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Abstract – In this paper, we study the problem of multi-user 
channel selection in multi-channel wireless networks. 
Specifically, we study the case in which the autonomous users 
deploy delay-sensitive applications. Existing centralized 
approaches result in efficient allocations, but require intensive 
message exchanges among the users (i.e. they are not 
informationally efficient). Current distributed approaches do 
not require any message exchange for collaboration, but they 
often result in inefficient allocations, because users only 
respond to their experienced contention in the network. 
Alternatively, in this paper we study a distributed channel 
selection approach, which does not require any message 
exchanges, and which leads to a system-wise Pareto optimal 
solution by enabling a foresighted user to predict the 
implications (based on their beliefs) of their channel selection 
on their expected future delays and thereby, foresightedly 
influence the resulting multi-user interaction. We model the 
multi-user interaction as a channel selection game and show 
how users can play an ε -consistent conjectural equilibrium by 
building near-accurate beliefs and competing for the 
remaining capacities of the channels. We analytically show 
that when the system has the foresighted user, this self-
interested leader can deploy a linear belief function in each 
channel and manipulates the equilibrium to approach the 
Stackelberg equilibrium. Alternatively, when the leader is 
altruistic, the system will converge to the system-wise Pareto 
optimal solution. We propose a low-complexity learning 
method based on linear regression for the foresighted user to 
learn its belief functions.  

Keywords: autonomous channel selection; foresighted 
decision making; conjectural equilibrium; distributed resource 
management; informationally efficient resource management. 

I.  INTRODUCTION  

In this paper, we provide an autonomous channel 
selection method for multi-channel MAC protocols that 
aims to minimize the delays of delay-sensitive users 
transmitting their packets through a multi-channel wireless 
network. Since the delay of a user is impacted by the 
channel selection strategies of the other network users, it is 
important that users consider the impact of these other users 
while determining their own channel selection strategy. We 
model the multi-user interaction as a channel selection game 
played by users who are capable of making conjectures 
about how their transmission actions (i.e. their channel 
selection) will impact other users and eventually impact 
their future performance. Specifically, we endow the users 
with the ability to build beliefs about the aggregate response 
of the other users to their actions (the aggregate response in 
this paper is the remaining capacity in each channel that can 
be measured based on the throughput estimation method 

[27]) and efficiently minimize their expected future delays 
in a foresighted manner. We investigate the performance of 
the resulting ε -consistent conjectural equilibrium obtained 
when these users interact based on their conjectures about 
the future remaining capacities when selecting channels. 
The proposed ε -consistent conjectural equilibrium is a 
relaxed version of the conventional conjectural equilibrium 
[18], which allows us to characterize the equilibrium 
obtained when network users are able to build near-accurate 
conjectures. 

A. Related work 

The channel selection problem was first studied in 
cellular networks. Various channel assignment schemes 
have been proposed (see e.g. [5] for an excellent survey). 
However, most of these channel assignment schemes are 
based on centralized solutions, which do not scale to the 
network size and/or are not suitable for wireless networks 
without a fixed infrastructure, such as ad hoc wireless 
networks. Moreover, centralized approaches are especially 
not desirable for delay-sensitive applications as considered 
in this paper. The reason is that these centralized solutions 
require propagating control messages back and forth to a 
network coordinator, thereby incurring delays that are often 
unacceptable for delay-sensitive applications [9].  

To cope with these challenges, distributed channel 
selection schemes without a network manager have also 
been proposed in various types of wireless networks, such 
as wireless ad hoc networks [1]-[3], wireless mesh networks 
[4], and cognitive radio networks [6]-[9], etc. For instance, 
in wireless ad hoc networks, Nasipuri et al. [1] proposed a 
multi-channel carrier sense multiple access (CSMA) 
protocol that identifies the set of idle channels and selects 
the best channel for transmission based on the channel 
condition observed at the transmitter side. Jain et al. [2] 
assumed a separate control channel and proposed an 
alternate multi-channel CSMA protocol that selects the best 
channel based on the channel condition observed at the 
receiver side. So and Vaidya [3] proposed a solution that 
allows users to perform request-to-send (RTS)/clear-to-send 
(CTS) negotiation without a separate control channel. 
However, these solutions are myopic, because the users 
only adapt to their latest network measurement (e.g. idle 
channel set, channel condition). These solutions can be 
inefficient, since the users only react to the latest contention 
measurements experienced in the different wireless 
channels.  

In emerging cognitive radio networks, a key challenge is 
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how the secondary users can select their transmission 
channels in order to optimize their performance. Zheng and 
Cao [7] provided five rule-based spectrum management 
schemes where users measure local interference patterns 
and act independently according to the prescribed rules. J. 
Huang et al. [8] proposed a spectrum sharing scheme where 
users can select multiple channels to transmit packets and 
exchange interference prices for each channel. These 
distributed schemes assume that users cooperate in order to 
efficiently coordinate their channel selection strategies. 
However, as discussed in e.g. [13], users can decide to 
deviate from the rules prescribed by the MAC protocols as 
long as they derive a higher utility when deviating. That is, 
users in the network may not have incentives to cooperate 
and maximize a network/system performance, because this 
would not maximize their own utilities. Non-cooperative 
games were proposed to characterize and analyze the 
performance of self-interested users interacting in different 
communication systems. For example, Lee et al. [22] 
showed that the current back-off based MAC protocols can 
be modeled as a non-cooperative channel access game. The 
distributed channel selection problem was studied by 
Felegyhazi et al. [12], who showed that users autonomously 
selecting channels in non-cooperative multi-channel 
wireless networks converge to the Nash Equilibrium (NE). 
However, it is well-known that the NE can often be Pareto-
inefficient. For instance, it is possible that some of the 
selfish users will improve their performance at the cost of 
degrading the system-wide performance. To optimize the 
multi-user system utility, a Network Utility Maximization 
(NUM) framework has been introduced in [21]. It has been 
shown that by allowing users to exchange messages, they 
can determine a wireless channel access strategy that 
reaches a Pareto-efficient solution in a distributed manner. 
Similar concepts have been proposed in [11] for distributed 
channel selection, where pricing has been deployed in order 
to enable users to maximize the system throughput in a 
distributed manner. To determine the resource price, 
message exchanges among users are necessary. However, 
such message exchanges among users can be undesirable 
due to their increased computational and communication 
overhead, or simply due to security issues, protocol 
limitations, etc. Moreover, the incentives for the users to 
add a penalty term in their utility functions in order to 
collaborate with each other are not addressed. Alternatively, 
a distributed channel access scheme using simple random 
access algorithms without message exchanges was 
discussed in [23]. However, this solution can only achieve a 
near optimal system-wise throughput if there are no 
message exchanges among the participating users. 

In this paper, we develop an autonomous channel 
selection scheme for multi-channel wireless networks using 
conjecture-based channel selection game. We show that it is 
possible for users to achieve a system-wise optimal solution 
without the need for message exchanges when users are 
able to make foresighted decisions based on their future 
expected utilities. Their foresighted interaction also 
provides them the necessary incentives to collaborate, 
because they can now determine their own performance 

benefits resulting from their voluntary collaboration with 
the other users. We investigate in this paper the multi-user 
communication scenarios under which a system-wise 
optimal solution can be reached by the autonomous users. 

B. Contributions and organization of the paper 

This paper considers how autonomous users can transmit 
delay-sensitive traffic over the same multi-channel wireless 
network. The autonomous users will dynamically select the 
channels in which they should send their traffic in a 
distributed and strategic manner, by estimating their 
expected utilities from taking various transmission actions 
based on their available conjectures about the 
communication system.  

We are able to analytically show that when the system 
has a foresighted user, this user can deploy a linear belief 
function to model the aggregate response of the other users. 
In [17], a foresighted user is assumed to model the market 
price also as a linear function of its desired demand. 
However, we note that using the linear model is purely 
heuristic in [17]. In this paper, we will show that such a 
linear belief function is able to capture the specific structure 
of the considered multi-user interaction. We show that when 
the foresighted user is altruistic (e.g. whenever it acts as a 
network leader), it can drive the system to the system-wise 
Pareto optimal solution by modeling the reactions of the 
other myopic users. Alternatively, if the foresighted user is 
self-interested, we show that this user will benefit itself at 
the expense of (some of) the myopic users increased delays.  

The paper is organized as follows. Section II discusses the 
considered wireless network model and formulates the 
foresighted channel selection problem as a game. In Section 
III, we define the conjecture-based channel selection game 
for the foresighted users and the ε -consistent conjectural 
equilibrium of the game. In Section IV, we investigate the 
case when there is only one foresighted user in the network. 
We provide a learning algorithm for the foresighted user to 
update its belief. The numerical results are shown in Section 
V and Section VI concludes the paper. 

II. PROBLEM FORMULATION FOR FORESIGHTED 

CHANNEL SELECTION 

A. Channel selection game model 

We assume that there are M  autonomous users sharing 
the same multi-channel wireless network. Let 

{ , 1,..., }iv i M= =V  represent the set of these users. User 

iv  is composed by a source-destination pair, i.e. 

( , )s d
i i iv v v= . We assume that there are N  non-overlapping 

channels for these users to transmit their delay-sensitive 
applications. Let { , 1,..., }jr j N= =r  represents the set of 

all these non-overlapping frequency channels. 

We assume that each user iv  wants to serve an 
application with traffic rate ix  (bps). Each frequency 
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channel jr  has a capacity jW
1  (bps). In this paper, we 

assume an unsaturated network condition, in which the total 
capacity is more than the total traffic rate of the users, i.e. 

1 1

N M

j ij i
W x

= =
>∑ ∑ . Each wireless channel access can 

then be modeled as a queue [16]. Such unsaturated 
condition can ensure that a user can always find an 
unsaturated channel to transmit its traffic, and hence, the 
queuing delays can be bounded. The network queuing 
model is illustrated in Figure 1. For each wireless channel, 
the maximum channel service rate is /j jC W L=  

(packets/second), where L  is the average packet length. 
When more users access the same channel, the channel 
service rate reduces due to the contention. The resulting 
service rate is measured by user iv  when accessing channel 

jr  and it is referred to the remaining capacity ijC  in this 

paper. This is regarded as the local information of user iv , 
e.g. the throughput estimation method proposed in [27], 
based on which it makes its channel selection decision. 

We denote the probability of user iv  to select the channel 

jr  as the action [0,1]ija ∈ . Let 1[ ,..., ] [0,1]Ni i iNa a= ∈a  

be the channel selection probability distribution of user iv , 

where 
1

1
N

ijj
a

=
=∑ . The traffic rate from user iv  through 

the channel jr  is denoted as ijλ  (packet/second), where 

/ij i ijx a Lλ =  and 
1

/
N

ij ij
x Lλ

=
=∑ , and we denote 

[ , ]i ij j irλ= ∀ ∈ Λσ  as the traffic distribution of user iv , 

and i−σ  as the traffic distribution for the other users except 

iv  ( [ , ]i i−=σ σ σ ).  The total traffic rate on the channel jr  

is denoted as jλ  and 
1

M

j iji
λ λ

=
=∑ . 

 

 

 

 

 

 

 

 

Definition 1: Channel selection game. We consider the 
channel selection game by the following tuple , ,ΛV U . 

• Λ is the action space of the system, where 

1 ... MΛ = Λ × ×Λ  . The action of user iv  is defined as 
the traffic distribution [ , ]i ij j irλ= ∀ ∈ Λσ . 

                                                           
1  For simplicity, we assume that each virtual queue has the same 

capacity for every user. However, the analysis provided in this paper can 
be generalized to the case when each virtual queue has different capacities 
for different users by adopting a more sophisticated queuing model. 

• U is the utility set of the system, where 

1{ ,..., }MU U=U . We denote the utility of a user iv  as 

( )iU σ , which is a function of all the users’ actions.  

As in [16], we assume that each user deploys an 
application generating a Poisson packet arrival. We assume 
that the delay through each frequency channel can be 
modeled using an M/M/1 queuing model. The expected 
delay through the channel jr  can then be expressed as: 

1
,  if 

[ ]
,  otherwise

j j
j jj

C
CE D

λ
λ

 > −= 
 ∞

.                (1) 

The delay of user iv  is defined as: 

1 1

( , ) [ ]
( )

N N
ij

i i i ij ij
i ij i ijj j

L
U a E D

x C

λ

λ
−

−= =

= =
−∑ ∑σ σ

σ
, (2) 

where ( )ij iC −σ  is the measured remaining capacity (an 

aggregate response of the other users’ channel selection) for 
a specific user iv  using channel jr . Since in a wireless 

channel [ ] [ ]ij jE D E D= , following equation (1) and (2), 

we have ( )ij iC − =σ ''j i ji i
C λ

≠
−∑ 2. Note that in the 

considered network, there is no information exchange 
among the users. We assume that if user iv  changes its 
traffic ijλ�   in channel jr , another user 'iv  can measure 

the resulting changes in the remaining capacity of channel 

jr  as 0
' '( )i j ij i j ijC Cλ λ= −� � , where 0

'i jC  is the 

remaining capacity when 0ijλ =� . 

B. Achieving Pareto-optimal in a collaborative setting 

To achieve Pareto efficient solutions, all the users 
collaboratively optimize the same “system welfare”, e.g. 
they minimize the weighted summation of users’ utilities, 

i.e. 
1

( ) ( )
M

i ii
U wU

=
=∑σ σ , where iw  represents the 

weighting parameters. 

Definition 2: Pareto boundary. Given different users’ 

weights 
1

[ , 1,..., | 0, 1]
M

i i ii
w i M w w

=
= = > =∑w , the 

Pareto boundary is formed by the solutions of the following 
multi-user multi-channel selection problem: 

10

1

( ) argmin ( )

        s.t.  / ,  for 

MP
i ii

N

ij i ij

wU

x L vλ

=≥

=

=

= ∀

∑

∑

w
σ

σ σ

.            (3) 

In order to perform the above optimization, the users needs 
to collect the global network information 

[{ , },{ , },{ , }]g j j i i i iC r x v w v= ∀ ∀ ∀I . Specifically, in this 

paper, we define the system-wise utility as 
                                                           

2 We assume that this remaining capacity can be measured by user iv  

based on the throughput estimation method as in [27]. This value is 
analytically true when the M/M/1 queuing model in each channel is valid. 
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Fig. 1 Considered queuing model for multi-user channel 
access. 
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1

1 1
1

( ) ( )

M
M N

ijfair i
i i M

i j j iji

L
U xU

C

λ

λ

=

= =
=

= =
−

∑
∑ ∑

∑
σ σ .  Based on 

Little’s formula [26], this utility represents the total queue 
size of these N  M/M/1 queues for the N  channels.  

Definition 3: System-wise Pareto optimal solution. The 
system-wise Pareto optimal solution is then defined as: 

0

1

argmin ( )

        s.t.  / ,  for 

P fair

N

ij i ij

U

x L vλ

≥

=

=

= ∀∑

σ
σ σ

.            (4) 

The system-wise Pareto optimal solution is on the Pareto 
boundary where the users’ weights are proportional to the 
traffic rates of the users. However, such collaborative 
approach may be undesirable in many settings due to the 
high message overhead required for exchanging the control 
information. Hence, we consider a non-collaborative setting, 
where there is no message exchange among the users.  

C. Nash equilibrium in a non-collaborative setting 

In a non-collaborative setting, the goal of user iv  is to 
minimize its own delay over all possible wireless channels 
that it chooses. Note that without message exchange in the 
non-collaborative setting, the traffic distribution of the other 
users i−σ  is not be observable for user iv , but iv  can 

measure the aggregate response ( )ij iC −σ . To perform 

equation (5), user iv  needs to observe the local information 

[{ , },{ , }, }i ij j j j iC r C r x= ∀ ∀I . Based on it, the following 

best response is adopted by every user in the network: 

0

1

( ) argmin ( , )

            s.t.  /

i
i i i i i

N

ij ij

U

x L

π

λ

≥

=

=

=∑

I I
σ

σ

,                            (5) 

where iπ  represents the policy for channel selection. The 
solution to the problem in equation (5) will lead to a unique 
NE, as proven in [14] for a network routing scenario, 
similar to the considered channel selection setting. Based on 
[14], the optimal channel selection probability for user iv  
to transmit in channel jr   can be expressed as 

* * /ij ij ia L xλ= ,  and * max{0, }ij ij ij iC Rλ α= − ,   (6) 

where /
j i

i ij ir
R C x L

∈Ω
= −∑  represents the overall 

remaining capacity after user iv  sends its traffic ix , iΩ  
represents the set of channels for which 0ijλ > , and 

j i

ij
ij

ijr

C

C
α

∈Ω

=
∑

 represents the optimal fraction (in 

terms of minimizing iU ), based on which iR  is allocated to 
channel jr . The difference between the measured remaining 

capacity ijC  and ij iRα  is the optimal *ijλ  for user iv  to put 

on jr . 

   Note that { , }j jC r∀  and ix  is time-invariant, and 

{ , }ij jC r∀  is time-variant. To reach the NE, users 

repeatedly measure the remaining capacities { , }ij jC r∀  and 

interact with each other using the best response in equation 
(5). Specifically, user iv  will update its traffic rate on jr  as:  

1 1min{0, ( ) }t t t
ij ij ij ij iC C Rλ α− −= − ,

1

1

j i

t
ij

ij t
ijr

C

C
α

−

−

∈Ω

=
∑

.

(7) 

However, the resulting NE is Pareto inefficient [15]. Hence, 
in this paper, we investigate how to improve the efficiency 
of the multi-user interaction to achieve the system-wise 
Pareto optimal solution in a non-collaborative manner. We 
endow users with the ability to build belief functions 
( )i iB σ  on the remaining capacities ijC  (instead of using 

the latest measurement) for user iv  to take into account the 
impact of iσ  on ijC . We refer to this approach as 

foresighted decision making because it enables users to 
predict how their channel selection will impact the decision 
of the other users and thereby, impact the future remaining 
capacities. Next, we discuss this distributed foresighted 
resource management approach. 

D. Foresighted decision making for delay-sensitive users 

By adopting a belief function ( )i iB σ , the distributed 

optimization in equation (5) is formulated as 

0

1

( , ) argmin ( , ( ), )

                  s.t.  /

i

f
i i i i i i ii

N

ij ij

U

x L

π

λ

≥

=

=

=∑

B BI I
σ

σ σ

,         (8) 

where ( )i iB σ  represents the conjecture (belief) of user iv  

on the expected remaining capacity over each frequency 
channel when the traffic distribution iσ  is taken. This belief 
is built based on the measurement history 

{( , ), 1,..., , 1,..., }t t k t k
i ij ijo C k S j Nλ − −= = = , where S  is 

the observation window size. In Figure 2, we provide a 
block diagram to highlight the main differences between the 
myopic channel selection approaches and the proposed 
foresighted channel selection.  

 

 

 

 

 

 

III.  CONJECTURE-BASED CHANNEL SELECTION GAME AND 
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Fig. 2 Block diagram of the (a) myopic channel selection and 

(b) foresighted channel selection. 
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channel selection or adopt the foresighted channel selection. 
We formalize the multi-user interaction in a multi-channel 
network using the following repeated game. 

Definition 4: Conjecture-based channel selection game. We 
consider the conjecture-based channel selection game as a 
stage game represented by the following tuple , , ,ΛV US .  

• V  is the set of players (users), and we assume that there 
are two types of users in the network: a set of foresighted 
users in F

V  and a set of myopic users in MV , i.e. 
{ , }F M=V V V . 

• Λ is the action space of the system, where 

1 ... MΛ = Λ × ×Λ  . The action of user iv  is defined as 
the traffic distribution [ , ]i ij j irλ= ∀ ∈ Λσ . 

• S  is the conjecture space of all the users, i.e. 
1 2 ... M= × × ×S S S S . The conjecture of user iv  is 

defined as its belief about the expected remaining 

capacities [ ( ), ]i ij ij j iC rλ= ∀ ∈B � S . We will discuss 

how to construct the function ( )ij ijC λ�  in Section IV. B. 

This function models the remaining capacities for user iv . 

Such models implicitly provide the user iv  with an 
aggregate belief regarding the coupling of its actions to 
that of the other users. 

• U  is a delay vector of the users, i.e. 
[ ( , ), ]i i i iU v= ∀U Bσ . 

The stage game is played repeatedly by the users with the 
following two types of belief updating methods: 
a) Myopic users: A myopic user iv  will update its belief 

function using 1[ , ]t t
i ij jC r−= ∀B  in the repeated game. As a 

result, user iv  will select its new action tiσ  based on the 
latest measurements obtained about the remaining capacities, 
using the myopic best response in equation (7). 
b) Foresighted users: A foresighted user iv  will update its 

belief function using ( ) [ ( ), ]t t t t
i i ij ij jC rλ= ∀B �σ  in the 

repeated game and select its new action t
iσ  using equation 

(8). We will discuss how to learn the belief function 

( )t t
ij ijC λ�  in Section IV.  

It is easy to verify that the game has a unique NE if all 
the users are myopic, i.e. 0F =V . Note that the actual 

(real) remaining capacities [ ( ), 1,..., ]ijC j N=σ  depend on 

σ . However, user iv ’s conjecture is the expected 

remaining capacities on the various channels ( )ij iC� σ  given 

only iσ . Based on these conjectures, we can define the 
concept of a Conjectural Equilibrium (CE) for the 
considered channel selection game. The CE was first 
discussed by Hahn in the context of a market model [18]. A 
general multi-agent framework is proposed in [17] to study 
the existence of and the convergence to CE in market 
interactions. 

Definition 5: Conjectural equilibrium of the channel 

selection game. Following the definition in [17], the 

conjectural equilibrium (CE) is defined as * ∈ Λσ , if for 
each user iv ∈ V , the following two conditions are 
satisfied: 

(a) The expected remaining capacities at the equilibrium are 

the actual remaining capacities, i.e. * * * *( ) ( ),ij i ij jC C r= ∀� σ σ . 

(b) The action at the equilibrium *iσ  minimizes 
* *( ,{ ( ), 1,..., })i i ij iU C j N=�σ σ . 

    The belief function ( )t t
i iB σ  may not be perfectly 

estimated at the equilibrium in practice. However, a user 
can still keep selecting the same action with imperfect belief 
estimation, as long as that action consistently minimizes the 
expected utility. For this, we define an extension to the 
well-known CE, where users’ actions converge to the 
equilibrium based on their “imperfect” beliefs. 

Definition 6: ε -consistent conjectural equilibrium of the 
channel selection game. The ε -consistent conjectural 

equilibrium (ε  -CE) is defined as * ∈ Λσ , if for each user 

iv ∈ V , the following two conditions are satisfied: 

(a) The expected remaining capacities at the equilibrium 
approximate the actual remaining capacities, i.e.  

( )
2* * * *maxmax ( ) ( )

i j i
ij i ij

v r A
C C ε

∈ ∈
− ≤

V

� σ σ .           (9) 

(b) The action at the equilibrium *iσ  minimizes its expected 

delay *( , ( ))i i i iU Bσ σ .  

Note that as the CE, ε -CE may not exist and, even if it 
exists, it may not be a unique equilibrium [17]. Next, we 
will discuss how a user should build its conjecture (belief) 
that leads to the ε -CE and compare the resulting 
performance with the system-wise Pareto optimal solution 
in various scenarios. In Section IV, we investigate the case 
when the system has only one foresighted user 1F =V .  

IV.  AUTONOMOUS CHANNEL SELECTION WHEN THERE IS 

A FORESIGHTED USER 

A. Belief function  

In this subsection, we assume that user 1v  is foresighted 
and the other users are myopic in the conjecture-based 
channel selection game. We then discuss how to construct 

the belief function 1 1 1 1( ) [ ( ), 1,..., ]jC j N= =B �σ σ  in 

equation (8). Given the traffic distribution of the user 1v , 
the channel selection game of the other myopic users will 
reach NE. Note that when user 1v  puts more traffic 1jλ�  

into channel jr , the lower remaining capacity 'i jC  will be 

measured by the other users, which leads to another NE. 

Proposition 1: Linearity of the belief function in the case of 
one foresighted user. The belief function 

1 1 1 1( ) [ ( ), ]j j jC rλ= ∀B �σ  can be approximately modeled as 

a linear belief function when there is only one foresighted 
user in the wireless network. 
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Proof: From equation (6), the remaining capacity 

' 1

1 1 ' 1( ) ( )
i

j j j i j j

v v

C Cλ λ λ
≠

= − ∑� �  can be expressed as: 

( )
'

' ' '

1 1 ' 1 ' 1 '

0
' 1 ' 1 '

constant

( )= ( ) ( )

=  + ( )

M
i

M M M
i i i

j j j i j j i j j i

v

j i j j i j j i

v v v

C C C R

C C R

λ λ α λ

λ α λ

∈

∈ ∈ ∈

− −

− +

∑

∑ ∑ ∑

V

V V V

� � �

� �

���������������

. 

   

Note that the last term can be written as follows using the 
Taylor expansion: 

( )

' 1
' 1 ' '

' ' ' 1'

2
2' '

' 1 ' 1 '2
1 1

( )
( )

( )

(0) (0)
...

i j j
i j j i i

i j i j jj j

i j i j
i j i j i

j j

C
R R

C C

d db
R R R

a b d d

λ
α λ

λ

α α
λ λ

λ λ

≠

=
+

≅ + + +
+

∑
�

�
�

� �
� �

,

     

where ' '' i jj j
a C

≠
=∑ , 0

'i jb C= . The magnitude of 

the second order term is bounded as follows: 

( )
( )

( )

( )
( )

2
2 2'

1 ' 1 '2 2 2 3
1

2
2 ' 1

1 '2 3 3

(0) 1 1

2 2 ( )

                          
4( ) 4

i j
j i j i

j

i j
j i

d a
R R

d b b a b a b

Ra
R

a b b ab

α
λ λ

λ

λ
λ

 = +   + +

≅ ≤
+

� �
�

�
�

. 

In our network settings, since the value of 3ab  in the 
denominator is much larger than the value of 'iR  in the 
nominator, it can be shown that all the higher order terms of 

' 1 '( )i j j iRα λ�  can be negligible and only the linear terms 

are significant.               � 

Based on this, we define the linear belief function for the 
foresighted users.  

Definition 7: Linear belief function for the foresighted user. 
The linear belief function on the remaining capacities of a 
foresighted user iv  can be expressed by a two-parameter 
linear function: 

(0) (1)( )ij ij ijij ijC λ β β λ= +� ,                      (10) 

where (0) (1)[ , ]ij iij ijβ β= ∈β B  and iB  represents a finite set 

of positive parameters with (1)0 1ijβ≤ < , 

(0)0 jij Cβ≤ ≤ .The condition (1)0 1ijβ≤ <  implies that 

when the foresighted user increases the traffic that it 
transmits through a certain channel ijλ , the other myopic 

users will avoid using the same channel and move their 
traffic to other channels. This increases the expected 

remaining capacity ijC�  for the foresighted user iv . In the 

next subsection, we provide a reinforcement learning 

method for the foresighted user iv  to learn these parameters 
(0) (1)[ , ]ij ij ijβ β=β  based on the measurement history t

io .  

B. Linear regression learning to model the belief function 

 The foresighted user iv repeatedly updates its belief 

function (0) (1)( )ij ij ijij ijC λ β β λ= +�  at every time slot3 . In 

this paper, we make the foresighted user update the 

parameters (0) (1)[ , ]t tt
ij iij ijβ β= ∈β B  using the following 

update rule: 

( ) 1

ˆarg min ,

ˆwhere 1 ( )

ij i

t
ij ij ij

t t
ij i ij i ij ijoρ ρ

∈

−

=

= − + �

β
β β − β

β β β

B .       (11) 

iρ  is the learning rate, which determines how rapidly a user 

is willing to change its belief on the remaining capacities. 
(0) (1)( ) [ , ]t

ij ij ij ijo β β=� � �β  will be estimated based on the linear 

regression from the samples tijo , where tijo  represents the 

latest S  measured remaining capacities and input traffic 
pairs for a certain channel in t

io  (i.e. 

{( , ), 1,..., }t k t k
ij ijC k Sλ− − = ). For this, we can adopt 

standard least square error linear regression [19]. To 
estimate the error due to deploying a linear model, denote 

( , )t k t
ij ije o− �β  as the residual error of the linear regression at 

time slot t k− . The mean residual error is then defined as 

1

1
( , ) ( , )

S
t t k t

ij ij ij ij

k

e o e o
S

−

=

= ∑� �β β .  

Proposition 2: Reaching the ε - CE using the linear 
regression learning. When there is only one foresighted 
user, the linear regression learning results in ε - CE of the 
conjecture-based channel selection game with 

max{ ( , )}
j

t
ij ij

r
e oε ≤ �β . 

Proof:  The foresighted user can determine an optimal 
action based on the linear belief function using the linear 
regression learning method. Given the optimal action of the 
foresighted user, the other myopic users will reach their NE 
equilibrium. If ε  is selected as the worst case mean residual 

error, i.e. max{ ( , )}
j

t
ij ij

r
e oε ≤ �β , the two conditions in 

Definition 5 are satisfied. Hence, such equilibrium will be 
the ε -CE.      � 

In the simulation section, we also verify that the mean 
residual error for the belief function linearization is indeed 

very small, i.e. 
( )

'

2
' 1

3
( , ) 0

4M
i

i jt
ij ij

v

R
e o

ab

λ

∈

≤ ≅∑
V

�
�β , when 

there is only one foresighted user in the network. 

                                                           
3 Different time scale can be applied for the foresighted users to make 

sure that the measured remaining capacities are the stable results of the 
other myopic users played in the game. 
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Next, we discuss in more detail the ε -CE in two 
different cases: when the foresighted user is altruistic and 
when the foresighted user is self-interested. 

C. Altrustic foresighted user 

An altruistic foresighted user is usually the leader in a 
clustered network [6], e.g. the access point in IEEE 802.11 
network, or the routing leader in a hierarchical ad hoc 
network [10]. An altruistic foresighted user will have an 
objective function that is aligned with the system goal, 

( )fairU σ . As the foresighted user iv ’s belief ( )ij ijC λ�  

reflects the aggregate traffic distribution of all the other 

users M
i

ijv
λ

∈∑ V
, ( )fairU σ  can be rewritten as: 

1

1 1
1

(0) (1)

(0) (1)
1

( )

( )

( , ( ))

MN N
ij j ij ij iji

M
ij ij ijj jj iji

N
j ij ijij ij fair

i i i

j ij ijij ij

C C

CC

C
U

λ λ λ

λ λλ

β β λ λ

β β λ λ

=

= =
=

=

− +
=

−−

− − +
= ≡

+ −

∑
∑ ∑

∑

∑ B

�

�

σ σ

.    (12) 

Then, the altruistic foresighted user iv  performs the 
following optimization: 

0

1

minimize ( , ( ))

s.t.  /

i

fair
i i i

N

ij ij

U

x Lλ

≥

=
=∑

B
σ

σ σ

 ,              (13) 

while the rest of the myopic users adopt equation (7). Note 
that only the system-wise Pareto optimal solution on the 
Pareto boundary can be approached by the altruistic 
foresighted user4 . For the other solutions on the Pareto 
boundary, the foresighted user needs to know the traffic rate 
ix  as well as the weights iw  of the other users. However, 

the foresighted user adopts a linear belief function in Section 
IV.B, which provides an imperfect belief by approximating 
the remaining capacities. There will be a performance 
penalty (gap) experienced by the foresighted user between 

the resulting  ε - CE *
altσ  and the system-wise Pareto 

optimal solution Pσ  based on the user’s perfect beliefs, 
which is defined as: 

                  ( , ) ( ) ( )P fair fair P
alt altGAP U U= −∗ ∗σ σ σ σ .  (14) 

Proposition 3: Reaching system-wise Pareto optimal 
solution when only one user is foresighted. When there is 
only one altruistic foresighted user iv  in the conjecture-
based channel selection game, the gap between the resulting 
ε - CE  alt

∗σ  and the Pσ  will be bounded by: 

( )
2* *

, ,

( , )
j i

jP
alt

r ij alt ij alt

C
GAP

C
ε

λ∈Ω

≤
−

∑∗σ σ ,         (15) 

                                                           
4 For the solution of equation  (13) to approach the system-wise Pareto 

optimal solution, the ratio of the traffic rate of the foresighted user and the 
total traffic rate is required to be above a certain threshold, which is 
discussed in [15]. In the following discussion, we assume that the ratio is 
above such threshold.  

where iΩ  represents a set of channels whose 0ijλ > . 

Proof: Since the foresighted user can access all the channels, 
the foresighted user’s action can directly influence all the 
other myopic users in the network. Since the foresighted 

user will approximate ( )ij ijC λ�  to the actual remaining 

capacities to satisfy equation (9) at the ε - CE alt
∗σ , the 

worst case * * *( ) ( ) 'ij i ij altC C ε≥ −� ∗σ σ  ( 'ε ε= ) can be 

considered to bound the ( , )PaltGAP ∗σ σ . The worst case 

gap is bounded by 
* * * *

* * * *

'
( , )

'
j j

j ij ij j ij ijP
alt

r rij ij ij ij

C C C C
GAP

C C

λ ε λ

λ ε λ∈Ω ∈Ω

+ − + + −
≤ −

− − −
∑ ∑∗σ σ

. Let * *
ij j ij ijK C Cλ= + −  and * *

ij ij ijJ C λ= − . For a 

small ε , the first term of the right hand side can be 
simplified as 

( )
2

'
'

'
j i j i j i

ij ij ij ij

ij ijr r r ij

K K K J

J J J

ε
ε

ε∈Ω ∈Ω ∈Ω

+ +
≅ +

−∑ ∑ ∑  and the gap 

will be bounded by 

( ) ( )
2 2* *

( , ) ' '
j i j i

ij ij jP
alt

r rij ij ij

K J C
GAP

J C
ε ε

λ∈Ω ∈Ω

+
≤ =

−
∑ ∑∗σ σ .

� 

In other words, the foresighted user is able to drive alt
∗σ  to 

the system-wise Pareto optimal solution for an arbitrary 
small ε . Proposition 3 also implies that given the same 

total capacities, i.e. 
1

N

j

j

C
=
∑  is fixed, the uniform capacities 

among the frequency channels will result in a minimum gap 
from the ε - CE to the system-wise Pareto optimal solution.  

D. Self-interested foresighted user 

Note that reaching the system-wise Pareto optimal 
solution will not minimize the delay of the foresighted user 
itself (as will be shown in the Section VI). Thus, a self-
interested foresighted user has no incentive to optimize the 
system-wise delay. Importantly, the foresighted users will 
have to sacrifice its own delay in order to minimize the 
system-wise delay. Hence, we now consider the case when 
the foresighted user is self-interested and only intends to 
minimize its own delay. If the foresighted user is self-
interested, the objective function of the foresighted user is 

then minimizing ( , ( ))i i i iU =Bσ σ
1 ( )

N
ij

i ij ij ijj

L

x C

λ

λ λ= −
∑ �

.  

Specifically, with the linear belief functions, the self-
interested foresighted user iv  performs: 

(0) (1)10

1

minimize

s.t.  /

i

N ij

j
ij ijij ij

N

ij ij
x L

σ

λ

β β λ λ

λ

=≥

=

+ −

=

∑

∑

 .      (16) 

The following proposition provides the optimal action for 
the self-interested foresighted user. 
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Proposition 4: Solution of the self-interested foresighted 
user 

Given the belief of the remaining capacity 
(0) (1)( )ij ij ijij ijC λ β β λ= +� , with (1)0 1ijβ≤ < , 

(0)0 jij Cβ≤ ≤ , the optimal action that minimizes iU  for 

the foresighted user to transmit on channel jr  is  

* * /ij ij ia L xλ= ,  

    ( )* max{0, / }
j i

f
ij ij ij iij

r

D D x Lλ α
∈Ω

  = − −    
∑� � ,    (17) 

where ( )(0) (1)/ 1ij ij ijD β β= −� . The portion ( )f
ijα  now 

becomes /
j

ij ijr
κ κ

∈Ω∑ , where ( )(0) (1)/ 1ij ij ijκ β β= −  

and iΩ  represents the channels whose 0ijλ > . 

Proof: See Appendix A. 

While the other users are myopic, the best performance 
from the self-interested foresighted user’s perspective is to 
achieve the Stackelberg Equilibrium (SE) Sσ [24]. Note that 
if the foresighted user is able to build a perfect belief on the 
remaining capacities (i.e. 0ε = ), the resulting conjectural 
equilibrium is the same as the SE of the game, since the 
foresighted user knows the exact reactions of the myopic 
users. Hence, we use the SE Sσ  instead of the system-wise 
Pareto optimal solution Pσ  to benchmark the self-interested 
foresighted user. Denoting the solution in Proposition 3 as 
*
selfσ , the corresponding performance gap is defined as 

( , ) ( ) ( )S S
self i self iGAP U U= −∗ ∗σ σ σ σ .  

Proposition 5: Reaching SE when only one user is 
foresighted. When there is only one self-interested 
foresighted user iv  in the conjecture-based channel 
selection game, the gap between the resulting ε  - CE and 
the SE will be bounded by: 

( )
2* *

, ,

1
( , )

j i

S
self

r ij self ij self

GAP
C

ε
λ∈Ω

≤
−

∑∗σ σ ,     (18) 

where iΩ  represents a set of channels whose 0ijλ > .  

Proof:  The gap can be shown to be bounded using a similar 
proof as Proposition 3. Note that the foresighted user is now 
minimizing its own delay instead of fairU  in Proposition 3. 
Hence, the ( , )SselfGAP ∗σ σ  is calculated with respect to the 

foresighted user iv ’s delay iU , and the resulting upper 
bound changes accordingly. 

 In other words, the foresighted user is able to drive the ε - 
CE self

∗σ  to the SE Sσ  for an arbitrary small ε . Proposition 

4 provides the optimal channel selection of the self-
interested foresighted user iv  when applying a linear belief 
function as described in equation (10) and Proposition 5 

implies that the performance of the foresighted user at ε - 
CE can be as good as the SE when the self-interested 
foresighted user can approximate the future remaining 
capacities. Algorithm 1 provides the channel selection 
algorithm that will be followed by the self-interested 
foresighted user. An illustrative example is given in Figure 3 
for the solutions introduced in Section IV.C and IV.D in 2-
user case (iv  is the foresighted user and iv−  is the myopic 

user). Note that the SE Sσ  provides a smaller delay 
compared to Pσ  for the foresighted user iv  at the cost of 
increasing the delay of the myopic user. This is because it 
selfishly minimizes its own delay given that it knows the 
reaction of the other user, which is the best that a self-
interested foresighted user can achieve.  

V. NUMERICAL RESULTS 
In this section, we simulate the conjecture-based channel 

selection game in two network settings, which are shown in 
Table I. We assume an asymmetric network where the 
capacities of the channels are 1 8W = Mbps and 

2iW = Mbps, 2,...,i N= . The users have traffic with 
Poission arrival rates 1x  = 3.8 Mbps, 0.6ix =  Mbps, 

2,...,i M= . The average packet length is L  = 1000 bits. 

A. Single foresighted user scenario 
We first simulate the case when there is only one 

foresighted user. User 1v  is assumed to be the foresighted 
user, and the rest of the users are myopic users. Figure 5(a) 
shows the evolution of user 1v ’s action 1a   (i.e. its channel 
selection probabilities) until the system reaching the NE in 
network setting 1 (the large network). Since channel 1r  has 
a larger capacity, more traffic will be distributed to channel 
1r  than to the other channels. Using the learning method 

proposed in Section IV.B, the foresighted user 1v  can 
determine its belief functions on the remaining capacities. 
The circles in Figure 5(b) represent the measured remaining 
capacities 11C  at different channel selection probability 11a  

(the samples 1
to ). The solid line represents the resulting 

linear regression. The resulting parameters of the linear 
belief function are 11 [0.375, 4962]=β . The residual mean 

square error is 0.051 and the computed bound is 

( )

'

2
'

3
10.85

4M
i

i ij

v

R

ab

λ

∈

≅∑
V

�
, which are in agreement with 

Proposition 1. Figure 5(c) shows similar results in channel 
2r . Similarly in network setting 2 (the small network), 

Figure 5(d) shows again the evolution of 1a  in a network. 
The channel selection converges faster in this setting, since 
the number of users is smaller. The resulting parameters of 
the linear belief function are 11 [0.52, 4718]=β . The 

residual mean square error is 0.012 and the computed bound 

is 
( )

'

2
'

3
4.34

4M
i

i ij

v

R

ab

λ

∈

≅∑
V

�
. 
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TABLE I. CONSIDERED NETWORK SETTINGS 

Network setting 
Number of 
channels 
N  

Number 
of users 
M  

Total channel 
capacities 
(Mbps) 

Total traffic 
rates (Mbps) 

1 (Large network) 10 30 26 21.2 
2 (Small network) 2 8 10 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
   In order to show clearly the intuition behind the 
foresighted channel selection, we now focus on the small 
network setting. Figure 6 shows the utility domain in terms 
of delay. The x-axis is the delay of the foresighted user and 
the Y-axis is the average delay of the myopic users. By 
using the belief function, the simulation results show that 
the altruistic foresighted user is able to drive the system 
from the (system) inefficient NE to the system-wise Pareto 
optimal solution (in which the system queue size fairU  is 
minimized) by using the belief function. If the foresighted 
user is selfish, it will drive the system from NE to SE. Table 
II shows the results at different equilibriums. When the 
foresighted user is selfish, it puts more traffic into the 
efficient channel 1r  and forces the other myopic users to 
select the other channel, thereby benefiting its own utility. 
On the contrary, if the foresighted user is altruistic, it puts 
less traffic into channel 1r  and allows the other users 
myopically select the efficient channel 1r , which will result 
in an optimal system performance. 
 

TABLE II.  RESULTS AT DIFFERENT EQUILIBRIUMS 

 

Action of 
the 

foresighted 
user 11a  

Action of 
the 

myopic 
user 1ia  

Delay of the 
foresighted 

user 

Average 
delay of the 

myopic 
users 

System 
Performance 

NE 0.72 0.97 0.955 ms 0.848 ms 7.19 
SE 0.95 0.78 0.914 ms 0.947 ms 7.45 

System-wise 
optimal 

0.66 1 1.011 ms 0.752 ms 7.00 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Next, we highlight the impact in terms of delay for the 
foresighted user and the myopic users, when different 
numbers of myopic users are active in the network. Figure 7 
shows the delay of the foresighted user at different 
equilibriums when there are various numbers of myopic 
users in the network. The results show that, as the number 
of myopic users in the network increases, the altruistic 
foresighted user will have a higher delay impact to reach the 
system-wise Pareto optimal solution. Beyond 10 myopic 
users, the system-wise Pareto optimal solution is not 
reachable. This situation is also observed in network setting 
1 (large network setting). This is because the traffic ratio of 
the foresighted user to the total traffic in the network is not 
sufficient enough to drive the equilibrium to the system-
wise Pareto optimal solution (as discussed in [15]). On the 
contrary, the foresighted user can benefit more in terms of 
delay when the number of the myopic users in the network 
increases. 

VI.  CONCLUSIONS 

In this paper, we study the distributed channel selection 
problem in multi-channel wireless networks. Although we 
use a multi-channel wireless network setting, it is important 
to note that the proposed method can be applied to other 
load balancing resource sharing system. We model the 
multi-user interaction using a conjecture-based channel 
selection game where myopic users and foresighted users 
coexist in the network. In this paper, we show that when 
there is one foresighted user in the network, the user is able 
to make an accurate conjecture about the remaining capacity 
and drive the CE to a system-wise Pareto optimal solution 
or a SE. We propose an on-line learning procedure for the 
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Fig 6  Reaching the system-wise Pareto optimal solution and 

the Stackelberg Equilibrium. 
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Fig. 7 Delay of the foresighted user at different equilibrium for 

various numbers of myopic users in the network.  
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Fig. 5(a)(d) The action of the foresighted user 1v  over time, while 

participating in the channel selection game.   
(b)(c)(e)(f) The actual remaining capacity 1jC  and the estimated 

linear belief function 1jC� ,  1,2j =  [(a)(b)(c) in network setting 1, 

(d)(e)(f) in network setting 2]. 
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foresighted user to build such an accurate conjecture. For 
the case when there are multiple foresighted users building 
their own conjectures simultaneously, the same learning 
procedure may not provide accurate conjecture anymore 
[17]. This forms our future research to see how system 
performance degrades if the foresighted users do not know 
the existence of each other and thereby, using the proposed 
on-line learning procedure. Also, it is interesting to see, if 
the foresighted users are able to conjecture the existence of 
each other, whether they can reach the system-wise Pareto 
optimal solution in a non-collaborative manner. 

APPENDIX A    

Proof of Proposition 4. First, we see that the objective 

function is a convex function, given that (1)0 1ijβ≤ ≤ , 

(0) 0ijβ ≥ . Assume µ  as the Lagrange multiplier. 

For j ir F∀ ∈ , the optimality conditions: 

( )

(0)

2(0) (1)

1ij
ij ij ij

ij ijij ij

D
β

µ λ κ
µβ β λ λ

= ⇒ = −
+ −

� .   (19) 

From the constraint 
1

N

ij ij
xλ

=
=∑ , we have  

                  ( )1/ / /
j j

ij i ijr r
D x Lµ κ

∈Ω ∈Ω
= −∑ ∑� . (20) 

By substituting equation (20) into equation (19), we have 

( )( / )
j

f
ij ij ij iij

r

D D x Lλ α
∈Ω

= − −∑� �  for 0ijλ >  case. � 
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