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Abstract—The exponential back-off mechanism, proposed for
reducing MAC-layer contention in the 802.11 standard, is sub-
optimal in terms of the network throughput. This back-off
mechanism and its improved variants are especially inefficient
under unknown dynamics such as packet arrivals and user
entry/exit. In this paper, we formulate the problem of optimizing
this back-off mechanism as a Markov decision process, and
propose online learning algorithms to learn the optimal back-
off schemes under unknown dynamics. By exploiting the fact that
some components of the system dynamics (such as protocol states)
are known because the users follow the common 802.11 protocol,
we propose a post-decision state (PDS)-based learning algorithm
to speed up the learning process. Compared to traditional
Q-learning algorithms, the advantages of the proposed online
learning algorithm are that 1) it exploits partial information
about the system so that less information needs to be learned
in comparison to other learning algorithms, and 2) it removes
the necessity for action exploration which usually impedes the
learning process of conventional learning algorithms (such as Q-
Learning). We prove the optimality of the proposed PDS-based
learning algorithm and via numerical results demonstrate the
improvement over existing protocols and Q-learning in terms of
throughput and convergence speed. We first address this problem
from a single-user perspective and later describe the challenges
involved and present new insights into the multi-user learning
scenarios, especially in cases where the MDP models of the users
are coupled with each other.

I. INTRODUCTION

Contention-based protocols are the de facto MAC-layer
access schemes in modern day wireless networks [1]. They
have been shown to outperform standard multiple access
schemes such as TDMA and FDMA when the network load
is low (few users in the network) and all users do not have
packets to transmit at every time instant [1]. However, when
the network load increases, random access schemes tend to
create more collisions and as a result, pave the way for
protocols based on scheduling [2]. This can be achieved only
at the expense of a centralized controller which may not exist
in most decentralized wireless networks. Hence, in this paper,
we consider improving the performance of the distributed coor-
dination function (DCF) protocol (that addresses contention-
based medium access in 802.11) via reinforcement learning
(RL) techniques.

DCF uses Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) to achieve multiple access commu-
nication. In addition, it can employ a 4-way handshaking
mechanism based on the RTS (request to send)-CTS (clear
to send) protocol to transmit data packets; see [1] for more
details. Upon receiving an acknowledgement (ACK) for the
transmitted data packets, the source node enters an idle/wait
state before it starts transmitting again. In the wait state, it
chooses a back-off window and a random back-off time (which
is between 0 and the back-off window), and counts down the
back-off time in the time instants when the medium is sensed
to be idle (i.e., no other node is using the channel). The

node can again access the wireless medium when its back-
off counter expires (i.e., the back-off time is 0). After data
transmission, if the ACK is received successfully, the node
chooses the minimum back-off window and if not, it enters into
an exponential back-off mode where the back-off window size
is doubled for every retransmission, until a limit is reached.

Collisions can occur when different nodes in the network
send an RTS at the same time (which may result in packet
corruption) and thereby do not receive a CTS in response
to their request. When this happens, each node doubles the
previously chosen back-off window size and enters the wait
state. Such an exponential back-off mechanism reduces the
number of collisions for two reasons. First, there are fewer
attempts to access the medium due to the back-off. Second,
there are even fewer simultaneous attempts to access, because
the back-off time is randomly chosen and is likely to be
different across different nodes/users.

Various studies have shown that this exponential back-off
mechanism is not efficient in terms of network utilization [3]-
[13]. For example, the back-off window size chosen should
be higher (lower) when the number of users i.e., the network
load increases (decreases) so as to avoid frequent collisions.
Moreover, it is important not to reset the back-off window
size to its minimum value after every successful transmission.
This intuition led to several heuristic solutions [3]-[13]. These
approaches choose the back-off window size based on the
number of users present in the network (which is often
impossible to estimate) or the priority of the users in the
network. However, the previous works [3]-[13] do not give
attention to the arrival process of data packets, which directly
affects the transmission strategies. For example, when the
number of packets in the buffer is higher, the user may choose
smaller back-off values so as to transmit data packets more
often and avoid any buffer overflows or holding costs. Also,
prior works fail to provide theoretical guarantees about the
performance of these heuristics. In this work, we theoretically
prove that the proposed learning algorithms converge to the
optimal strategies. Table I shows a comparison of the related
works.

TABLE 1. COMPARISON BETWEEN RELATED WORKS
Heuristic Algorithms Q-Learning PDS-Learning
’ [3]{13] (proposed)
Unknown Packet Arrivals Considered No Yes Yes
(model assumed)
User Entry/Exit Yes Yes Yes
Optimal back-off No Yes Yes
(asymptotically)

Convergence time Slow Slow Fast
Action exploration N/A Yes Not required
Environment structure exploitation No No Yes

In this paper, we study the MAC layer back-off window
optimization problem from a RL perspective by developing a
PDS-based learning algorithm and obtain the optimal transmis-
sion strategies (that choose the optimal back-off time) when the
packet arrival process and network load are unknown a priori



and can be dynamic. The RTS-CTS handshake mechanism
is modeled via a Markov decision process (MDP) approach
in Section II. A key difference from the standard 802.11
protocol is that we choose the back-off window based on the
system state optimally, instead of the exponential mechanism
proposed in the 802.11 standard. A novel decomposition rule
developed in Section III splits the MDP into known and
unknown components to speed up the convergence of the
RL algorithm. As will be shown in Section IV, the proposed
algorithm performs better than the state-of-the-art algorithms
[3]-[13]. We also discuss the behavior of these single-user
learning algorithms when they are extended to multi-user
scenarios in Section IV and explain the issues that arise when
dealing with multi-user systems. Specifically, we consider
situations where the users’ MDPs are coupled with each other
but they cannot communicate with others, which is different
from the assumptions made in [14]-[16]. These issues were
not discussed before in the literature and hence provide a
new perspective on the commonly encountered multi-user
scenarios. Finally, we conclude the paper in Section V.

II. MDP MODEL

We consider a wireless network with an unknown number
of users communicating on a single frequency channel. We
first study the MAC layer contention access problem from
a single user perspective and treat all other users as part of
the environment. Hence, we model the network load (i.e., the
transmissions from other users) via an unknown parameter p
that indicates the probability with which the user under study
faces collisions. For example, a higher (lower) value of p
indicates the presence of a larger (smaller) number of users [2].
We next discuss the MDP model formulation of this 802.11
wireless network, which is also shown in Fig. 1.

A. Wireless Medium State

The wireless medium state at time n, denoted by m",
can belong to one of the two possible states in the set
M = {BUSY,FREE}. The state is BUSY when the channel
is being used by others, and is IDLE otherwise. Note that
it is taken to be IDLE when the user under study is using
the channel. Since the back-off window sizes chosen by other
users are unknown, the evolution of the medium state from
m"” to m™*! is unknown. More specifically, the medium state
transition probabilities are unknown. We assume that once the
user accesses the wireless channel, the medium stays in the
FREE state until the packet transmission is completed.

B. 802.11 Protocol States

To denote the various events involved in the RTS-CTS
protocol, the protocol state at time n is denoted by pr™ which
can take one of the following 4 possible values pr'* € P =
{SEND RTS, RTS COLLISION, CTS RECEIVED, WAIT}.
When the medium is sensed to be BUSY, the user is assumed
to be in the WAIT state by default. When the medium is
sensed to be FREE, the user decrements the back-off counter
to 0 and then tries to reserve the channel by sending a RTS
packet to its destination node. At this point, the protocol state
is taken to be SEND RTS. Depending on whether this RTS
packet collided with another users’ RTS or not, the protocol
enters the RTS COLLISION or CTS RECEIVED states with
probability p and 1 — p respectively. When the RTS faces
collision (identified by the fact that the source node did not
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receive a CTS packet within a pre-specified time), the user
enters the WAIT state and waits for its turn to access the
channel again (collisions may occur in other states as well
which are ignored for ease of exposition in this paper, but can
be easily included into this model by considering additional
state transitions). However, if no collision occurs, the protocol
enters the CTS RECEIVED state where it sends a data packet
to its intended destination node and awaits an ACK packet.
It is assumed that the ACK packet is received without any
errors via the feedback channel. Also, it is assumed that the
user is aware of the probability (PLR = packet loss rate) of
packet failure.

C. Back-off State

Note that in this work, as mentioned earlier, we choose
the back-off window based on the system state (details
follow shortly). Specifically, we choose it in the range
[CWinin, CWinax] Where CWiin and CWiax are the mini-
mum and the maximum values that can be chosen as per the
802.11 standard. Once a back-off window is chosen, a back-off
counter keeps track of the back-off value as follows.

The user’s transmission decision depends on the remaining
back-off when the medium is sensed to be FREE. The remain-
ing back-off at time n is denoted by ¢ € [0, CWynax] Where
C'Whax is the maximum back-off that can be chosen by the
user when it enters the WAIT state. When the medium state is
BUSY, the back-off state is frozen i.e., ¢c*t1 = ¢™. When the
medium is FREE and the protocol is in WAIT state, the state
evolves as ¢! = max(0,c™ — 1). When the user is in the
SEND RTS protocol state, the back-off state is again frozen
i.e., "1 = ¢". Since the user enters the WAIT state from
the RTS COLLISION and CTS RECEIVED states, the user
chooses a new back-off window size (this choice is discussed
shortly) and this value is taken to be the next state ¢"*!.

D. Transmission Buffer State

The transmission buffer follows the first-in first-out queu-
ing principle [19]. At time n, [ data packets are injected into
the transmit buffer according to the distribution p!(l) which is
unknown a priori. The transmit buffer can hold a maximum
of B packets. Thus the buffer state b € B = {0,1,2,..., B}
evolves as b"t1 = min(b™ — f™ + [, B), where f" is the
number of packets transmitted at time n. It is easy to see that
f™ depends on a) whether the user got access to the wireless
channel or not and b) whether the packet faced any collisions
or incorrectly decoded due to bad wireless channel conditions.
More specifically, f™ > 1 with probability 1 — PLR when
m” = FREE and pr” = CTS RECEIVED; else it is 0 (as



the user does not transmit packets in any other states). As
mentioned earlier, the unknown arrival rate and the buffer state
evolution directly influences the back-off window sizes chosen.

Based on the above discussions, the overall state of the
environment at time n is given by s™ = [b™,m",pr", c"].
Since the packet arrival rate and the network load are un-
known, the buffer and the medium state transition probabilities
are unknown a priori. Along similar lines, the probability
with which the protocol transitions from SEND RTS state
to RTS COLLISION or CTS RECEIVED states is unknown
because it depends on p. In contrast, based on the discussion
in Section II-C, the state transition probability of the back-off
window is known given the protocol states. The known and
unknown system dynamics, which will be used to speed up
the learning process of PDS, will be discussed in more detail
in Section III.

E. MDP Actions

The user must choose the best transmission probability in
order to maximize its rewards in the presence of other users
in the network. It does this by choosing the back-off window
optimally. Specifically, the user can choose an action (the back-
off value at this time instant is therefore the action chosen)
denoted by a” = cw™ where cw”™ € [CWiin, CWiax|. The
action choice depends not only on the estimated network load,
but also on the buffer size b™ as will be discussed soon.

F. Rewards and Costs - Feedback for the MDP

The user gets feedback from the environment in terms of
the rewards and costs associated with the various actions i.e.,
back-off windows chosen. They enable the user to modify its
actions in an attempt to maximize its overall reward. In this
work, since we only consider the MAC layer protocol, we
restrict ourselves to the following rewards/costs - throughput
obtained, energy expended and penalty due to RTS colli-
sion. When the user transmits a packet successfully in the
CTS RECEIVED state, it receives a positive reward 7. In
this paper, we consider the expected throughput reward i.e.,
(1— PLR)T when the user enters the CTS RECEIVED state
(as it sends data correctly with probability 1 — PLR). The
user expends energy X when it sends a RTS packet and
energy 10E when it sends a data packet (captures the effect
of longer data packet in comparison to the control packet). If
the protocol enters the RT'S COLLISION state, then there is a
penalty C' as the user did not choose the appropriate back-off
window to avoid collisions. The user maximizes the cumulative
discounted reward over an infinite time horizon. We next
discuss the post-decision state-based (PDS) learning algorithm
which uses these rewards to learn the optimal actions.

III. PDS-BASED ONLINE LEARNING

Conventional learning algorithms such as Q-learning learn
the value of the state-action pairs, in an attempt to obtain the
optimal policies, under the assumption that the system dynam-
ics are completely unknown a priori. Hence, the optimality of
such learning algorithms is only guaranteed when all possible
state-action pairs are visited infinitely many times. However, in
practice, rewards/costs and the transition probabilities are only
partially unknown a priori. The known dynamics of the envi-
ronment structure can be exploited to develop efficient learning

algorithms that are significantly faster than Q-learning. Post-
decision state-based (PDS) learning [17]- [19] is one such
algorithm that separates the known and the unknown compo-
nents (both rewards/costs and the state transition probabilities),
to achieve an improved and faster learning performance.

We briefly explain the PDS algorithm in the context of the
802.11 framework introduced in Section II. A post-decision
state describes the environment after the known dynamics take
place and before the unknown dynamics can occur. Denote
the PDS as § € S where S indicates the set of possible
environment states described in Section II (i.e., the set of PDSs
is the same as the set of original environment states). For the
problem under consideration, the PDS s™ at time n is related
to the states s™ and s”*! as below;

PDS at time n: §" = [ — fr,mtpt, e,

State at time n + 1: "7 = [b" — f" + 1" mn Tt pn

While we only showed the evolution of the buffer state above,
the states ¢, p" are known in some cases depending on the
medium and the protocol states at time n. For example when

" = FREE and pr" = WAIT, ¢"*! = &" = max(c" — 1 0)
because the back-off value is decreased when the medlum is
free. See Fig. 1 for more details.

+1’ Cn+1]'

Using PDS, the state transition probability function can be
factorized into the known and the unknown components as

)= pe(3"]s™, a")pu(s" 5", ™), (1)

where py. is the known state transition from s™ to PDS ™ and
Py accounts for the unknown state transition from 3" to s™*1.
The reward/cost function can be factored as

+Zpk "s™,

where r(s",a™) is the overall reward obtained in state
s™ when action a™ is performed; 7(s™,a™) denotes the
known rewards/costs and 7,(5",a™) indicates the unknown
rewards/costs.

p(s"tHs™, a”

r(s",a") =rg(s",a a)ry(§",a™)  (2)

For the current problem, p; is given by
f(bn . Bn‘mn7p,’,n)
x po(c" e, pr,m

pr(8"]s",a™) =p
"oew™),  (3)
where p/ (b" —b"|m™, pr™) is the probability of sending b" —b"
packets (it is known because the user sends packets only in
the CTS RECEIVED state) and p°(c"*L|c™, m™, pr™, cw™) is
the probability that the back-off changes to ¢**! from c”. The
unknown transition probability p,, is given by

Pu(s" T3, am) = ™ = B x ™ (™ ™)
X pprotocol (prnJrl |p,rn7 mn’ Cn)’ (4)
where [" = b*t! — b" is the unknown number of packets
entering the buffer at time n, p™(m™*!|m™, pr*) indicates
the medium state transition probability (depends on p), and
pProtocol (ppntl|pr m™ c") is the protocol state transition
probability (independent of the action taken as the state vari-
ables m™, pr™ and c¢” decide the next state). p,, is independent
of the actions a”, a feature that can be exploited to increase
the convergence rate of PDS, which will be discussed shortly.



All the rewards/costs are known in the current model, therefore

ry (8™, a™) = 0.
Following [19], the optimal PDS value function V*(é”) is
f/ ~n Zpu n+1|sn)V*( n+1) 5)
sntl

V*(s") = max {ru(s" )47 Y _pr(5"]s"

sn

")V}, (©)

where A is set of actions and v € [0, 1) is the discount factor.
The optimal policy is then evaluated as

Ippg(s™) = arg max {rk(s”, a™)
aneA
+ ’szk(gn|5na a”
gn

The value of the PDS state " in terms of the next state s
is given by (5) and the value of the state s™ in terms of the
PDS state s" is given by (6). Since the dynamics are known
in the state transition from s™ to §" and the actions taken
do not affect the transition from §” to s”*!, we can use the
greedy algorithm (indicated by the max function) to find the
optimal actions that can be taken at a given time instant n, as
seen in (6). In other words, since the unknown dynamics are
independent of the actions taken, no exploration-exploitation
routine is necessary to find the optimal policies.

I COI NG

n+1

The PDS-based online learning algorithm is summarized

below [18]
+Zpk s a) V()

v (s"t) = max{rk ntl
f/n—&-l(gn) _ ) + a7z,yvn(sn+1) (8)

(1 —a™)Vn(s"

Theorem 1: The post decision state-based learning al-
gorithm converges to the optimal post decision state value
function V*( 5) when the sequence of learning rate o™ satisfies
Yoo ga™ =00 and Y oo (a™)? = oco.

Proof: Due to space limitations, we only sketch the proof here.
For each PDS 35, define F5(V) = maxqea(r(s,a) + vV (9)),
where s and s satisfy the relationship defined earlier. F' :
RISl — RISl is a mapping such that F(V) = [F3(V)]s
(i.e., for all PDS). From [17]{19], the convergence of the
proposed algorithm is equivalent to the associated O.D.E given

by V = F(V)—V. Since F is a maximum norm ~y-contraction
[17], the stability of the unique equilibrium point of the O.D.E
and thereby the proposed algorithm (which corresponds to
V*(5)) are guaranteed [18]. This further enables to learn the
optimal value function V*(s) and the optimal policy I} .

IV. NUMERICAL RESULTS
A. Performance improvement in the single-user setting

We first discuss the learning results in single-user settings.
Though we do not consider the various physical layer param-
eters that are involved in the 802.11 standard, notice that the
impact of channel conditions and thereby the transmit power,
modulation and coding constraints can be easily included in
this framework by following the formulation in [19]. Unless
otherwise specified, we have B = 25, CWy,i, = 2, CWiax =
16, the arrival distribution is taken to be Poisson with mean

arrival rate 1 packet/second, and the discount factor v = 0.98.
The reward on throughput 7' = 100, the energy cost £ = 5,
and the collision penalty C' = 5 (the behavior of the algorithms
is independent of the absolute values of these parameters).
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Fig. 2. Cumulative average reward obtained using various algorithms in the
presence of low network load (p = 0.1), T = 100,F = 5,C = 5, and
PLR =0.1.

Figs. 2 and 3 show the performance of the various con-
tention access algorithms in terms of the cumulative average
reward when PLR = 0.1 and the collision probability p = 0.1
and p = 0.9 respectively. These cases capture the scenarios
where the network load is low and high respectively. Here
we show the performance of the PDS learning algorithm
and the traditional Q-learning algorithm along with three
rule-based (deterministic policies) approaches, which are a)
randomly choosing a back-off in the RTS COLLISION and
CTS RECEIVED states (RULE-1), b) choose the minimum
back-off window size when the packet is delivered successfully
and the maximum window size when there is a packet failure
or a RTS collision (RULE-2) and c¢) choose the back-off
window size in between C'Wy,i, and CWiyax as per the 802.11
protocol and d) exponential increase exponential decrease
(EIED) algorithm [7] which was proposed as an alternative
to the 802.11 DCF mechanism, especially when the network
load is high. In EIED, the back-off window exponentially
increases by 2 when there is a collision or a packet failure and
exponentially decreases by 2 when there is a packet success.

Cumulative average reward
| |

2 3 4
Time slot x10*

Fig. 3. Cumulative average reward obtained using various algorithms in the
presence of high network load (p = 0.9), T = 100,FE = 5,C = 5, and
PLR =0.1.

When the network load is low ie., p = 0.1, it is known
that the 802.11 protocol performs well [2], [7] and hence
high rewards are achieved as seen in Fig. 2. Notice that
the PDS learning algorithm performs as well as the 802.11
protocol and the EIED algorithm but the Q-learning algorithm
is worse in comparison to these algorithms. While the PDS
algorithm achieves higher rewards by exploiting the knowledge
of the known dynamics of the environment and thereby avoids
action exploration, the Q-learning algorithm performs worse
because of its exploration-exploitation procedure. Also, as
expected, these algorithms perform much better than the other
deterministic rule-based approaches.



When the network load is high ie., p = 0.9, the sub-
optimality of the 802.11 protocol is well-understood [2], [7]
and is in agreement with the results seen in Fig. 3. Interestingly
it is seen that while the PDS learning algorithm performs better
than the Q-learning algorithm and RULE-1, it approaches the
performance of the RULE-2 algorithm. As discussed in [7],
the EIED algorithm performs better than the 802.11 protocol
when the network load is high and is close to the performance
achieved by the PDS algorithm. The PDS, EIED and RULE-2
algorithms consistently choose higher back-off window values
which explains the reason for their similar performance.
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Fig. 4. Cumulative average reward obtained using various algorithms in the
presence of moderate network load (p = 0.5), T' = 100, E = 10,C = 10,
and PLR = 0.1.

Fig. 4 shows the performance of the various algorithms
when p = 0.5 ie., the case of a medium network load.
While the EIED algorithm outperforms the 802.11 protocol
[7], the PDS learning and the Q-learning algorithms perform
significantly better than both of them. Thus the true benefit
of the learning algorithms over most heuristic algorithms is
seen in the presence of medium network loads. In addition to
the higher rewards obtained by the PDS learning algorithm,
it is seen that it converges much faster than the Q-learning
algorithm. This improved performance is due to the splitting
of the environment dynamics into the known and unknown
components and avoiding the action exploration phase as
discussed earlier.

Fig. 5 shows the back-off window values chosen by the
PDS and Q-learning algorithms. While the PDS learning
algorithm converges fast to the optimal policy (here, policy
refers to choosing the optimal back-off window size), the Q-
learning algorithm does not converge even after a long time as
the exploration phase depends on the number of times a state
and action pair has been visited. This is because the optimality
of the Q-learning algorithm is guaranteed only when all the
possible state-action pairs are visited infinitely many times.
The mean back-off window sizes chosen by the PDS learning,
Q-learning and the 802.11 protocols are shown in Table II as
a function of p. As expected, the back-off window size is a
monotonically increasing function of the collision probability
p (as network load increases, the user has to wait for longer
time intervals to avoid any potential collisions with the other
users).

TABLE II. MEAN BACK-OFF WINDOW SIZE AS A FUNCTION OF

COLLISION PROBABILITY p.

P Mean Window Size | Mean Window Size | Mean Window Size

(PDS) (Q-Learning) (802.11)
0.1 2.01 2.45 2.14
0.5 7.45 10.71 3.84

0.9 13.32 13.94 12.27
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Fig. 5. Back-off window sizes chosen at the RTS COLLISION and CTS
RECEIVED protocol states, T' = 100, E = 5,C =5, p = 0.9, PLR = 0.1.
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Fig. 6. Cumulative average reward obtained using various algorithms in the
presence of varying network load, 7" = 100, £ = 0,C = 10, PLR = 0.1.

Fig. 6 shows the performance of the various algorithms
in the presence of a varying network load (users enter and
leave the network randomly) which is modeled by varying
p. While the cumulative average reward obtained in all these
cases behaves similarly (the rewards obtained by the various
algorithms is in accordance with the changes in p because
collisions increase when p increases and leads to higher penalty
when sub-optimal back-off window sizes are chosen), it is seen
that the PDS algorithm has an advantage because it exploits
the structure of the network at every time instant, which cannot
be done in the other learning or heuristic algorithms. Overall,
the advantage of the PDS algorithm is clearly seen from the
Figs. 2-6 and Table II.

B. Multi-user setting

Consider an 802.11 network with multiple users each of
which is selfish and intends to maximize its own rewards. In
this case, the collision probability parameter p used in the
single user setting is no longer relevant as the collisions now
occur based on the decisions taken by each user. Further,
each user is intelligent and employs learning algorithms in
an attempt to learn the environment and optimizes its actions
in order to maximize its own rewards. As opposed to many
centralized algorithms, there is no message exchange or coop-
eration between these users and is hence a truly decentralized
setting. Solving a multi-user MDP problem is difficult in such
decentralized settings, especially in cases where the MDP of
each user is coupled with the others (because one user’s actions
affect the state transitions of the other users). We thus study the
performance of the single user learning algorithms developed
earlier when extended to these multi-user settings.

Fig. 7 shows the average reward achieved using different
contention algorithms in a wireless network with 10 users.
Again in this case, the PDS algorithm has a superior per-
formance in comparison with other algorithms. While the
mean (across all users) cumulative average (over the time



Q-Learning

0 PDS-Learning
—
-1

EIED 802.11

Cumulative Average Reward

0o 02 04 06 14 16 18 2

*Time slot x10'
Fig. 7. Cumulative mean reward obtained using various MAC algorithms in a
wireless network with 10 users, 7' = 100, E = 5,C = 30, and PLR = 0.1.

horizon) reward achieved by the PDS algorithm is higher,
it was observed that it is not fair in terms of the users’
wireless channel accessibility, i.e., some users access the
channel more compared to others as shown in Fig. 8. The
superior performance of PDS algorithm over Q-learning is
also evident from the mean back-off window sizes shown in
Fig. 8. Since the mean back-off window sizes of the users are
close to each other in the case Q-learning when compared to
PDS, more collisions can occur which also explains the lower
average rewards seen in Fig. 7.

The unfairness in the network utilization when using these
learning algorithms depends on the back-off window sizes
chosen by the users. For example, consider a network with
2 users, each of which is using the above algorithms to learn
the back-off window sizes. Depending on which user picks
a smaller back-off window first (since the users try various
actions), the other user will automatically be forced to choose
a higher back-off window in order to avoid collisions and the
penalties incurred. This happens because the value functions of
the PDS and Q-Learning algorithms consider the future effects
of their action choices as seen in (5), (6) and (7). Thus, they are
pessimistic in their action choices so as to avoid any impending
collisions. This in turn results in an unfair network allocation
to the users (while the overall reward can still be high as seen
in Fig. 7). These fairness issues are unavoidable, especially
in the case of decentralized multi-user systems where there
is no means of communicating with other users or there is
no centralized authority to allocate the resources. Investigating
decentralized learning algorithms that are fair to all the users
but do not need any message exchange is part of our ongoing
work.

V. CONCLUSION

In this paper, we showed via RL algorithms that the
contention-based MAC access protocols can be improved in
terms of the network efficiency by appropriately choosing the
back-off window. Firstly, for the single-user learning setting,
by using the post-decision state-based learning algorithm, we
exploited the the structure of the problem by separating the
known and the unknown components of the environment. This
improved the performance when compared to Q-learning based
algorithms and other heuristic policies widely used in 802.11-
based networks. The results suggest that a smaller back-off
window size is to be chosen when the network load is smaller
and vice versa. Fairness issues arise when these single user
algorithms are extended to multi-user settings where there is
no communication between different users. Investigating fair
multi-user learning algorithms in the context of MAC-layer
access protocols is an interesting avenue to pursue.
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Fig. 8. Sorted mean back-off window sizes of the 10 users in a wireless
network, each using the PDS or Q-learning algorithms.

REFERENCES

[11 G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535-547, Mar. 2000.

[2] J. G. Andrews et al., “Fundamentals of WiMAX: Understanding Broad-
band Wireless Networking”. Upper Saddle River, NJ, Prentice-Hall,
2007.

[3] A. Ksentini et al., “Determinist contention window algorithm for IEEE
802.11,” in Proc. PIMRC, vol. 4, Sept. 2005, pp. 2712-2716.

[4] A. Nafaa et al., “SCW: Sliding Contention Window for Efficient Ser-
vice Differentiation in IEEE 802.11 Networks”, in Proc. WCNC, New
Orleans, LA, Mar. 2005, pp. 1626-1631.

[5] Q. Pang et al, “A TCP-like adaptive contention window scheme for
WLAN,” in Proc. ICC, vol. 6, Jun. 2004, pp. 3723-3727.

[6] Y. Kwon et al., “A novel MAC protocol with fast collision resolution for
wireless LANS,” in Proc. INFOCOM, vol. 2, Apr. 2003, pp. 853-862.

[71 N. O. Song et al., “Enhancement of IEEE 802.11 distributed coordi-
nation function with exponential increase exponential decrease back-off
algorithm,” in Proc. IEEE VTC, New Orleans, Apr. 2003, pp. 2775-2778.

[8] N. Choi et al., “P-DCF: enhanced back-off scheme for the IEEE 802.11
DCE” in Proc. VTC, Stockholm, vol. 3, Jun. 2005, pp. 2067-2070.

[91 M. Ghazvini et al., “Game Theory Applications in CSMA Methods,”
IEEE Commun. Surv. and Tut., vol. 15, no. 3, pp. 1062-1087, Jul. 2013.

[10] Y. Xiao et al.,, “Game theory models for IEEE 802.11 DCF in wireless
ad hoc networks, IEEE Commun. Mag., vol. 43, no. 3, pp. S22-S26,
Mar. 2005.

[11] P. Krishna, et al, “Virtual backoff algorithm: an enhancement to
802.11 medium-access control to improve the performance of wireless
networks,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. ‘068-1075,
Mar. 2010.

[12] T. Abdelkader and K. Naik, “A localized adaptive strategy to calculate
the backoff interval in contention-based vehicular networks,” IEEE
Access., vol. 2, pp. 215-226, Mar. 2014.

[13] M. Levorato et al, “Cognitive Interference Management in
Retransmission-Based Wireless Networks,”, IEEE Trans. Inf. Theory,
vol. 58, no. 5, pp. 3023-3046, May. 2012.

[14] J. Barcelo et al., “Learning-BEB: avoiding collisions in WLAN,” in
Proc. Eunice Summer School, Brest, France, Sept. 2008, pp. 1-8.

[15] M. Fang et al., “Decentralised learning MACs for collision-free access
in WLANS,” Wireless Netw., vol. 19, no. 1, pp. 83-98, May 2012.

[16] W. Zame et al., “Winning the Lottery: Learning Perfect Coordination
with Minimal Feedback,” in IEEE J. Sel. Topics Signal Process., vol. 7,
no. 5, pp. 846-857, Oct. 2013.

[17] N. Salodkar et al., “An On-Line Learning Algorithm for Energy
Efficient Delay Constrained Scheduling over a Fading Channel,” IEEE
J. Sel. Commun., vol. 26, no. 4, pp. 732-742, Apr. 2008.

[18] E Fu and M. van der Schaar, “Structure-Aware Stochastic Control
for Transmission Scheduling,” IEEE Trans. Veh. Tech., vol. 61, no. 9,
pp- 3931-3945, Nov. 2012.

[19] N. Mastronarde and M. van der Schaar, “Joint Physical-Layer and
System-Level Power Management for Delay-Sensitive Wireless Com-
munications,” IEEE Trans. Mobile Comput., vol. 12, no. 4, pp. 694-709,
Apr. 2013.



