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Abstract—This paper considers a non-cooperative game in which 
competing users sharing a frequency-selective interference 
channel selfishly optimize their power allocation in order to 
improve their achievable rates. Previously, it was shown that a 
user having the knowledge of its opponents’ channel state 
information can make foresighted decisions and substantially 
improve its performance compared with the case in which it 
deploys the conventional iterative water-filling algorithm, which 
does not exploit such knowledge. This paper discusses how a 
foresighted user can acquire this knowledge by modeling its 
experienced interference as a function of its own power allocation. 
To characterize the outcome of the multi-user interaction, the 
conjectural equilibrium is introduced, and the existence of this 
equilibrium for the investigated water-filling game is proved. 
Interestingly, both the Nash equilibrium and the Stackelberg 
equilibrium are shown to be special cases of the generalization of 
conjectural equilibrium. We develop practical algorithms to form 
accurate beliefs and search desirable power allocation strategies. 
Numerical simulations indicate that a foresighted user without 
any a priori knowledge of its competitors’ private information 
can effectively learn the required information, and induce the 
entire system to an operating point that improves both its own 
achievable rate as well as the rates of the other participants in the 
water-filling game.  

Keywords-power control, game theory, conjectural equilibrium 

I.  INTRODUCTION 
The multiuser power control problem in frequency-selective 

Gaussian interference channels was investigated from the game 
theoretic optimization perspective [1]-[11]. From a particular 
user’s viewpoint, it is well-known that, for fixed interference, 
the optimal power allocation is the so-called water-filling 
solution. Therefore, the spectrum sharing problem can also be 
regarded as a water-filling game. Specifically, the participants 
in the water-filling game are modeled as players with 
individual goals and strategies. Existing research can be 
categorized into non-cooperative games and cooperative games.  

First, the formulation of the multi-user environment as a 
non-cooperative game has appeared in several recent works 
[1]-[7]. An iterative water-filling (IW) algorithm has been 
proposed to mitigate the mutual interference and optimize the 
performance without the need for a central controller [1]. At 
every decision stage, selfish users maximize their achievable 
rates by water-filling across the entire band until a Nash 
equilibrium (NE) is reached. Sufficient conditions under which 
the iterative water-filling algorithm converges to a unique NE 
are derived and the closed form solution to the water-filling 
problem is investigated for some special scenarios [2]-[4].  

On the other hand, because the IW algorithm may lead to 
Pareto-inefficient solutions [6], there also have been a number 

of related works studying spectrum sharing in cooperative 
games [8]-[11]. Several optimal algorithms were proposed to 
address the problem of weighted sum rate maximization. These 
works assume that users agree to cooperatively maximize a 
common objective and require explicit information exchanges 
among the users.  

Our focus in this paper is on the non-cooperative setting, 
which considers the self-interested and competitive nature of 
individual players. However, most of the prior non-cooperative 
approaches often assume selfish users with only the knowledge 
of their private information and do not consider users’ ability to 
improve their performance by exploring the information of the 
opponents. The best response strategy of a selfish user that 
knows its myopic opponents’ private information, including 
their channel state information and power constraints, was first 
investigated in [7] using the Stackelberg equilibrium (SE) 
formulation in the two-user scenario. It was shown in [7] that 
surprisingly, a foresighted user playing the SE can improve 
both its performance as well as the performance of the other 
user. These results highlight the significance of information 
availability in water-filling games. However, one key question 
remains unsolved: how should a foresighted user acquire its 
desired information and adapt its response?  

As opposed to our previous approach, which assumes a 
foresighted user with perfect knowledge of its competitors’ 
private information [7], we discuss in this paper how the 
foresighted user without any such a priori knowledge can 
accumulate this knowledge and improve its performance. We 
propose that the foresighted user can explicitly model its 
competitors’ response as a function of its power allocation by 
repeatedly interacting with the environment and observing the 
resulting interference. The concept of conjectural equilibrium 
(CE) is introduced to characterize the strategic behavior of a 
user that models the response of its myopic competing users, 
and the existence of this equilibrium in the water-filling game 
is proved. Some previously adopted solutions, including NE 
and SE, are shown to be special cases of the CE. Practical 
algorithms are developed to form accurate beliefs and search 
desirable power allocation strategy. It is shown that, a 
foresighted user can effectively learn its desired information 
and guide the entire system to an operating point having 
comparable performance to the algorithm in [7], where perfect 
a priori knowledge is assumed. More importantly, as opposed 
to the two-user algorithm in [7], the proposed algorithm can be 
applied in general scenarios where more than two users exist. 

The rest of the paper is organized as follows. Section II 
presents the non-cooperative game model, reviews the existing 
non-cooperative solutions, and introduces the concept of CE. 
The existence of this CE in the water-filling game is proved in 
Section III. Section IV develops practical algorithms to form 



beliefs and approach the desired CE and provides the numerical 
results. Conclusions are drawn in Section V. 

II. SYSTEM MODEL AND CONJECTURAL EQUILIBRIUM  

A. System Description and Existing Solutions 
We consider a frequency-selective interference channel. 

There are K transmitters and K receivers in the system. Each 
transmitter and receiver pair can be viewed as a player (or user). 
The entire frequency band is divided into a total number of N 
small frequency bins. The transfer function of the channel from 
transmitter i to receiver j in the nth channel is denoted as n

ijH . 
Receiver k’s noise power spectral density (PSD) in the nth 
channel is denoted as n

kN . Denote player k’s transmit PSD in 
the nth channel as n

kP , which is subject to its power constraint: 

1
N n

kn
P

=
≤∑ max

kP .                         (1) 

If interference is fixed and treated as noise, user k can achieve 
the following data rate (in nats): 
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The multi-user interaction in the interference channel can 
be modeled as a game. Let ( ), ,U=G K A  denote a game with 

{ }1, ,K=K  being the set of players, k k∈=× KA A  being the 
set of actions available to the users (in which kA  is the set of 
actions available to user k), and k kU U∈=× K  being the users’ 
payoff functions (in which :kU →A R  is the user k’s payoff 
function) [12]. In the water-filling game, users’ actions are to 
select their transmit PSDs satisfying the constraint in (1) and 
the players’ payoffs are their achievable data rates. 

As mentioned earlier, existing research mainly focuses 
cooperative games and non-cooperative games. Specifically, 
cooperative approaches aim to maximize the weighted sum of 
data rates 

1
K

k kk
Rω

=∑  [8]-[10]. On the other hand, instead of 
solving the optimization problem globally, the non-cooperative 
IW algorithm models the users as myopic decision makers [1]. 
They optimize their transmit PSD by water-filling and compete 
to increase their transmission rates with the sole objective of 
maximizing their own data rates in (2). In other words, users 
are myopic, i.e., they update actions shortsightedly and do not 
consider the long-term impacts of taking these actions. The 
outcome of this non-cooperative scenario can be characterized 
by the concept of Nash equilibrium, which is defined to be any 
point * *

1( , , )Ka a  satisfying 

* * *( , ) ( , ) ,k k k k k k k kU a a U a a for all a and k− −≥ ∈ ∈A K     (3) 

where * * * * *
1 1 1( , , , , , )k k k Ka a a a a− − +=  [12]. The existence and 

the uniqueness of NE obtained by the IW algorithm are proved 
under a wide range of realistic conditions [2][3].  

The recent approach in [7] demonstrates that the myopic 
behavior can be further improved because IW does not consider 
the coupling nature of players’ actions and payoffs. If a selfish 
user gets the private information about its competitors and 

knows how they react, the best response strategy is to play the 
SE strategy. Let ( )kNE a  be the Nash equilibrium strategy of 
the remaining players if player k  chooses to play ka . The 
strategy profile * *( , ( ))k ka NE a  is a Stackelberg equilibrium with 
user k  leading if and only if [13] 

* *( , ( )) ( , ( )),k k k k k k k kU a NE a U a NE a a≥ ∀ ∈ A .      (4) 

Specifically, to find the SE in the water-filling game, we need 
to solve the following bi-level programming problem [7], 
where user 1 is assumed to be the foresighted user: 
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It should be pointed out that the foresighted user needs to know 
the private information { } { }, ,n n

k ikσ α max
kP  of all its competitors 

in order to formulate the bi-level program. Previous approach 
in [7] assumes that the foresighted user has the perfect 
knowledge of this private information. Importantly, it was 
shown in [7] that users’ performance is substantially improved 
compared with that of the IW algorithm if the foresighted user 
plays the SE strategy, even though the remaining users behave 
myopically. However, how such a foresighted user should 
accumulate this required information remains unsolved. In the 
remaining part of this paper, we will show that the foresighted 
user can obtain the information and improve its performance by 
forming conjectures over the behavior of its competitors 
through the repeated interaction.  

B. Conjectural Equilibrium  
In game-theoretic analysis, conclusions about the reached 

equilibria are based on assumptions about what knowledge the 
players possess. For example, the standard NE solution 
assumes that every player believes that the other players’ 
actions will not change and chooses to myopically maximize its 
own payoff [12]. Hence, the players operating at equilibrium 
can be viewed as decision makers behaving optimally with 
respect to their beliefs about the policies of other players. 

To rigorously define CE, we need to include two new 
elements S  and s  and, based on this, reformulate the strategic 
game ( ), , , ,U s=G K A S  [14]. k k∈=× KS S  is the state space, 
where kS  is the part of the state relevant to the kth user. 
Specifically, the state in the water-filling game is defined as the 
interference that users experience. The utility function U =  
k kU∈× K  is a map from users’ state space and actions to real 

numbers, :k k kU × →S A R . The state determination function 
k ks s∈=× K  maps joint action to state with each component 

:k ks →A S . Each user cannot directly observe the actions 
chosen by the others, and each user has some belief about the 
state that would result from performing its available actions. 
The belief function k ks s∈=× K is defined to be :ks  k k→A S  



such that ( )k ks a  represents the state that the player k  believes 
that would result if it selects action ka . Notice that the beliefs 
are not expressed in terms of other players’ actions, and the 
multi-user coupling in these beliefs is captured directly by 
individual users forming conjectures of the effects of their own 
actions. In non-cooperative scenarios, each user chooses the 
action k ka ∈ A  if it believes this action maximizes its utility. 

Definition 1 (Conjectural Equilibrium): In game G , a con-
figuration of belief functions 1( , , )Ks s∗ ∗  and a joint action 

1( , , )Ka a a∗ ∗ ∗=  constitute a CE, if for each k ∈ K , 

( ) 1( , , )k k k Ks a s a a∗ ∗ ∗ ∗=  and ( )( )arg max ,
kk

k k k k k
a

a U s a a∗ ∗
∈

=
A

.(6) 

From the definition, we can see that, at CE, all users’ 
expectations based on their beliefs are realized and each user 
behaves optimally according to its expectation. CE considers 
the users’ beliefs rather than their perfect knowledge ( )kNE a  
as in SE, which makes CE an appropriate solution when the 
perfect knowledge is not available. The key problem is how to 
configure the belief functions such that it leads to a CE having 
a satisfactory performance.  

III. CONJECTURAL EQUILIBRIUM IN WATER-FILLING GAMES 
In this section, we propose to configure a user’s belief about 

its interference as a linear function of its transmitted power, and 
show that such CE exists and it is a relaxation of both NE and 
SE. We begin by stating several fundamental assumptions used 
throughout the investigation hereafter. 

i) User 1 is the only foresighted user modeling its competitors’ 
reaction as a function of its own power allocation, and all the 
remaining users are myopic users that deploy the IW algorithm. 
For example, the foresighted user could be a secondary user in 
cognitive radio networks. 

ii) Every user is able to perfectly measure its experienced noise 
PSD and interference PSD  in all frequency channels. 

iii) User 2, ,K  react to any small variation in their 
experienced interference by performing water-filling.  

iv) A unique NE exists in the lower-level problem in (5). Suffi-
cient conditions of the uniqueness of NE can be found in [2][3]. 

Next, we formally define the concept of stationary interference. 

Definition 2 (Stationary Interference): The stationary inter-
ference that user 1 experiences in the nth channel is the accu-
mulated interference 1 12

Kn n n
i ii

I Pα
=

=∑  when users 2,…,K reach 
their NE in the lower-level problem in (5). 1nI  is a function of 
user 1’s power allocation P1  and it is also denoted as ( )1

nI 1P .  

A. Linear Belief of Stationary Interference 
In the water-filling game, we define state kS  to be the 

stationary interference caused to user k, because besides its 
own power allocation, its utility also depends on the inter-
ference that its competitors cause to it. Note that user k’s action 
is to choose the transmitted power allocations subjected to its 
power constraint. By the definition of belief function, we need 

to express the stationary interference as a function of the 
transmitted power. As we will see later, deploying linear belief 
model captures the characteristics of the actual interference 
coupling and significantly improves the performance.  

Define vector { : }n
ij i jα= ≠nα , which contains the channel 

gains in the nth frequency bin. The following proposition 
motivates us to develop linear belief functions. 

Proposition 1 (Linearity of Stationary Interference): If the 
number of frequency bins N is sufficiently large, the first 
derivative of the stationary interference that user 1 experiences 
in the nth channel with respect to its allocated power satisfies 

( )1 1 1 1 1, ; 0, ;n n n n mI P c P I P if m n∂ ∂ = ∂ ∂ = ≠nα  
where ( ),c αn y  represents a constant determined by αn  and y . 

Proof: By the definition of 1
nI , we have 1

1
1 12

n nK
n i
im m

i

I P
P P

α
=

∂ ∂=
∂ ∂∑ . 

We only provide a sketch of the proof here. A detailed proof is 
provided in [16].  

Without loss of generality, we assume that 0n
kP >  for k ∈  

{ }2, ,K . Let [ ]2( ) , , Tn n
n KNE P P=P1  represent the power 

that user 2,…,K allocate in the nth channel at equilibrium. we 
have from the optimality conditions of water-filling solution: 
( ) ( ) 1
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( )2, ,i i Kν =  are the water-levels of all the water-filling 
users. Note that the sufficient conditions of existence and 
uniqueness of NE generally require 2 1<G  [3], which leads 
to the fact that +I G  is invertible. Therefore, we have  

( ) ( ) ( )1 1
1

n n
nNE P− −= + − +P I G I G g1 ν .           (7) 

We also have 1lim / 0n
i

N
Pν

→∞
∂ ∂ = , because if the width of each 

frequency bin /sF N  is sufficiently small, the fluctuation of 
the water-level is negligible. As a result, we have 
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in which 21 31 1[ ]n n n n
Kα α α=h . ■ 

Proposition 1 indicates that, the first derivative with respect 
to user 1’s allocated power in a certain channel is sufficient to 
capture how the stationary interference varies locally in that 
channel. We observe from Eq. (7) that ( )1

n n
nI NE= ⋅ =h P1  

( ) ( )1 1
1

n n n nP− −+ − +h I G h I G gν . Therefore, user 1 defines 
its belief function using the linear form 1 1

n n n nI Pβ γ= − , in 



which nγ  is the estimate of 1 1/n nI P−∂ ∂  and nβ  is a constant 
representing the composite effect of user 2,…,K’s water-levels 
ν . This linear characterization of the stationary interference 
can greatly simplify the implicit functional expression ( )1

nI 1P  
given by the solution of lower-level problem (5) and maintain 
an accurate model of ( )1

nI 1P  around the operating point 1P . 

B. Existence of Conjectural Equilibrium 
Under the same known sufficient conditions discussed in [3] 

[7] for guaranteeing the existence of NE and SE, the existence 
of CE can be proved by showing that the first two types of 
equilibrium are special cases of CE. To this end, Table I 
compares the optimality conditions of the three types of 
equilibria in the water-filling game. It also shows that the 
information requirement for playing various equilibria differs. 
At NE, each user includes the interference nkI  as a constant in 
its optimization and performs best response to nkI . To play SE, 
user 1 knows the functional expression of the stationary inter-
ference 1 ( )nI ′1P  such that the bi-level program can be formed. 
Specifically, the required information includes the system-wide 
channel state information nα , the noise PSD n

kσ , and the 
individual power constraint max

kP  for any { }1, , ,n N k∈ ∈ K . 
In contrast, in the case of CE, the above information is not 
required and user 1 behaves optimally with respect to its beliefs 
on how the stationary interference varies as a function of 1

nP .  

Proposition 2 (NE & SE as CE): Both Nash equilibrium and 
Stackelberg equilibrium are special conjectural equilibria. 

Proof: In order to show that both NE and SE are special 
cases of CE, we only need to verify that at NE and SE, user 1’s 
action is optimal with respect to its belief and its belief agrees 
with its state. First, clearly, NE is a trivial CE with the 
parameters 12

, 0Kn n n n
i ii
Pβ α γ

=
= =∑  in user 1’s belief 

functions. Next, denote 1 , , N
SE SEP P⎡ ⎤= ⎢ ⎥⎣ ⎦PSE   the optimal solution 

of problem (5). To prove that SE is a CE, we need to find the 
corresponding nβ  and nγ , and show that SE solves the 
optimization problem:  
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     (9) 

Consider the linear belief function with the parameters nβ =  

( )1 1 1 1
n n n nI P I P

=
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P P1 SE

 and 1 1
n n nI Pγ

=
= −∂ ∂

P P1 SE

. As 

discussed before, such parameters preserve all the local 
information of problem (5) around PSE  into problem (9). KKT 
conditions hold at PSE  since it solves problem (5). A sufficient 
condition which ensures SE to be a CE is that problem (9) 
belongs to convex optimization, because KKT conditions are 
necessary and sufficient for convex programming to attain its 
optimum. A sufficient condition 1SC  under which problem (9) 

is convex is that, for any { }1, ,n N∈ ,  
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A detailed proof can be found in [16]. Therefore, we conclude 
that SE is also a special CE given these conditions. ■ 

Proposition 2 indicates that NE and SE are both CEs if 
parameters { }, { }n nβ γ= =β γ   are properly chosen. Therefore, 
CE can be viewed as an operational approach to attain SE if the 
system-wide information required for solving SE is not 
available. It is because only the local information of stationary 
interference 1

nI  and its first derivative 1 1/n nI P∂ ∂  is required 
to formulate problem (9), and this information can be obtained 
using measurements performed at the receiver.  

In addition, we are interested in the existence of other CEs 
besides these two points. The following proposition indicates 
that infinite CEs may exist. 

Proposition 3 (Infinite Set of CE): Suppose that all the users 
form conjectures according to Table I. The water-filling game 
may admit an infinite set of CE. 

Proof: It can be proved using the maximum theorem and the 
implicit function theorem. Detailed proof is provided in [16]. 
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Fig. 1. Structure of conjectural equilibria in water-filling games. 

In summary, proposition 1, 2, and 3 characterize the 
existence and structure of conjectural equilibrium in water-
filling games. As shown in Fig. 1, NE and SE are both special 
CE. Open sets of CE that contain NE and SE may exist in the 
β - γ  plane. SE attains the maximal data rate that a foresighted 
user can achieve. If the foresighted user properly sets up its 
parameters ,β γ , the solution of CE in problem (9) coincides 
with the solution of SE in problem (5). More importantly, as 
opposed to the SE in which the knowledge of the system-wide 
private information is required, CE assumes that the foresighted 
user knows only its stationary interference and the first deriva-
tives with respect to the allocated power, which greatly reduces 
the complexity of information acquisition.  

IV. ACHIEVING DESIRABLE CONJECTURAL EQUILIBRIA 
Since proposition 3 shows that infinite CEs may exist and 

SE is the most desirable CE for a foresighted user, it should 
wisely choose the parameters ,n nβ γ  of belief functions to 
attain SE as a CE. Moreover, the declarative conclusions drawn 
in Section III provide no hint on how to approach the CE. 
However, in practice, it is more important to construct 



algorithmic mechanisms to attain the desirable CE. This section 
proposes that users can update their beliefs in the repeated 
interaction setting and numerically examines their performance.  

A. Conjecture-based Rate Maximization 
Table II summarizes the dynamic updates of all users’ states, 

belief functions, and optimal actions in the water-filling game. 
Specifically, at iteration t , users’ states ,k tI  are determined by 
their opponents’ power allocation. User 1 updates the para-
meters ,n n

t tβ γ  in its belief functions based on its state 1,
n
tI  and 

allocated power 1,
n
tP , and it also updates its power allocation 

1, 1t+P  based on current operating points 1,tP  and its belief 1,tI . 
At the same time, myopic users 2, ,K  set their belief equal 
to their experienced interference and update their power 
allocation based on the water-filling strategy. Note that Table II 
implicitly assumes that user 1 will update after user 2, ,K ’s 
IW algorithms converge such that user 2, ,K ’s power allo-
cations ,k tP  at time t  can be regarded as an equilibrium state. 
We can see from Table II that user 1 needs to complete two 
updates at each iteration. The entire procedure in Table II that 
enables the foresighted user to build beliefs and improve its 
performance is named “Conjecture-based Rate Maximization”. 
Appropriate rules for updating beliefs are discussed as follows. 
Update1: ,n n

t tβ γ  
We have ( ) ( )1 1

1 1
n n n n nI P− −= + − +h I G h I G gν  from 

proposition 1, user 1’s belief function takes the form of 1
nI =  

1
n n nPβ γ− , and it satisfies 1 1

n nI I=  at CE for any 
{ }1, ,n N∈ . As discussed in the previous section, by setting 

1 1 1 1/n n n n nI P I Pβ = − ⋅∂ ∂  and 1 1/n n nI Pγ =−∂ ∂ , we can 
preserve all the local information of the original SE problem (5) 
around operating point 1,tP . Therefore, we can update n

tβ  and 
n
tγ  using ( )

,
1 1 1 1/n n n n n

t I P I Pβ
=

= − ⋅∂ ∂
tP P1 1

  and n
tγ =  

,
1 1/n nI P =−∂ ∂

tP P1 1

. User 1 can estimate the parameters using 
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for small ε  in which 1 1 1
1 1 1 1{ , , , , , }n n NP P P P− − +=1

nP . 

After Update1 in each iteration, user 1 needs to solve 
problem (9). If proposition 2’s assumption is not satisfied, 
problem (9) may belong to non-convex optimization, which is 
generally hard to solve. However, we are able to show that, as 
long as the number of frequency bins N  is sufficiently large, 
problem (9) satisfies the time-sharing condition [9], which 
ensures the primal optimum is a convex function of the power 
constraint, and hence, the global optimum can be efficiently 
computed using the dual approach. 

Proposition 4 (Satisfaction of Time-sharing Condition): 
As the total number of sub-carriers N  goes to infinity, problem 
(9) satisfies the time-sharing condition. 

Proof: Due to space limits, the definition of time-sharing 
condition and the details of the proof are omitted. The reader is 
referred to [16]. 

Update2: 1, 1t+P  
It is shown in [9] that, if an optimization problem satisfies 

the time-sharing property, it has a zero duality gap, which leads 
to efficient dual algorithms that solve the non-convex problem. 
Consider the dual function 

( )
1

1
2 1

1 11
max log 1

N n
n

n n n n
t tn

P
d P

P
η η η

σ β γ′ =

⎧ ⎫⎛ ⎞⎪ ′ ⎪⎪ ⎪⎟⎜ ′⎟= + − +⎜⎨ ⎬⎟⎜ ⎟⎜⎪ ⎪′+ −⎝ ⎠⎪ ⎪⎩ ⎭
∑ max

1P
P

. 

Since ( )d η  is convex, a bisection search in η  converges to the 
global optimum. Specifically, Algorithm 1 summarizes such a 
dual method that solves problem (9) using bisection update. 
Hence, we can solve problem (9) regardless of its convexity. 
Algorithm 1 :  A dual method that solves problem (9) using bisection update 

input: { } { } { }1 , , ,n n n
t tσ β γ max

1P   

initialization : ( )min max 0 min max, , /2, 0i= + =η η η η η  

repeat  

set 1
1 1

NP P⎡ ⎤= ⎢ ⎥⎣ ⎦1P  where 

1 1

1
1 2 1

0 1 1
arg max log 1

n n n n
t t

n
n n

in n n nP and P t t

P
P P

Pγ β σ β γ′ ′≥ ≤

⎛ ⎞′ ⎟⎜ ′⎟= + −⎜ ⎟⎜ ⎟⎜ ′+ −⎝ ⎠
η . 

if 1
n

n
P <∑ max

1P , max i=η η ; else min i=η η . 

( )1 min max /2, 1i i i+ ← + = +η η η . 

 until iη  converges 

Table III. A dual algorithm that solves problem (9).  

1,tR
1
cR

•1
SER

•

•
•

1,tP

1
cP

1
SEP

 
Fig. 2. Mismatch between problem (5) and (9). 

Table IV summarizes the entire procedure of algorithm 
“Conjecture-based Rate Maximization” (CRM). We make 
several remarks about this algorithm. First, since we want to 
achieve better performance than NE, the initial operating point 
1,0P  is set to be the power allocation strategy 1

NEP  that user 1 
will choose if it adopts the IW algorithm. Second, in Update2, 
the global optimum c

1P  is not directly used to update 1, 1
n
tP + . As 

shown in Fig. 2, this is because problem (9) is only a local 
approximation at ,t1P  of the original SE problem (5) that we 
want to solve. Using c

1P  to update 1, 1t+P  may decrease the 
actual achievable rate 1R , if a mismatch between problem (5) 
and (9) exists for the solution c

1P . Therefore, Update2 adopts 
line search to improve the achievable rate. Third, as opposed to 
the two-user algorithm proposed in [7], CRM is designed for 
the general multi-user scenario regardless of the number of 
users. Last, CRM is not guaranteed to converge. It may stop 
with 0v =  and ,

c
t ≠1 1P P  in Update2, i.e. the maximizer of 



1R  in the interval between ,t1P  and c
1P  in Fig. 2 is ,t1P . 

However, it can be verified that, since 1R  does not decrease, 
CRM terminates in limited iterations. 

B. Illustrative Numerical Examples 
We compare the performance of CRM with the IW algorithm 

and the two-user suboptimal algorithm (TSA) that searches SE 
assuming perfect knowledge of its opponent’s private 
information [7]. We simulate a system with 200 sub-carriers 
over the 10-MHz band. We use a four-ray Rayleigh model with 
the exponential power profile and 100 ns root mean square 
delay spread. 

Required iterations  
1t =  2t =  3t =  4t = 5t ≥

CRM 0.59 0.07 0.26 0.07 0.01 
Modified CRM 0.34 0.05 0.40 0.19 0.02 

 

Table V.  Iterations required by different CRM algorithms.  
We first simulate the two-user scenario with 200= =1 2P P  

and 1 2 0.01n nσ σ= = . The total power of all rays of 11
nH  and 

22
nH  is normalized as one, and that of 12

nH  and 21
nH  is 

normalized as 0.5. We tested 105 sets of frequency-selective 
fading channels where the Nash equilibrium exists. Denote user 
i’s achievable rate using CRM, IW and TSA in [7] as iR , NE

iR , 
and SE

iR′  respectively. Fig. 3 shows the simulated cumulative 
probability of the ratio of iR  over NE

iR  and SE
iR′ . The curve 

indicates that there is a probability of 59% that CRM returns 
the same power allocation as IW. The average improvement for 
user 1 of CRM over IW is 16.8%, which achieves almost the 
same performance as TSA. As shown in Fig. 3, 1 1/ SER R ′  is 
distributed symmetrically with respect to 1 1

SER R′= . CRM 
provides for user 2 an average improvement of 20.7% over IW, 
which is smaller than TSA. In very few cases, CRM results in a 
rate 2R′  smaller than 2

NER  in the IW algorithm.  

The iteration time required by CRM is summarized in Table 
V. As mentioned above, CRM stops after just one iteration with 
a probability of 59% due to the problem mismatch shown in 
Fig. 2. In most scenarios, CRM terminates within 4 iterations 
and the average number of required iteration is only 1.84. To 
further improve the performance of CRM, we can modify the 
original CRM to handle the problem mismatch between (5) and 
(9). Notice that problem (9) is only a local approximation of 
problem (5) at ,t1P . Additional constraints can be added in 
Algorithm 1, such that the optimum of problem (9) is searched 
only in a certain region around ,t1P . For example, ,| |n n

tP P′ −1 1  
can be restricted within a certain threshold when performing 
Algorithm 1 for any { }1, ,n N∈ . We simulated the two-user 
scenarios with additional restriction of  ,| | 1n n

tP P′ − ≤1 1 . Fig. 4 
shows the simulated cumulative probability of / NE

i iR R  for 
this modified CRM. As opposed to CRM, the probability that 
the modified CRM returns the same power allocation strategy 
as IW is reduced to 36% and the average performance 
improvement is also increased for both users. Specifically, the 
average performance improvement for user 1 is 24.4% and that 

of user 2 is 33.6%. However, Table V shows that the 
improvement is achieved at the cost of more iterations. 
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Fig. 3. Cdfs of / NE

i iR R  and / SE
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Fig. 4. Cdfs of / NE

i iR R  for modified CRM. 

We also tested performance of modified CRM in multi-user 
cases where TSA cannot be applied. We simulated the three-
user scenarios with 200=kP  and 0.01n

kσ = . The total power 
of all rays of n

kkH  is normalized as one, and that of ( )n
ijH i j≠  

is normalized as 0.33. Fig. 4 shows the simulated cdf of 
/ NE
i iR R  . The average improvement for user 1 of modified 

CRM over IW is 26.3%, and that of the rest users is 9.7%. We 
can see that, it benefits most of the participants in the water-
filling game if a foresighted user forms accurate conjectures 
and plays the conjecture equilibrium strategy. 

V. CONCLUSION 
This paper introduces the concept of conjectural equilibrium 

in non-cooperative water-filling games and discusses how a 
user can model its experienced interference as a function of its 
own power allocation in order to improve its own data rate. The 
existence of conjectural equilibrium is proved, and both Nash 
equilibrium and Stackelberg equilibrium are shown to be 
special cases of conjectural equilibrium. Practical algorithms 
based on conjectural equilibrium are developed to determine 
desirable power allocation strategies. Numerical results verify 
that a user forming proper conjectures can improves both its 



own achievable rate as well as the rates of other participants, 
even if it has no a priori knowledge of its competitors’ private 
information. 
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Table I.  Comparison among NE, SE, and CE in water-filling games. 

 User 1 User 2, ,K  

State ,k tI  , 1 ,1,
Kn n n

k t i i ti i k
I Pα

= ≠
=∑  

Belief function 
:k k ks →A S  ( )1, 1, 1, 1,, , ,n n n n n n n n

t t t t t t t tI P I Pβ γ β γ← = −1Update , , ,1,
Kn n n n

k t k t ik i ti i k
I I Pα= ≠= =∑  

Action 1, ,, ,t K ta a  ( )1, 1 1, 1,,t t t+ ← 2UpdateP P I  ( ), 2 ,1
argmax log 1

k k

N n n n
k t k k k tn

P Iσ′ ∈ =
⎡ ⎤′= + +⎢ ⎥⎣ ⎦∑APP

Table II.  Dynamic updates of the play.  

Conjecture-based Rate Maximization 

initialization : 1,0 10, NEt = =P P  

repeat  

I.  ( )1, 1,, ,n n n n
t t t tI Pβ γ ← 1Update . 

II. ( )1, 1 1, 1,,t t t+ ← 2UpdateP P I , which includes: 

1) Use Algorithm 1 to calculate the global optimum c
1P  of problem (9) with ,n n n n

t tβ β γ γ= = . 

2) Search in the interval ( ) ( ), 1 0 1c
tv v v+ − ≤ ≤1 1P P  and find the power allocation s

1P  maximizing user 1’s rate 1R . 

3) , 1 , 1s
t t t+ ← = +1 1P P . 

until no improvement can be made. 
Table IV.  Conjecture-based rate maximization.  


