,
using the myopic best response in equation (7).
b) Foresighted usersA foresighted usep; will update its
belief function using Bl(o!) = [C}(\;),¥r;] in the
repeated game and select its new actidrusing equation
(8). We will discuss how to learn the belief fuocti
CL(\;) in Section IV.

It is easy to verify that the game has a uniqueiiNgl
the users are myopic, i.EV” | = 0. Note that the actual
(real) remaining capaciti€’;;(o),j = 1,...,N] depend on

o . However, userwv; 's conjecture is the expected

remaining capacities on the various chanr(éﬁaﬁ given

only o, . Based on these conjectures, we can define th
concept of a Conjectural Equilibrium (CE) for the

channel selection gameThe ¢ -consistent conjectural
equilibrium (¢ -CE) is defined agr" € A, if for each user
v; € V, the following two conditions are satisfied:

(a) The expected remaining capacities at the dmjiitn
approximate the actual remaining capacities, i.e.

(Ci(al) = Ci(a")) <. 9)

(b) The action at the equilibriurx; minimizes its expected
delay U;(o;,B; (o))

Note that as the CEK -CE may not exist and, even if it
exists, it may not be a unique equilibrium [17].Xyewe
will discuss how a user should build its conject(lvelief)
that leads to thee -CE and compare the resulting
performance with the system-wise Pareto optimalitgni

in various scenarios. In Section 1V, we investigdie case

when the system has only one foresighted {i¥ér| = 1.

*

C;

max max
vy €V ;€4

IV. AUTONOMOUSCHANNEL SELECTIONWHEN THERE IS
A FORESIGHTEDUSER
A. Belief function

In this subsection, we assume that ugers foresighted

and the other users are myopic in the conjectuseda
channel selection game. We then discuss how totremns

the belief function B,(o,) = [Cy(0),5 = L,...,N] in
equation (8). Given the traffic distribution of thserv, ,

the channel selection game of the other myopicsusdi
reach NE. Note that when user puts more traffica);

éto channelr;, the lower remaining capacity; ; will be
measured by the other users, which leads to anbitBer

considered channel selection game. The CE was first

discussed by Hahn in the context of a market mf®jl A
general multi-agent framework is proposed in [I/tudy

Proposition 1: Linearity of the belief function tihe case of
one foresighted user. The belief function

the existence of and the convergence to CE in rharkeB,(oy) = [C};()\;),Vr;] can be approximately modeled as

interactions.

Definition 5: Conjectural equilibrium of the charne

a linear belief function when there is only oneefighted
user in the wireless network.



Proof: From equation (6), the

Cij(aN;) = Cj — Z Ainj(AN;) can be expressed as:

e

Cij(aNj)=C; = > (Coj(aN;) —

v eV

ooy, +ZA/\1J+ >«

v eVY v eVY veVY

constant

i'j (A)\lj

Note that the last term can be written as followsa the
Taylor expansion:

(AN )Ry = Zj,z].\/ij:'j(fi}gm(Mu) i |
=~ i SRy + djﬁf)mu&. + ‘M(AAU P R+ ...
wherea =) oo iNCir = JCP, . The magnitude of

the second order term is bounded as follows:
d;;lgif?)(w )R] = %[Qb(ai b? " (a +1 by ](M“ ) R
~ ia +ab)2b3 (A)\U )2 R, < —Rﬂij;;u )Z

In our network settings, since the value @f in the
denominator is much larger than the value f in the
nominator, it can be shown that all the higher otdems of

remaining capacity method for the foresighted user to learn these parameters

By =18,

ﬁw ] based on the measurement histafy

B. Linear regression learning to model the belief fime

The foresighted usemw; repeatedly updates its belief
function C;;(\;) = B + B, at every time sidt In

this paper, we make the foresighted user update the
parameters 8!, = [8", 5] € & using the following
update rule:

- p)B + Pz,ézj (o)
p; is the learning rate, which determines how rapallyser
is willing to change its belief on the remainingpaaities.
By(05) = 3, 3] will be estimated based on the linear

regression from the sampl®§ whereou represents the

latest S measured remaining capacities and input traffic
pairs for a certain channel Fo(ie.

in 0;
{(CL" A7),k =1,...,8} ). For this, we can adopt

standard least square error linear regression [T9).
estimate the error due to deploying a linear modehote

ef*k(Bij,of’]-) as the residual error of the linear regression at
time slott — k. The mean residual error is then defined as

ﬂu? 7] Z e ﬂu? 7]

Proposition 2: Reaching the - CE using the linear

ﬁf] = arg min || By
A Bij €5, || (11)
where ﬁ‘/ = (1

a;;(AN;)R; can be negligible and only the linear terms regression_learningWhen there is only one foresighted

are significant. u

Based on this, we define the linear belief functfon the
foresighted users.

Definition 7: Linear belief function for the forggited user

user, the linear regression learning results inCE of the
conjecture-based  channel  selection  game

€< mﬁx{g(,ézjﬂfj)}-
J

with

Proof: The foresighted user can determine an optimal

The linear belief function on the remaining cagasitof a

action based on the linear belief function using linear

foresighted usemw; can be expressed by a two-parameterregression learning method. Given the optimal actibthe

linear function:

Cyyy) = (10)

where 8;; = [ﬁ£70>,ﬁ£7-1)] € B, andz, represents a finite set

of  positive  parameters  with 0 < ﬁ}ﬁ <1l

0 < By < ¢, .The condiiono < 5 <1 implies that
when the foresighted user increases the traffia iha
transmits through a certain channel, the other myopic

users will avoid using the same channel and mowedr th
traffic to other channels. This increases the etguec

remaining Capacityf’ﬁ for the foresighted user; . In the
next subsection, we provide a reinforcement leanin

foresighted user, the other myopic users will rethetir NE
equilibrium. If ¢ is selected as the worst case mean residual

error, i.e. e < maX{E(Bjj,ofj)} , the two conditions in
7
Definition 5 are satisfied. Hence, such equilibriwill be
thee-CE. ®
In the simulation section, we also verify that theean
residual error for the belief function linearizatiés indeed
2
, ~ Ry (AN
very small, i.e.e(3;,0};) < Z 7(—5”)
vy eVM 4ab

there is only one foresighted user in the network.

~ 0, when

3 Different time scale can be applied for the fayaséd users to make
sure that the measured remaining capacities arstttide results of the
other myopic users played in the game.

6



Next, we discuss in more detail the-CE in two
different cases: when the foresighted user is iattcuand
when the foresighted user is self-interested.

C. Altrustic foresighted user

An altruistic foresighted user is usually the leade a
clustered network [6], e.g. the access point inEED2.11
network, or the routing leader in a hierarchical lzatc
network [10]. An altruistic foresighted user wilave an
objective function that is aligned with the systejoal,
U/* () . As the foresighted uses, 's belief ézi(AiJ)
reflects the aggregate traffic distribution of #lle other
userszv N o U fair (&) can be rewritten as:

Then, the altruistic foresighted user, performs the
following optimization:

migig{l}ize Ul (a;,B,(0;))

N

while the rest of the myopic users adopt equatin Note
that only the system-wise Pareto optimal solutiontbe

(13)

Pareto boundary can be approached by the altruistic

where(2; represents a set of channels whage> 0.

Proof: Since the foresighted user can access all thenets,
the foresighted user’s action can directly influeradl the
other myopic users in the network. Since the fgtesid

user will approximate(:‘ij(kﬁ) to the actual remaining
capacities to satisfy equation (9) at the CE o7}, the
worst caseCj;(a;) > Cy(on;) —¢' (' =€) can be

considered to bound th€AP(c?,,0”). The worst case

gap is bounded by

C.+\:—Ci +¢' Ci+ X\, —C

GAP(ofof) < St —Cite Bt Oy
1, €Q CU - )\Lj —¢' r,€Q CU - )\ij

small ¢ , the first term of the right hand side can be
simplified as
Z KU + E'
€ J7] —¢'
will

-~y Ry
S JU €
be

K"’j——kj"’je' and the gap
(/i)
bounded
(oF

-y

(0N

by

K. + J.

GAP(ofy, ") < o' Y 200
()

r €Q;

In other words, the foresighted user is able toeds;, to

the system-wise Pareto optimal solution for an teahj

small ¢ . Proposition 3 also implies that given the same
N

total capacities, i.ez C; is fixed, the uniform capacities
j=1

foresighted usér. For the other solutions on the Pareto among the frequency channels will result in a mimmgap

boundary, the foresighted user needs to know #ffictirate
x; as well as the weights; of the other users. However,
the foresighted user adopts a linear belief fumcitioSection
IV.B, which provides an imperfect belief by appnmsting
the remaining capacities. There will be a perforoean
penalty (gap) experienced by the foresighted uséwden

from the ¢ - CE to the system-wise Pareto optimal solution.

D. Self-interested foresighted user

Note that reaching the system-wise Pareto optimal
solution will not minimize the delay of the forebtgd user
itself (as will be shown in the Section VI). Thus,self-

the resulting ¢ - CE o,, and the system-wise Pareto interested foresighted user has no incentive tomips the
optimal solutiono” based on the users perfect beliefs, system-wise delay. Importantly, the foresightedrsiseill

which is defined as:

GAP(ayy,a") = UM (ayy) — U (0”). (14)

have to sacrifice its own delay in order to minienithe
system-wise delay. Hence, we now consider the whasn
the foresighted user is self-interested and ontgnds to
minimize its own delay. If the foresighted user sslf-

Proposition 3: Reaching system-wise Pareto optimalinterested, the objective function of the foresighuiser is

solution when only one user is foresight¥dhen there is
only one altruistic foresighted usef in the conjecture-
based channel selection game, the gap betweepghking

¢ - CE o7, and theo” will be bounded by:

C.
GAP(oly,0") < vEY ——— 1 ——

e D)
€ (C@j,alt - A@j,alt )2

“ For the solution of equation (13) to approachdystem-wise Pareto
optimal solution, the ratio of the traffic rate tbe foresighted user and the
total traffic rate is required to be above a certtireshold, which is
discussed in [15]. In the following discussion, agsume that the ratio is
above such threshold.

N L& A

then minimizing U;(o;,B;(0;)) = —»  ——F——
i 5 Cy(Ng) — Ay

Specifically, with the linear belief functions, thself-

interested foresighted usey performs:

N i

B0 4 BN = Ny
s.t. Z;v:l)‘ij =u; /L

The following proposition provides the optimal actifor
the self-interested foresighted user.

minimize Z
g; >0

(16)



Proposition 4: Solution of the self-interested &ighted implies that the performance of the foresightedr wge -
user CE can be as good as the SE when the self-intdreste
. . - .. foresighted user can approximate the future remagini
G~|ven the(o) bel:if of the_ rema|n|nlg capacity capacities. Algorithm 1 provides the channel s@&ect
Ciyn) =B + 87N, with 0<pgY <1 ,  algorithm that will be followed by the self-inteted

(0) _ . . N foresighted user. An illustrative example is giwerrigure 3
0< B S C;, the optimal action _that minimize; for for the solutions introduced in Section IV.C andDuvn 2-
the foresighted user to transmit on channel is user case; is the foresighted user and; is the myopic

ar = NL/ user). Note that the SE° provides a smaller delay
1) )\7,] / 71 .
compared tas” for the foresighted user, at the cost of

increasing the delay of the myopic user. This isabee it
b @) selfishly minimizes its own delay given that it ko the

T €4 reaction of the other user, which is the best thagelf-
- . interested foresighted user can achieve.
where D; = 3\ /(1 - ﬁl(jl)) . The portion i/’ now 9
B B R P0) a0 V. NUMERICAL RESULTS
becomes; /Zueﬂ ki, Where ry = /3 /(1 By ) In this section, we simulate the conjecture-bagethnel
and (); represents the channels whose> 0. selection game in two network settings, which dr@ws in
. Table I. We assume an asymmetric network where the

Proof: See Appendix A. capacities of the channels ar#; =8 Mbps and

While the other users are myopic, the best perfooma Wi =2 Mbps, i =2,...,N . The users have traffic with
from the self-interested foresighted user’'s pemipeds to ~ Poission arrival rates;; = 3.8 Mbps,z; = 0.6 Mbps,
achieve the Stackelberg Equilibrium (S&§ [24]. Note that ¢ = 2,..., M . The average packet lengthis= 1000 bits.
if the foresighted user is able to build a perfegief on the
remaining capacities (i.ec = 0), the resulting conjectural
equilibrium is the same as the SE of the game,esthe
foresighted user knows the exact reactions of tlyepi

users. Hence, we use the SE instead of the system-wise
Pareto optimal solutiow” to benchmark the self-interested : g . ) :
P selection probabilities) until the system reaching NE in

foresighted user. Denoting the solution in PropmsiB as
g g s network setting 1 (the large network). Since channéhas

o » the corresponding performance gap is defined ) larger capacity, more traffic will be distributesdchannel

GAP(U:,,U.,US) =U(o5y) — Ui (). 11 than to the other channels. Using the learninghotet
. . . proposed in Section IV.B, the foresighted user can
Proposition 5: Reaching SE when only one user |sp P g 3%

" " . determine its belief functions on the remaining azfies.
_g_fores! hted - When there IS on!y one self-interested The circles in Figure 5(b) represent the measusathining
foresighted userwv; in the conjecture-based channel

i . capacitiesC}; at different channel selection probabilit
selection game, the gap between the resulingCE and paciliestiy ! onp Ity

A. Single foresighted user scenario

We first simulate the case when there is only one
foresighted user. Usar is assumed to be the foresighted
user, and the rest of the users are myopic usegre-5(a)
shows the evolution of usef’s actiona; (i.e. itschannel

the SE will be bounded by: (the sampleso{ ). The solid line represents the resulting
linear regression. The resulting parameters of lihear
GAP(cr;;lf,ch) < v . 1 . -, (18) belief function are3,; = [0.375,4962]. The residual mean
r,e(ll(cij’sdf - ij,self) square error is 0.051 and the computed bound is
‘ 2
Ry (8N;)

where(); represents a set of channels whage> 0. =~ 10.85, which are in agreement with

v,wEVM 4ab3
Proof: The gap can be shown to be bounded using a similapyoposition 1. Figure 5(c) shows similar resultsiannel
proof as Proposition 3. Note that the fore5|ghmetus NOW 1 Similarly in network setting 2 (the small netwirk
minimizing its own delay instead @f/*" in Proposition 3. Figure 5(d) shows again the evolutionzf in a network.
Hence, theGAP(o7,,0°) is calculated with respect to the The channel selection converges faster in thisngetsince
foresighted usem, ’s delay U; , and the resulting upper the number of users is smaller. The resulting patara of

bound Changes according|y_ the linear belief function ared;; = [0.52,4718] . The
In other words, the foresighted user is able teedthe ¢ - residual mean sq;lare error is 0.012 and the comhtend
CE o7, to the SEc* for an arbitrary smalk . Proposition is R (aN) ~ 434

4 provides the optimal channel selection of thef-sel  v.ev¥ 4ab’
interested foresighted user when applying a linear belief
function as described in equation (10) and Projoosib



TABLE |. CONSIDEREDNETWORK SETTINGS

o

(=]
o

Number o] Number|Total channe )
. . |Total traffic
Network setting | channels| of users| capacities rates (Mbps)
N M (Mbps)
1 (Large network 10 30 26 21.2
2 (Small network 2 8 10 8
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Fig. 5(a)(d) The action of the foresighted userover time, while
participating in the channel selection game.
(b)(c)(e)(f) The actual remaining capacif}; and the estimated

300 0.7 0.8 0.9

Channel access probability a;;

0.1 0.2 0.3 0.4
Channel access probability a;,

linear belief functionélj , 7 =12 [(a)(b)(c) in network setting 1,
(d)(e)(f) in network setting 2].

In order to show clearly the intuition behindeth
foresighted channel selection, we now focus onsimall
network setting. Figure 6 shows the utility domairterms
of delay. The x-axis is the delay of the foresightser and
the Y-axis is the average delay of the myopic usBss
using the belief function, the simulation result®w that
the altruistic foresighted user is able to drive gystem
from the (system) inefficient NE to the system-wizareto
optimal solution (in which the system queue siz€" is
minimized) by using the belief function. If the &sighted
user is selfish, it will drive the system from NESE. Table
Il shows the results at different equilibriums. \Whthe
foresighted user is selfish, it puts more traffictoi the
efficient channelr; and forces the other myopic users to
select the other channel, thereby benefiting its aility.
On the contrary, if the foresighted user is altigjst puts
less traffic into channel; and allows the other users
myopically select the efficient channgl, which will result

in an optimal system performance.

TABLE II. RESULTS ATDIFFERENTEQUILIBRIUMS

Action of |Action of| Average
the the_ ?oerlsgi Orf] ttgdedelay of th{ System

foresighte¢ myopic sgr myopic |Performance
usera;; |usera; u users

NE 0.72 0.97 0.955 ms| 0.848 ms 7.19

SE 0.95 0.78 0.914 mg 0.947 ms 7.45

System-wis¢ ) gq 1 1.011 ms| 0.752 ms|  7.00
optimal

ot
5

10

Stackelberg Equilibrium

5, —

Nash Equilibrium

System-wise Pareto Optimal

Average delay of the myopic users (sec)

0.9 1 11 12 13 14
Delay of the foresighted user (sec)

15
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Fig 6 Reaching the system-wise Pareto optimaltieoiand
the Stackelberg Equilibrium.
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Fig. 7 Delay of the foresighted user at differesuiébrium for
various numbers of myopic users in the network.

o

6 7 8 9
Number of myopic users

Next, we highlight the impact in terms of delay the
foresighted user and the myopic users, when differe
numbers of myopic users are active in the netweidure 7
shows the delay of the foresighted user at differen
equilibriums when there are various numbers of ngop
users in the network. The results show that, amthmber
of myopic users in the network increases, the iaticu
foresighted user will have a higher delay impaattach the
system-wise Pareto optimal solution. Beyond 10 ngop
users, the system-wise Pareto optimal solution @ n
reachable. This situation is also observed in nékwgetting
1 (large network setting). This is because thditraatio of
the foresighted user to the total traffic in thewwark is not
sufficient enough to drive the equilibrium to thestem-
wise Pareto optimal solution (as discussed in [16]) the
contrary, the foresighted user can benefit moreeims of
delay when the number of the myopic users in thevonk
increases.

VI. CONCLUSIONS

In this paper, we study the distributed channetctain
problem in multi-channel wireless networks. Althbuge
use a multi-channel wireless network setting, important
to note that the proposed method can be appliecther
load balancing resource sharing system. We model th
multi-user interaction using a conjecture-basednnbh
selection game where myopic users and foresighsedsu
coexist in the network. In this paper, we show twaen
there is one foresighted user in the network, ger is able
to make an accurate conjecture about the remagapgcity
and drive the CE to a system-wise Pareto optimiitiso
or a SE. We propose an on-line learning procedairghie
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foresighted user to build such an accurate conjecttior
the case when there are multiple foresighted useitding
their own conjectures simultaneously, the sameniegr
procedure may not provide accurate conjecture anymo
[17]. This forms our future research to see howtesys
performance degrades if the foresighted users ddxmaw
the existence of each other and thereby, usingtbgosed
on-line learning procedure. Also, it is interestingsee, if
the foresighted users are able to conjecture tisesce of
each other, whether they can reach the systemfaseto
optimal solution in a non-collaborative manner.

APPENDIXA

Proof of Proposition 4.First, we see that the objective
function is a convex function, given that< ﬁfj.l) <1,

(0)
5 >0
ForVr; € F;, the optimality conditions:

Assume ;. as the Lagrange multiplier.

BY
From the constrainE;V:l/\ij = z;, we have

VT = (32, coDi = @i/ L)/ Y, ks - (20)

By substituting equation (20) into equation (19% have

~ 1

Nij

%]

=Dy —al (3. D; — /L) for \; > 0 casem

r,€Q
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