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Abstract

Modeling continuous-time physiological processes that manifest a patient’s hidden (and
evolving) clinical states is a key step in approaching many problems in healthcare. In
this paper, we develop the Hidden Absorbing Semi-Markov Model (HASMM): a versatile
probabilistic model that is capable of capturing the modern electronic health record (EHR)
data. Unlike existing models, an HASMM accommodates irregularly sampled, temporally
correlated, and informatively censored physiological data, and can describe non-stationary
clinical state transitions. Learning an HASMM from the EHR data is achieved via a novel
forward-filtering backward-sampling Monte-Carlo EM algorithm that exploits the knowledge
of the end-point clinical outcomes (informative censoring) in the EHR data, and implements
the E-step by sequentially sampling the patients’ clinical states in the reverse-time direction
while conditioning on the future states. Real-time inferences are drawn via an efficient
message-passing algorithm that operates on a virtually constructed discrete-time embedded
Markov chain that mirrors the patient’s continuous-time state trajectory. We illustrate
the operation of the proposed algorithms using synthetic data, and demonstrate the utility
of the HASMM model in a critical care prognosis setting using a real-world dataset for
patients admitted to Ronald Reagan UCLA Medical Center.

Keywords: Hidden Semi-Markov Models, Medical Informatics, Monte Carlo methods.

1. Introduction

Modeling the latent clinical states of a patient using evidential physiological data is a ubiqui-
tous problem that arises in many healthcare settings, including disease progression modeling
(Schulam and Saria (2015); Mould (2012); Wang et al. (2014); Jackson et al. (2003); Sweet-
ing et al. (2010); Liu et al. (2015)) and critical care prognosis (Moreno et al. (2005); Matos
et al. (2006); Yoon et al. (2016)). Accurate physiological modeling in these settings confers
an instrumental value that manifests in the ability to provide early diagnosis, individual-
ized treatments and timely interventions (e.g. early warning systems in critical care hospital
wards (Yoon et al. (2016)), early diagnosis and drug recommendation for Scleroderma pa-
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Figure 1: An episode of the diastolic blood pressure measurements (as recorded in the EHR) for
a patient hospitalized in a regular ward for 50 days and then admitted to the ICU after the ward
staff realized she is clinically deteriorating. Measurements are censored in accordance with the ICU
admission time.
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Figure 2: An episode of the systolic blood pressure measurements for a patient hospitalized in a
regular ward for 6 days and then discharged home by the ward staff. Measurements are missing in
a 24-hour period during the patient’s stay in the ward.

tients (Varga et al. (2012)), early detection of a progressing breast cancer (Bartkova et al.
(2005)), etc). Moreover, physiological modeling confers an epistemic value that manifests
in the knowledge extracted from data about the progression and severity phases of a disease
(Stelfox et al. (2012))), or the short-term dynamics of the physiological behavior of critically
ill patients (Li-wei et al. (2013)). In this paper, we develop a versatile physiological model
that fits a wide spectrum of healthcare settings, providing means for data-driven clinical
diagnosis and prognosis that capitalize on the recent availability of data in the electronic
health records (EHR)1 (Gunter and Terry (2005)).

Modern EHRs comprise episodic data records for individual (anonymized) patients; ev-
ery patient episode is a temporal sequence of clinical findings (e.g. visual field index for Glau-
coma patients (Liu et al. (2015)), CD4 cell counts for HIV-infected patients (Guihenneuc-
Jouyaux et al. (2000)), etc), lab test results (e.g. white cell blood count for post-operative

1. A recent data brief from the Office for National Coordinator (ONC) for healthcare technology shows
that the adoption of EHR in US hospitals exhibited a spectacular increase from 9.4% in 2008, 27.6% in
2011, to 75.5% in 2014 (Charles et al. (2015)).
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patients under immunosuppressive drugs (Cholette et al. (2012)), etc), or vital signs (e.g.
blood pressure and O2 saturation (Yoon et al. (2016))). The time span of these episodes
may be as short as few days in short-term hospitalization episodes (e.g. patients with solid
tumors, hematological malignancies or neutropenia who are hospitalized in a regular wards
before or after a surgery (Kause et al. (2004); Hogan et al. (2012); Kirkland et al. (2013))),
or as long as few years in longitudinal episodes (e.g. chronic obstructive pulmonary disease
may evolve from a mild Stage I to a very severe Stage IV over a time span of 10 years
(Pedersen et al. (2011); Wang et al. (2014))).

Hidden Markov Models (HMMs) and their variants have been widely deployed as a
convenient machinery for modeling general dynamical systems with the latent states that
manifest via noisy observation variables (Smyth (1994); Zhang et al. (2001); Giampieri et al.
(2005); Genon-Catalot et al. (2000); Ghahramani and Jordan (1997)). Such models have
achieved considerable success in various applications, such as topic modeling (Gruber et al.
(2007)), speaker diarization (Fox et al. (2011)), and speech recognition (Rabiner (1989)).
However, the nature of the clinical state estimation problem, together with the format of
the modern EHR data pose the following set of serious challenges that confound classical
HMM models:

1- Non-stationarity: Recently developed disease progression models, such those in (Wang
et al. (2014)) and (Liu et al. (2015)), use conventional stationary Markov chain models for
state transitions. In particular, they assume that state transition probabilities are indepen-
dent of time. However, this assumption is seriously at odds with even casual observational
studies which show that the probability of transiting from the current state to another
state depends on the time spent in the current state (Lagakos et al. (1978); Huzurbazar
(2004); Gillaizeau et al. (2015)). This effect, which violates the memorylessness assumptions
adopted by continuous-time Markovian models, was verified in patients who underwent re-
nal transplantation (Foucher et al. (2007, 2008)), patients who are HIV infected (Joly and
Commenges (1999); Dessie (2014); Foucher et al. (2005)), and patients with chronic ob-
structive pulmonary disease (Bakal et al. (2014); Wang et al. (2014)).

2- Irregularly spaced observations: The times at which the clinical findings of a pa-
tient (vital signs or lab tests) are observed is controlled either by clinicians (in the case
of hospitalized inpatients), or by the patient’s visit times (in the case of a chronic disease
follow up). The time interval between every two measurements may vary from one patient
to another, and may also vary for the same patient within her episode. This is reflected
in the structure of the episodes in the EHR records, as shown in Figure 1 and 2. Figure
1 depicts an actual diastolic blood pressure episode for a patient hospitalized in a regular
ward for 1200 hours (50 days)2. The patient’s stay in the ward was concluded with an
admission to the ICU after the ward staff realized she was clinically deteriorating. As we
can see, the blood pressure measurements in the first 20 hours were initially taken with
a rate of 1 sample per hour, and then later the rate changed to 1 sample every 5 hours3.

2. A detailed description for the data involved in this paper is provided in Section 4.
3. While Figure 1 illustrates a short-term episode for a critical care patient, similar effects are experienced

in longitudinal episodes for patients with chronic disease (see Figure 4 in (Wang et al. (2014))).
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An inference algorithm that runs in real-time for that patient must reason about her latent
state while considering not only the blood pressure measurements, but also the times at
which these samples where gathered. Thus, a direct application of a regular, discrete-time
HMM (e.g. the models in (Murphy (2002); Rabiner (1989); Yu (2010); Matos et al. (2006);
Guihenneuc-Jouyaux et al. (2000))) will not suffice for jointly describing the latent states
and observations, and hence ensuring accurate inferences.

3- Discrete observations of a continuous-time phenomena: A patient’s physiologi-
cal signals and latent states evolve in continuous time; however, the observed physiological
measurements are gathered at discrete time steps. The intervals between observed measure-
ments can vary quite significantly; as we can see in Figure 2, the systolic blood pressure for
a patient who stayed in a ward for 140 hours exhibits an entire day without measurements
4. This means that the patient may encounter multiple hidden state transitions without any
associated observed data. These effects will render more complicated learning and inference
problems since the inference algorithms need to consider potential unobserved trajectories
of state evolution between every two timestamps. This challenge, which has been ignored by
the older literature (Jackson et al. (2003); Guihenneuc-Jouyaux et al. (2000)), was recently
addressed in (Nodelman et al. (2012); Wang et al. (2014); Liu et al. (2015)), but only on
the basis of memoryless Markov chain models for the hidden states, for which tractable
inferences that rely on the solutions to Chapman-Kolmogorov equations can be executed.
However, incorporating non-stationarity in state transitions (i.e. addressing challenge (1)
in this list) would make the problem of reasoning about a continuous-time process through
discrete observations much more complicated, which creates the demand for new machinery
to handle inferences in such a setting.

4- Lack of supervision: The episodes in the EHR may be labeled with the aid of domain
knowledge (e.g. the stages and symptoms of some chronic diseases, such as chronic kidney
disease (Eddy and Neilson (2006)), are known to clinicians and may be provided in the
EHR). However, in many cases, including the case of (post or pre-operative) critical care
patients, we do not have access to any labels for the patients’ states. Hence, unsupervised
learning approaches need to be used for learning model parameters from EHR episodes.
We focus in this paper on problems where no labeling or domain knowledge is provided
for the states in the EHR episodes. While unsupervised learning of discrete-time HMMs
has been extensively studied and is well understood (e.g. the Baum-Welch EM algorithm is
predominant in such settings (Zhang et al. (2001); Yu (2010); Rabiner (1989))), the problem
of unsupervised learning of continuous-time models for which both the patient’s states and
state transition times are hidden is far less understood, and indeed far more complicated.

5- Censored observations: Episodes in the EHR are usually terminated by an infor-
mative intervention or event, such as death, ICU admission, discharge, etc. This is known
as informative censoring (Scharfstein and Robins (2002); Huang and Wolfe (2002); Link
(1989)). Unlike classical HMM settings where training sets comprise fixed length HMM
sequence instances, a typical EHR dataset would comprise a set of episodes with different

4. This may have resulted due to the patient undergoing a surgery or an intervention, or because the EHR
recording system accidentally did not receive the data from the clinicians during that day.
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durations, and the duration of each episodes is itself informative of the entire state evolution
trajectory. Learning in such settings requires novel algorithms that can efficiently compute
the likelihood of observing a set of episodes conditioned on their durations and terminat-
ing states, which is not possible using the classical Baum-Welch algorithm (Rabiner (1989)).

In order to address the challenges above, we develop a new model –which we call the
Hidden Absorbing Semi-Markov Model (HASMM)– as a versatile generative model for a
patient’s (physiological) episode as recorded in the EHR. The HASMM captures non-
stationary transitions for a patient’s clinical state via a continuous-time semi-Markov model
with explicitly specified state sojourn time distributions. Informative censoring is captured
via absorbing states that designate clinical endpoint outcomes (e.g. cardiac arrest, mortal-
ity, recovery, etc); entering an absorbing state of an HASMM stimulates censoring events
(e.g. clinical deterioration leads to an ICU admission which terminates the physiological ob-
servations for a monitored patient in a ward, etc). The HASMM is as a segment model that
accounts for the temporal correlations among the observation variables that are generated
by the same hidden state during its sojourn period (Ostendorf et al. (1996)). Moreover, the
HASMM models the physiological data gathering process (i.e. follow up visits, vital sign
gathering, lab tests, etc) as an arbitrary point process, and hence it can handle irregularly
sampled observation variables. An elaborate comparison between the HASMM and existing
models is provided in Section 5.

Real-time inference in the setting we consider is very challenging; while conventional
discrete-time forward-backward inference algorithms assume that states change only at ob-
servation times (Murphy (2002); Yu (2010))), inferences in a continuous-time setting must
take into account the time intervals between the irregularly sampled observation variables,
and reason about the latent state trajectories between every two observed variables. To
that end, we develop efficient diagnostic and prognostic HASMM inference algorithms that
can estimate a patient’s latent state, and predict her future state trajectory in real-time.
The inference algorithms deal with an irregularly and arbitrarily sampled continuous-time
state evolution process by constructing a virtual, discrete-time embedded Markov chain that
fully describes the patient’s state transitions at observation times, including potential in-
termediate transitions that can take place between the observation times. The embedded
Markov chain is constructed in an offline stage by solving a system of Volterra integral
equations of the second kind using the successive approximation method; the solution to
this system of equations, which parallels the Chapman-Kolmogorov equations in ordinary
Markov chains, describe the HASMM’s and semi-Markovian state transitions as observed
at arbitrarily selected discrete timestamps.

Offline learning of the HASMM model parameters from patients’ episodes in an EHR is
a daunting task. Since the HASMM is a continuous-time model, we cannot directly use the
classical Baum-Welch EM algorithms for learning its parameters (Rabiner (1989)). More-
over, the semi-Markovianity of an HASMM yields an intractable integral in the E-step of
the Expectation-Maximization (EM) formulation, and since the HASMM’s state transitions
are not captured by the conventional continuous-time Markov chain transition rate matri-
ces, we cannot make use of the Expm and Unif methods that were used in (Hobolth and
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Jensen (2011)), and more recently in (Liu et al. (2015)) for evaluating the integrals involved
in the E-step of learning continuous-time HMMs. To address this challenge, we develop a
novel forward-filtering backward-sampling Monte Carlo EM (FFBS-MCEM) algorithm that
approximates the integral involved in the E-step by efficiently sampling the latent clinical
trajectories conditioned on observations in the EHR by exploiting the informative censoring
of the patients’ episodes. The FFBS-MCEM algorithm samples the latent clinical states
of every (offline) patient episode in the EHR as follows: it starts from the known clinical
endpoints, and sequentially samples the patient’s states by traversing in the reverse-time
direction while conditioning on the future states, and then uses the sampled state trajecto-
ries to evaluate a Monte Carlo approximation for the E-step.

The rest of the paper is organized as follows. In Section 2, we present the HASMM
model. Inference and learning algorithms are developed in Section 3. In Section 4, we
conduct a set of experiments on synthetic data to illustrate the operation and performance
of the proposed learning and inference algorithms, and we demonstrate the utility of the
HASMM in the problem of critical care prognosis using a real-world dataset for patients
admitted to Ronald Reagan UCLA Medical Center. Conclusions are drawn in Section 5.

2. The Hidden Absorbing Semi-Markov Model (HASMM)

In this section, we introduce the basic abstract structure of the continuous-time HASMM
(Subsection 2.1), and then we propose the distributional specifications for the model’s vari-
ables (Subsection 2.2).

2.1 Abstract Model

We start by describing the HASMM’s hidden state evolution process, and then we describe
the structure of its observable variables.

2.1.1 Hidden States

We consider a filtered probability space (Ω,F , {Ft}t∈R+ ,P), over which a continuous-time
stochastic process X(t) is defined on t ∈ R+. The process X(t) corresponds to a temporal
trajectory of the patient’s hidden clinical states, which take on values from a finite state-
space X = {1, 2, . . ., N}. Because the process X(t) takes on only finitely many values, it
can be decomposed in the form5

X(t) =
∑
n

Xn · 1{τn≤t<τn+1}, (1)

where (X(t))t∈R+
is a càdlàg path (i.e. right-continuous with left limits), and the interval

[τn, τn+1) is the time interval accommodating the nth hidden state of the system, which takes
on a value Xn ∈ X . Every path (X(t))t∈R+

on the stochastic basis (Ω,F , {Ft}t∈R+ ,P) is a
semi-Markov path (Janssen and De Dominicis (1984); Durrett (2010)), where the sojourn
time of every state n, which we denote as Sn = τn+1 − τn, is drawn from a state-specific
distribution vj(Sn = s |λj ) = dP(Sn = s |Xn = j ), with λj being a state-specific duration

5. By convention, we set τ1 = 0.
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parameter associated with state j ∈ X . Unlike ordinary time-homogeneous semi-Markov
transitions, where the transition probabilities among states are assumed to be constant con-
ditioned on there being a transition from the current state (Gillaizeau et al. (2015); Murphy
(2002); Johnson and Willsky (2013); Yu (2010); Dewar et al. (2012); Guédon (2007)), our
model accounts for duration-dependent semi-Markov transitions. In other words, the transi-
tion probability from one state to another depends on the time elapsed in the current state,
i.e.

P(Xn+1 = j|Xn = i, Sn = s) = gij(s), (2)

where gij : R+ → [0, 1], ∀i, j ∈ X is a transition function for which
∂gij(s)

∂s is well defined,

and
∑N

j=1 gij(s) = 1,∀s ∈ R+, i ∈ X .

Now consider the bi-variate (renewal) process (Xn, Sn)n∈N+ , which comprises the se-
quence of states and sojourn times. The semi-Markovian nature of X(t) implies that
(Xn, Sn)n∈N+ satisfies the following condition on its transition probabilities

P(Xn+1 = j, Sn ≤ s|Fτ−n
) = P(Xn+1 = j, Sn ≤ s|Xn = i)

= P(Xn+1 = j|Xn = i, Sn ≤ s) · P(Sn ≤ s|Xn = i)

= ESn [gij(Sn)|Sn ≤ s] · Vi(s|λi)

= ḡij(s) · Vi(s|λi), (3)

where Vi(.) is the cumulative distribution function of state i’s sojourn time, and ḡij(s)
is the probability mass function that reflects the probability that a patient’s next state
being j given that she was at state i and her sojourn time in i is less than (or equal to)
s. Based on (3), we define the semi-Markov transition kernel as a matrix-valued function
Q : R+ → [0, 1]N×N , with entries Q(s) = (Qij(s))i,j∈X that are given by

Qij(s) = ḡij(s) · Vi(s|λi). (4)

The semi-Markov kernel Q describes the dynamics of X(t) in continuous time, and will play
an important role in constructing efficient inference algorithms in Subsection 3.1.

Since patients can start their observable episode at an arbitrary clinical state (i.e. we
only observe the physiological measurements starting from the time when the patients are
hospitalized or start taking clinical tests), then it follows that the initial state X1 is random6.
The initial state distribution is given by

po = [po1, p
o
2, . . ., p

o
N ]T ,

where poj = P(X(0) = j), and
∑N

j=1 p
o
j = 1.

The hidden states reflect different levels of clinical risk (i.e. progression stage indexes
of a chronic disease or phases of clinical deterioration (Sweeting et al. (2010);Chen and
Zhou (2011))). In that sense, state 1 is regarded as the “least risky state”, and state N is
regarded as the “most risky state”. We define and interpret states 1 and N as follows:

6. We do not consider left-censored observations in this model.
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Figure 3: The Markov chain model for the HASMM.

• State 1 is denoted as the safe state, and represents the state at which the patient is
at minimum (or no) risk (e.g. clinically stable post-operative patient, etc).

• State N is denoted as the catastrophic state, and represents the state at which the
patient is at severe risk or encounters an adverse event (e.g. a very severe stage of
a chronic disease (Bakal et al. (2014)), a cardiac or respiratory arrest (Subbe et al.
(2001)), mortality (Knaus et al. (1991)), etc).

We assume that whenever the system enters either state 1 or state N , it remains there
forever7. Therefore, we model states {1, N} as absorbing states, whereas we model the
remaining states in X/{1, N} as transient states that represent intermediate levels of risk.
Following the assumptions in (Murphy (2002); Johnson and Willsky (2013)), we eliminate
the self-transitions for all transient states by setting gii(s) = 0, Qii(s) = 0, ∀s ∈ R+, i ∈
X/{1, N}, whereas we restrict the transitions from states 1 and N to self-transitions only,
i.e. gii(s) = 0, i ∈ {1, N}. Figure 3 depict the Markov chain model for the sequence
{Xn}n∈N+ .

We define A1 as the event that the path (X(t))t∈R+
is absorbed in the safe state 1,

i.e. A1 = {limt→∞X(t) = 1}, and AN as the event that (X(t))t∈R+
is absorbed in the

catastrophic state N , i.e. AN = {limt→∞X(t) = N}. Since (X(t))t∈R+
is an absorbing

semi-Markov chain8, we know that P(A1 ∨ AN ) = 1, and since the events A1 and AN are
mutually exclusive, it follows that P(AN ) = 1 − P(A1). The quantity P(AN ) describes a
patient’s prior risk of ending in the catastrophic state, whereas P(AN |Ft ) describes the
patient’s posterior risk of ending in the catastrophic state having observed its evolution
history up to time t9. Define Ts as an F-stopping time representing the absorption time of

7. The model can be easily extended to accommodate an arbitrary number of competing absorbing states.
8. We assume that the transition functions gij(s) for any transient state i is non-zero for every s. Hence, it

follows that (X(t))t∈R+
is an absorbing semi-Markov chain since it has 2 absorbing states, each of which

can be visited starting from any other state (Durrett (2010)).
9. In the clinical applications under consideration, transient states can be ordered by their respective relative

risks of encountering event AN in the subsequent transitions, i.e. in a 5-state chain, it is more likely for
the patient to be absorbed in state 5 in the future when it is in state 4 than when it is in state 3. For
instance, it is more likely for a patient’s chronic obstructive pulmonary disease that is currently assessed
to have a severity degree of GOLD1 (mild severity as defined in the GOLD standard Pedersen et al.
(2011)) to progress (in the near future) to a severity degree of GOLD2 (moderate) rather than GOLD3
(severe).
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the path (X(t))t∈R+
in either state 1 or state N10, i.e.

Ts = inf{t ∈ R+ : X(t) ∈ {1, N}}.

Finally, we define K as the (random) number of state realizations in the sequence
{Xn}Kn=1 up to the stopping time Ts, which has to be concluded by either state 1 or N , e.g.
when X = 4, the sequences {1}, {4}, {2, 3, 2, 3, 4}, and {3, 2, 1} are valid, random-length
realizations of {Xn}Kn=1, and each represents a certain state evolution trajectory for the
patient.

2.1.2 Observations and Censoring

The path (X(t))t∈R+
is unobservable; what is observable is a corresponding process (Y (t))t∈R+

on (Ω,F , {Ft}t∈R+ ,P), the values of which are drawn from an observation-space Y, and
whose distributional properties are dependent on the latent states’ path (X(t))t∈R+

. The
observable process (Y (t))t∈R+

can be put in the form

Y (t) =
∑
n

Yn(t) · 1{τn≤t<τn+1}, (5)

where (Y (t))t∈R+
is a càdlàg path, comprising a sequence of function-valued variables

{Yn(t)}Kn=1, with Yn : [τn, τn+1) → Y. Even though the path (Y (t))t∈R+
is accessible

(observable), only a sequence of irregularly spaced samples of it is observed over time, and
is denoted by {Y (tm)}tm∈T , where T = {t1, t2, . . ., tM} is the set of observed measurements,
and M is the total number of such measurements. We say that the process is censored if
M <∞; typical episodes in an EHR are censored: observations stop at some point of time
due to a release from care, an ICU admission, mortality, etc.

The sampling times in T represent the times at which a patient with a chronic dis-
ease took clinical tests (i.e. time intervals in T spans years), or the times at which clin-
icians have gathered vital signs for a monitored critically ill patient in a hospital ward
(i.e. time intervals in T span days or hours). We assume that the sampling times in T
are drawn from a point-process Φ(ζ) =

∑
m∈N+

δtm , which is defined on (Ω,F , {Ft}t∈N,P),
and with δt being the Dirac measure. The point process Φ(ζ) is parametrized by an in-
tensity parameter ζ, but is assumed to be independent of the latent states path11. De-
fine Tn as the set of Mn samples that are gathered during the interval [τn, τn+1)

12, i.e.
Tn = {tm : tm ∈ T , tm ∈ [τn, τn+1)},Mn = |Tn|, and

∑
nMn = M . Since Tn could possibly

be empty (Tn = ∅), some states can have no corresponding observations (i.e. an inpatient
may exhibit a transition to a deteriorating state during the night without her blood pressure

10. Since the sequence {Xn}n is almost surely stopped (i.e. Ts < ∞ with probability 1), then the number
of transitions that exhibited by {Xn}n until the absorption time Ts (i.e. number of jumps in X(t)) is
almost surely finite.

11. This means that the sampling times are uninformative of the latent states, which makes the inference
problem more challenging. The HASMM model can be easily extended to incorporate a state-dependent
sampling process using a Cox process (Lando (1998)) or a Hawkes process (Hawkes and Oakes (1974))
to modulate the intensity parameter ζ.

12. Note that what is observed is a sequence of sampling times T , the elements of which are not labeled by
the corresponding state indexes, for that the states are latent, i.e. the sets Tn are latent.
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being measured. Recall the illustration in Figure 2).

The paths {Yn(t)}Kn=1 are assumed to be conditionally independent given the hidden
states’ sequence {Xn}Kn=1, and hence we have that

{Y (tm)}tm∈Tn ⊥⊥ {Y (tm)}tm∈Tn+1 |Xn, Xn+1 ,∀n ∈ {1, 2, . . .,K − 1}.

The observed samples generated under every state Xn and sampled at the times in Tn
are drawn from Y according to a distribution P({Y (tm)}tm∈Tn |Xn = j,Θj ), where Θj is an
emission parameter that controls the distributional properties of the observations generated
under state j.

The number of observation samples is finite: the observed sequence is censored at some
point of time, which we call the censoring time Tc, after which no more observation samples
are available. Censoring reflects an external intervention/event that terminated the obser-
vation sequence, i.e. mortality event, intensive care unit (ICU) admission, etc. We assume
that censoring is informative (Scharfstein and Robins (2002);Huang and Wolfe (2002);Link
(1989)), i.e. the censoring time is correlated with the absorption time Ts, and Ts strictly
precedes Tc (in an almost sure sense). That is, Tc is an F-stopping time that is given
by Tc = Ts + SK , i.e. once the patient enters state 1 or state N , the observations stop
after the patient’s sojourn time in that state (i.e. observations stop after a time SK from
the entrance in the absorbing state). Therefore, the duration distributions v1(s|λ1) and
vN (s|λN ) of states 1 and N are used to determine the censoring times conditioned on the
chain {Xn}Kn=1 being absorbed at time Ts.

Every sample from the HASMM is an episode comprising a random-length sequence of
hidden states {Xn}Kn=1, and a random-length sequence of observations {Y (tm)}Mm=1 together
with the associated observation times. We only observe {Y (tm)}Mm=1; the latent states’ path
X(t), the number of realized states K, the association between observations and states (i.e.
the sets Tn) are all unobserved, which makes the inference problem very challenging, but
captures the realistic EHR data format and the associated inferential hurdles. In the next
subsection, we specify the model’s generative process and present an algorithm to generate
episodic samples from an HASMM.

2.2 Model Specification and Generative Process

As have been discussed in Subsection 2.1, the hidden and observables variables of an
HASMM can be listed as follows:

• Hidden variables: The hidden states sequence {Xn}Kn=1 and the states’ sojourn
times {Sn}Kn=1 (or equivalently, the transition times {τn}Kn=1).

• Observable variables: The observed episode {Y (tm)}Mm=1 and the associated sam-

pling times T = {tm}Mm=1.

10
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The HASMM model parameters that generate both the hidden and observable variables are
encompassed in the parameter set Γ, i.e.

Γ =

 N︸︷︷︸
State cardinality

, λ = {λj}Nj=1︸ ︷︷ ︸
State duration

, po︸︷︷︸
Initial states

,Q = {Qij(s)}Ni,j=1︸ ︷︷ ︸
Transitions

,Θ = {Θj}Nj=1︸ ︷︷ ︸
Emission

, ζ︸︷︷︸
Sampling

 .

Since the point process Φ(ζ) does not reveal any information about the latent states, and
hence plays no role in inference, we will drop it from the parameter set Γ in the rest of the
paper. In the following, we specify the distributional properties for both the hidden and
observable variables.

2.2.1 Distributional specifications for the hidden variables

We model the state sojourn time of every state i ∈ X via a Gamma distribution. The se-
lection of a Gamma distribution ensures that the generative process encompasses ordinary
continuous-time Markov models for the path (X(t))t∈R+ , since the exponential distribu-
tion13 is a special case of the Gamma distribution (Durrett (2010)). Thus, if the underlying
physiology of the patient is naturally characterized by memoryless state transitions, this
will be automatically learned from the data via the parameters of the Gamma distribution.
The sojourn time distribution for state i is given by

vi(s|λi = {λi,s, λi,r}) =
1

Γ(λi,s)
· λλi,s

i,r · s
λi,s · e−s·λi,r , s ≥ 0,

where λi,s > 0 and λi,r > 0 are the shape and rate parameters of the Gamma distribution
respectively.

Now we specify the structure of the transition kernel Q(s) = (Qij(s))i,j , i, j ∈ X . Re-
call from (4) that the each element in the transition kernel matrix can be written as
ES [gij(S)|S ≤ s] · Vi(s|λi). Having specified the distribution vi(s|λi) as a Gamma distribu-
tion, it remains to specify the function gij(s) in order to construct the elements of Q(s).
The transition functions (gij(s))i,j are given by Multinomial logistic functions as follows

gij(s) =
e(ηij+βij ·s)∑N
k=1 e

(ηik+βik·s)
, (6)

where ηik, βik ∈ R+, ηik = −∞, ∀i = k. The parameters (ηij)
N
j=1 determine the baseline val-

ues for the transition probability mass out of state i, i.e. gij(0), whereas the parameters βij
controls the rate with which this transition probability mass changes over time. If βij = 0,

then we have that gij(s) = gij(0) = eηij∑N
k=1 e

ηik
, ∀s ∈ R+, i.e. the transition probability out

of state i remains constant irrespective of the sojourn time in that state. If βij > 0, then
gij(s) changes monotonically over time, with a rate that is increasing in βij .

13. Note that a semi-Markov chain reduces to a Markov chain if the sojourn times are exponentially dis-
tributed.
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Figure 5: Depiction for the correlation structure
of the observable variables for an underlying state
sequence {Xn}6n=1.

The parametrization for gij(s) in (6) captures the effect of the patient’s sojourn time
in a certain state on the uncertainty about her future states. The parameter βij biases
the transitions to a specific state as more time elapses in the current state, i.e. the more
time the patient spends in the current state, the less uncertain we are about her next state.
To see how this effect materialize in the definition of gij(s), we note that lims↑∞ gij(s) =
1{ηij=maxk ηik}. That is, when the sojourn time in state Xn becomes asymptotically large,

i.e. Sn → ∞, the uncertainty about the state Xn+1 drops to zero14. Figure 4 depicts
exemplary transition functions (gij(s))i,j for a 4-state HASMM. It can be seen that as the
sojourn time increases (β2j = 0.2, ∀j), the transition probabilities approaches a degenerate
distribution that places a probability mass of 1 on a certain state (state 1 in this case).

2.2.2 Distributional specifications for the observable variables

As explained in Subsection 2.1, the observable process Y (t) can be decomposed as Y (t) =∑K
n=1 Yn(t) · 1{τn≤t<τn+1}, where the paths (Yn(t))Kn=1 are conditionally independent given

the state sequence {Xn}Kn=1. Since observations are drawn from Y (t) at arbitrarily, and
irregularly spaced time instances T , we have to model the distributional properties of Y (t) in
continuous time. Thus, we model every path Yn(t) defined over [τn, τn+1) as a segment drawn
from a Gaussian Process (GP), with a parameter set Θi that depends on the corresponding
latent state Xn = i (Rasmussen (2006)). The GP associated with Xn = i is parametrized by

14. Similar effects for the sojourn time on the transition probabilities has been demonstrated in the pro-
gression of breast cancer from healthy to preclinical states in (Taghipour et al. (2013)), where age (the
main risk factor for breast cancer) was shown to affect the probability of progressing across the states
of healthy to preclinical, clinical and death. These effects may be also prevailing in other diseases,
or in critical care settings where the length of time during which a patient stays clinically stable may
imply that the patient is more likely to transit to a more healthy state in the future. Through the
HASMM model, we can recognize whether or not this effect is evident in the EHR data, i.e. whether
the transition function reflects an underlying homogeneous (if gij(s) is independent of s) or duration-
dependent transitions by learning the parameter βij . Moreover, the parameter βij is defined per state;
the HASMM model can capture scenarios where transitions are duration-independent from some states,
but are duration-dependent from others.

12



An HASMM Model for Informatively Censored Temporal Data

a constant mean function mi(t) = mi and a squared-exponential covariance kernel ki(t, t
′
) =

σ2
i e

− 1

2ℓ2
i

||t−t
′ ||2

; the GP parameters associated with state i are given by Θi = (mi, σi, ℓi), i.e.
Yn(t)|Xn = i ∼ GP(Θi). When Y is multidimensional, we adopt the multitask GP defined
in (Bonilla et al. (2007)).
We note that the HASMM model is a segment model (Ostendorf et al. (1996); Murphy
(2002); Yu (2010); Guédon (2007)), i.e. observation samples that are defined within the
sojourn time of the same state are correlated, but observation samples in different states
are independent. Figure 5 depicts the correlation structure of the observable variables in
terms of the covariance matrix of a discrete version of Y (t) generated under a specific
hidden state sequence. We can see that conditioned on the hidden state sequence, the
covariance matrix is a block diagonal matrix, where the sizes of the blocks are random and
are determined by the hidden states’ sojourn times.
The sampling times in T are generated by the point process Φ(ζ), which for the sake of
completeness of the model description, we specify as a Poisson process with an intensity
parameter ζ. Note though that since we assume the sampling times are uninformative of
the latent states path X(t), the distributional specification of Φ(ζ) is ancillary the inference
and learning algorithms developed in Section 3.

2.2.3 Sampling episodes from an HASMM

We conclude this Section by presenting an Algorithm for sampling episodes from an HASMM
with a parameter set Γ. Algorithm 1 (GenerateHASMM(Γ))15 samples a patient’s episodes
by first sampling an initial state from X , and then sequentially samples sojourn times s
from the Gamma distribution, and new states using the semi-Makrov kernel Q(s), until an
absorbing state is drawn. Figure 6 depicts an episode that is sampled by Algorithm 1.

Algorithm 1 Sampling episodes from an HASMM

1: procedure GenerateHASMM(Γ)
2: Input: HASMM model parameters Γ = (N,λ,po,Q(s),Θ, ζ)
3: Output: An episode ({Xn}Kn=1, {τn}Kn=1, {Y (tm)}Mm=1, {tm}Mm=1)
4: τ1 ← 0, k ← 1, T ∼ Poisson(ζ) ◃ Initializations
5: x1 ∼ Multinomial(po1, p

o
2, . . ., p

o
N ) ◃ Sample an initial latent state

6: s1 ∼ Gamma(λx1,s, λx1,r), τ2 ← τ1 + s1
7: T1 = {t ∈ T : τ1 ≤ t ≤ τ2}
8: while xk /∈ {1, N} do ◃ Sample latent states until absorption
9: xk+1 ∼ Multinomial(gxk1(sk), gxk2(sk), . . ., gxkN (sk))

10: sk+1 ∼ Gamma
(
λxk+1,s, λxk+1,r

)
, τk+2 ← τk+1 + sk+1

11: Tk+1 = {t ∈ T : τk+1 ≤ t ≤ τk+2}
12: {y(tm)}tm∈Tk+1

∼ GP(Θxk+1
) ◃ Sample observations from a Gaussian Process

13: k ← k + 1
14: end while
15: return ({xn}Kn=1, {τn}Kn=1, {y(tm)}Mm=1, {tm}Mm=1)
16: end procedure

15. Matlab codes are available at https://github.com/ahmedmalaa/JMLRHASMM.

13



Alaa and van der Schaar

0 50 100 150 200 250
0

2

4

6

Time t

X
(t
)

0 50 100 150 200 250
−5

0

5

10

Time t

Y
(t
)

0 50 100 150 200 250
0

2

4

6

Time t

{
Y
(t

m
)}

M m
=
1

Figure 6: An episode generated by GenerateHASMM(Γ) with N = 5. The realized hidden state
sequence (upper) is {2, 3, 4, 3, 4, 5}, and is absorbed in state 5. The patient’s continuous time phys-
iological signal Y (t) (middle) is accessible by the clinicians, but only a set of discrete observations
are gathered and observed {Y (t)}Mm=1 (bottom).

3. Inference and Learning Algorithms

Our goal is to learn the HASMM model parameters that describes the patients’ episodes
from an offline EHR dataset D of previous patients, and then use the learned model to carry
out diagnostic and prognostic inferences for new patients. A typical dataset D comprises
D episodes, each of which contains only the patient’s observable (temporal) variables (the
bottom plot in Figure 6), i.e. the latent state trajectory X(t) is hidden and the dataset is
not labeled by the patient’s state sequence. The format of the dataset D can be described
as follows

D =
{
{ydm}M

d

m=1, {tdm}M
d

m=1, T
d
c , l

d
}D

d=1
,

where ydm is the mth observed sample (e.g. mth clinical finding, lab test, vital sign, etc) of
the dth patient, tdm is the time at which this sample was gathered, T d

c is the censoring time
for patient d’s episode, and ld ∈ {1, N} is an endpoint label (e.g. mortality, ICU admission,
etc), i.e. the state in which the patient’s state trajectory is absorbed.
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In Section 3.1, we develop online algorithms that carry out diagnostic and prognostic
inferences for a monitored patient’s episode in real-time. In particular, we are interested in
the following inference tasks:

Inference tasks:

Given an ongoing realization of an episode {y(t1), y(t2), . . ., y(tm)} at time tm (be-
fore the censoring time Tc), and the HASMM model parameter Γ that has generated this
realization (i.e. {y(t1), y(t2), . . ., y(tm)} is sampled via the algorithm GenerateHASMM(Γ)),
we aim at carrying out the following inference tasks:

• Task 1 (Diagnosis): Infer the patient’s current clinical state, i.e. compute

P(X(tm) = j |Y (t1) = y(t1), . . ., Y (tm) = y(tm),Γ).

• Task 2 (Dynamic Survival Analysis): Compute the patient’s risk of absorption
in the catastrophic state as a function of the future time horizon, i.e.

P(X(t) = N |Y (t1) = y(t1), . . ., Y (tm) = y(tm),Γ), t ≥ tm.

• Task 3 (Prognostic Risk Scoring): Compute the patient’s risk of absorption in
the catastrophic state, i.e.

P(AN |Y (t1) = y(t1), . . ., Y (tm) = y(tm),Γ).

In the rest of this Section, we drop the conditioning on Γ for notational brevity. Task
1 corresponds to disease severity estimation for patients with chronic disease, or clinical
acuity assessment for critical care patients. Task 2 is concern with a patient’s dynamic
survival analysis; computing a hazard function describing the time to an adverse event.
Traditionally, this type of analysis is done using the Cox proportional hazard model (Cox
and Oakes (1984)), but was limited to regressing a single, static time-to-event hazard curve;
Task 2 allows for dynamically estimating a patient’s survival as more observable variables
are gathered over time. Task 3 corresponds to risk scoring for future adverse events for
patients who have been monitored for some period of time, i.e. the risk of developing a
future preclinical or clinical breast cancer state (Gail and Mai (2010)), the risk of clinical
deterioration for post-operative patients in wards (Rothman et al. (2013)), the risk of mor-
tality for ICU patients (Knaus et al. (1985)), etc.

In order to implement the inference tasks above, we need first to learn the parameter
set Γ that generates the patients’ episodes using the offline dataset D. The learning task,
which we tackle in Section 3.3, can be described as follows.
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Figure 7: An exemplary HASMM episode with 6 hidden state realizations and 9 observed samples.

Learning task:

Given an offline dataset D =
{
{ydm}M

d

m=1, {tdm}M
d

m=1, T
d
c , l

d
}D

d=1
, the learning task re-

trieves the most likely instantiation of the HASMM model that could have generated the
episodes in D, i.e.

Γ∗ = arg maxΓ P(D |Γ).

We start by developing inference algorithms that execute the inference tasks 1, 2 and 3
in the next Subsection.

3.1 The HASMM Inference Tasks

The inference tasks discussed in the previous Subsection are confronted with 3 main chal-
lenges –listed hereunder– that hinder the direct deployment of classical forward-backward
message-passing routines.

1. In addition to the clinical states {Xn}Kn=1 being unobserved, the transition times
among the states, {τn}Kn=1, are also unobserved (i.e. we do not know the time at which
the patient’s state changed). Thus, unlike the discrete-time models in (Murphy (2002);
Johnson and Willsky (2013); Yu (2010); Dewar et al. (2012); Guédon (2007)), in
which we know that the underlying states switch sequentially in a (known) one-to-one
correspondence with the observations, in an HASMM the association between states
and observations is unknown. Figure 7 depicts an exemplary HASMM episode with 6
realized states and 9 observations samples; in this realization, the association between
the observations {Y (t1), Y (t2), Y (t3)} and state X1 is hidden. The importance of
reasoning about the hidden transition times is magnified by the duration-dependence
of the transition probabilities that govern the sequence {Xn}Kn=1.

2. Since observations are made at random and arbitrary time instances, some transitions
may not be associated with any evidential data. That is, as it is the case for state X2 in
Figure 7, there is no guarantee that for every state Xn, an observation is drawn during
its occupancy, i.e. [τn, τn+1). In a practical setting, the inference algorithm should
be able to reason about the state trajectories even in silence periods that come with
no observations (recall the example in Figure 2 where observations of a critical care
patient’s systolic blood pressure stop for an entire day). Hence, one cannot directly
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discretize the time variable and use the discrete-time HMM inference algorithms (e.g.
the algorithms in (Rabiner (1989))) since in that case we would exhibit time steps
that come with no associated observations, and with potential state transitions.

3. The HASMM model assumes that observations that belong to the same state are
correlated (e.g. in Figure 7, each of the subset of observations {Y (t1), Y (t2), Y (t3)},
{Y (t4), Y (t5)} and {Y (t7), Y (t8)} are not drawn independently conditioned on the la-
tent state since they are sampled from a GP), thus we cannot use the variable-duration
and explicit-duration HSMM inference algorithms in (Murphy (2002); Johnson and
Willsky (2013); Yu (2010); Guédon (2007)), as those assume that all observations are
conditionally independent given the latent states. Our model is closer to a segment-
HSMM model (Yu (2010); Guédon (2007)), but with irregular spaced continuous-time
observations and an underlying duration-dependent state evolution process, which
requires a different construction of the forward messages.

In the following, we develop inference algorithms that deal with episodes generated from an
HASMM and address the above challenges.

Inference Task 1: Diagnostic Inference via Forward Filtering

Given a realization of an episode {y(t1), y(t2), . . ., y(tm)} at time tm, the posterior proba-
bility of the patient’s current clinical state X(tm) is given by

P(X(tm) = j | y(t1), . . ., y(tm)) =
dP(X(tm) = j, y(t1), . . ., y(tm))

dP(y(t1), . . ., y(tm))

=
dP(X(tm) = j, y(t1), . . ., y(tm))∑N
j=1 dP(X(tm) = j, y(t1), . . ., y(tm))

. (7)

The above application of Bayes’ rule implies that computing the joint probability density
dP(X(tm) = j, y(t1), . . ., y(tm)) suffices for computing the posterior probability of the pa-
tient’s clinical states. Define αm(j, w) as the forward message for the jth state at the mth

observation time (i.e. tm) with a lag w as follows

αm(j, w) = dP(X(tm) = j, tm − tm−w+1 ≤ S(tm) ≤ tm − tm−w, y(t1), . . ., y(tm)),

where S(tm) is the time elapsed between the transition to the current state, i.e. X(tm) =
j, and the time instance tm. That is, the forward message αm(j, w) is simply the joint
probability that the current state is j, that the associated observations are (y(t1), . . ., y(tm)),
and that the current state has lasted for the last w measurements. For notational brevity,
denote the event {tm − tm−w+1 ≤ S(tm) ≤ tm − tm−w} as Ξ(m,w). Thus, αm(j, w) can be
written as

αm(j, w) =

N∑
i=1

m−w∑
w

′
=1

dP(X(tm) = j,Ξ(m,w), X(tm−w) = i,Ξ(m− w,w
′
), {y(tu)}mu=1), (8)

which can be decomposed using the conditional independence properties of the states, ob-
servable variables and sojourn times as follows

dP(X(tm) = j,Ξ(m,w), X(tm−w) = i,Ξ(m− w,w
′
), {y(tu)}mu=1) =
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dP({y(tu)}mu=m−w+1 |X(tm) = j) × P(X(tm) = j |X(tm−w) = i,Ξ(m− w,w
′
))︸ ︷︷ ︸

pij(tm−tm−w,Ξ(m−w,w
′
))

×

dP(Ξ(m,w) |X(tm) = j)︸ ︷︷ ︸
Vj(tm−tm−w|λj)−Vj(tm−tm−w+1|λj)

× dP(X(tm−w) = i,Ξ(m− w,w
′
), {y(tu)}m−w

u=1 )︸ ︷︷ ︸
αm−w(i,w′ )

. (9)

The first term, dP({y(tu)}mu=m−w+1 |X(tm) = j), is the probability density of the observable
variables in {y(tu)}mu=m−w+1 conditioned on the hidden state being X(tm) = j and that the
time instances {tu}mu=m−w+1 reside in the sojourn time of X(tm) = j. The second term,

pij(tm − tm−w,Ξ(m − w,w
′
)), is the interval transition probability, i.e. the probability

that the hidden state sequence transits to state j after a period of tm − tm−w, given that
it’s sojourn time in state X(tm−w) = i at time tm is at least tm − tm−w+1, and at most
tm− tm−w−w′ . The third term is the probability that the sojourn time in state X(tm) = j is

between tm−tm−w+1 and tm−tm−w, whereas the fourth term, αm−w(i, w
′
), is the (m−w)th

forward message with a lag of w
′
. Thus, we can write the mth forward message with a lag

w as follows
αm(j, w) = dP({y(tu)}mu=m−w+1 |X(tm) = j)×

N∑
i=1

m−w∑
w′=1

pij(tm − tm−w,Ξ(m− w,w
′
)) · (Vj(tm − tm−w|λj)− Vj(tm − tm−w+1|λj)) · αm−w(i, w

′
).

(10)

As we can see in (10), one can express αm(j, w) using a recursive formula that makes use of
the older forward messages {αm−w(i, w

′
)}mw=1, where αo(i, w

′
) = 0, which allows for an effi-

cient dynamic programming algorithm to infer the patient’s clinical state in real-time; this
is important in critical care settings where prompt risk assessments are crucial for timely
clinical intervention.

The construction of the forward messages in (10) parallels the structure of forward
message-passing in segment-HSMM (See Section 1.2 in (Murphy (2002)) and Section 4.2.2
in (Yu (2010))), but with the following differences. In (10), the time interval between every
two observation samples is irregular, which reflects in the correlation between the observa-
tions in {y(tu)}mu=m−w+1 (depends on the covariance kernel of the GP, and the probability
of the current latent state’s sojourn time being encompassing the most recent w samples,
i.e. (Vj(tm − tm−w|λj)− Vj(tm − tm−w+1|λj)). However, the most challenging ingredient of
the forward message is the interval transition probability pij(tm−tm−w,Ξ(m−w,w′

)). This
is because unlike the discrete-time HSMM models in (Murphy (2002); Yu (2010)), which
exhibit transitions only at discrete time steps that are always accompanied with evidential
observations, i.e. no hidden transitions can occur between observation samples, and the
transitions among hidden states are duration-independent, in an HASMM, transitions can
occur at arbitrary time instances, multiple transitions can occur between two observation
samples, and transitions are duration-dependent.

In order to evaluate the term pij(tm − tm−w,Ξ(m − w,w
′
)), we construct a virtual

(discrete-time) bi-variate embedded Markov chain {X(tw), tw}mw=1, the transition probabil-
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ities of which are equal to the interval transition probabilities, i.e. pij(τ, {s1, s2}) is the
probability that the embedded Markov chain transits from state (i, t) to state (j, t + τ)
given that state i in the original continuous-time semi-Markov chain has started at a time
instance that lies between t − s2 and t − s1. In the recent work in (Liu et al. (2015)),
a similar embedded Markov chain analysis was conducted for a CT-HMM, but for which
the underlying state evolution process was assumed to be a duration-independent, ordinary
Markov chain for which the expressions for pij(tm−tm−w,Ξ(m−w,w′

)) are readily available
by virtue of the exponential distributions of the memoryless state sojourn times.

Recall that the semi-Markov kernel of the hidden state sequence {Xn}Kn=1 is defined as
Qij(τ) = P(Xn+1 = j, Sn ≤ τ |Xn = i), i.e. the probability that the sequence transits from
state i to state j given that the sojourn time in i is less than or equal to τ . Now consider
the interval transition probability pij(τ) for the semi-Markov path (X(t))t∈R+ defined as
pij(τ) = P(X(t + τ) = j |X(t) = i). From (Kulkarni (1996)), we know that the functions
(pij(τ))i,j∈X solve the following system of integral equations

pij(τ) = δij · (1−Qi(τ)) +

N∑
k=1

∫ τ

0

∂Qik(u)

∂u
· pkj(τ − u) du, ∀i, j ∈ X , (11)

where δij is the Kronecker delta function, and Qi(τ) =
∑N

k=1Qik(τ) (recall that Qii(τ) = 0).

Since we are evaluating the functions (pij(τ, s))i,j and not (pij(τ))i,j , we need to consider
a truncated semi-Markov kernel Qij(τ, s) that conditions the interval transition probabilities
on the elapsed time in state i being s. It can be easily shown that this “left-truncated” kernel

is given by Qij(τ, s) =
Qij(τ)−Qij(s)

1−Qij(s)
. Thus, by modifying the terms in (11) accordingly, the

functions (pij(τ, s))i,j can be obtained by solving the following system of integral equations

pij(τ, s) = δij · (1−Qi(τ, s)) +

N∑
k=1

∫ τ

s

∂Qik(u, s)

∂u
· pkj(τ − u, s) du, ∀i, j ∈ X , (12)

where Qi(τ, s) =
∑N

k=1Qik(τ, s). The term
∂Qij(τ,s)

∂τ can be easily computed by invoking the
representation of the semi-Markov kernel provided in (4). From (4), we can write Qij(τ) as
follows

Qij(τ) = ES [gij(S)|S ≤ τ ] · Vi(τ |λi)

=

∫ τ

0
gij(S) · 1− Vi(S|λi)

Vi(τ |λi)
dS · Vi(τ |λi)

=

∫ τ

0
gij(S) · (1− Vi(S|λi)) dS

=

∫ τ

0

eπij(1+βiS)∑N
k=1 e

πkj(1+βkS)
· (1− Vi(S|λi)) dS

=

∫ τ

0

eπij(1+βiS)∑N
k=1 e

πkj(1+βkS)
·
(

1− γ(λi,s, λi,rS)

Γ(λi,s)

)
dS, (13)

19



Alaa and van der Schaar

where we have substituted for Vi(S|λi) with the cumulative density function of a Gamma
distributed random variable. The left-truncated semi-Markov kernel is then given by

Qij(τ, s) =

∫ τ
s

eπij(1+βiS)∑N
k=1 e

πkj(1+βkS) ·
(

1− γ(λi,s,λi,rS)
Γ(λi,s)

)
dS

1−
∫ s
0

eπij(1+βiS)∑N
k=1 e

πkj(1+βkS) ·
(

1− γ(λi,s,λi,rS)
Γ(λi,s)

)
dS

, (14)

which can be easily evaluated numerically using a Riemann sum.

The system of equations in (12) is a non-homogeneous system of Volterra integral equations
of the second kind (Polyanin and Manzhirov (2008)), which is analogous to the Chapman-
Kolmogorov system of equations in ordinary Markov chains. Obtaining an analytic solution
to (12) is a tedious problem: for a fixed s, we solve the system in (12) via the successive
approximation method (Opial (1967)). That is, we initialize the interval transition proba-
bilities by the corresponding entries in the semi-Markov kernel matrix Q(s) as follows16

p
(o)
ij (τ, s) = Qij(τ, s), ∀i, j ∈ X ,

and for the zth iteration, we update the interval transition functions as follows

p
(z)
ij (τ, s) = δij · (1−Qi(τ, s)) +

i∑
k=1

∫ τ

s

∂Qik(u, s)

∂u
· p(z)kj (τ − u, s) du+

N∑
k=i+1

∫ τ

s

∂Qik(u, s)

∂u
· p(z−1)

kj (τ − u, s) du, ∀i, j ∈ X ,

i.e. we use the most recent interval transition function for updating the other functions in

every iteration. Iterations stop when the criterion
∫∞
0 |p

(z)
ij (τ, s)−p(z−1)

ij (τ, s)| < ϵ, ∀i, j ∈ X .
By observing that the integral in (12) is a convolution integral, we have that∫ τ

s

∂Qik(u, s)

∂u
· pkj(τ − u, s) du =

(
∂Qik(., s)

∂u
⋆ pkj(., s)

)
(τ)−

(
∂Qik(., s)

∂u
⋆ pkj(., s)

)
(s),

(15)

where ⋆ is the convolution operator. Using the reformulation in (15), we can use a more
efficient Fast Fourier Transform (FFT) algorithm to update the interval transition proba-
bilities at each step instead of computing the convolution integral, which accelerates the
computations.

It is important to note that we do not need to solve the system of equations in (12) during
real-time inference. Instead, we create a look-up table of (discretized) transition function

16. This is a reasonable initialization since the entries of the semi-Markov kernel correspond to interval
transition probabilities conditioned on there being no intermediate transitions on the way from state i to
state j. For existence and uniqueness of the solutions to Volterra equations, please refer to (Polyanin and
Manzhirov (2008)). For convergence of the successive approximation iterations, please refer to (Opial
(1967)).
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Algorithm 2 Constructing a look-up table of interval transition probabilities

1: procedure TransitionLookUp(π = {πij}i,j , β = {βi}i, λ = {λi}i, ϵ)
2: Input: Semi-Markov kernel parameters π = {πij}i,j , β = {βi}i
3: Output: A look-up table (p̃ij(a∆τ, b∆s))i,j,a,b
4: Set the values of A (number of steps for τ), B (steps for s), ∆τ , ∆s (step sizes)
5: for a = 1 to A, b = 1 to B do

6: Qτ
ij(a∆τ)←

∑a
x=1

eπij(1+βix∆τ)∑N
k=1 e

πik(1+βix∆τ)

(
1− γ(λi,s,λi,rx∆τ)

Γ(λi,s)

)
∆τ

7: Qs
ij(b∆s)←

∑b
x=1

eπij(1+βix∆s)∑N
k=1 e

πik(1+βix∆s)

(
1− γ(λi,s,λi,rx∆s)

Γ(λi,s)

)
∆s

8: Qij(a∆τ, b∆s)← Qτ
ij(a∆τ)−Qs

ij(b∆s)

1−Qs
ij(b∆s)

9: end for
10: e = ϵ + 1
11: z ← 1
12: p̃

(o)
ij (a∆τ, b∆s)← Qij(a∆τ, b∆s), ∀a, b, i, j.

13: while e > ϵ do
14: ConvQi,j,k(a∆τ, b∆s)← IFFT

(
FFT (diff (Qik(a∆τ, b∆s))) ,FFT

(
p̃
(z−1)
jk (a∆τ, b∆s)

))
,

15: p̃
(z)
ij (a∆τ, b∆s)← δij Qij(a∆τ, b∆s) +

∑N
k=1ConvQi,j,k(a∆τ, b∆s)

16: z ← z + 1
17: e← maxi,j,b

{∑A
a=1

∣∣∣p̃(z)ij (a∆τ, b∆s)− p̃
(z−1)
ij (a∆τ, b∆s)

∣∣∣}
18: end while
19: return (p̃ij(a∆τ, b∆s))i,j,a,b
20: end procedure

offline (p̃ij(a∆τ, b∆s))i,j,a,b, and then we query this table when performing real-time infer-
ence for monitored patients. Hence, efficient and fast inferences can be provided for critical
care patients for whom prompt diagnostic inferences are necessary for the efficacy of clinical
interventions. Algorithm 2 shows a pseudocode for constructing a look-up table of interval
transition probabilities, TransitionLookUp(π = {πij}i,j , β = {βi}i, λ = {λi}i, ϵ), which
takes as an input the parameters of the semi-Markov kernel, the states’ sojourn times pa-
rameters, and a precision level ϵ (to terminate the successive approximation iterations),
and outputs the interval transitions look-up table. In Algorithm 2, FFT and IFFT refer to
the fast Fourier transform operation and its inverse, respectively, and “diff(.)” refers to a
numerical differentiation operation.

Now that we have constructed the algorithm TransitionLookUp to compute the inter-
val transition probabilities in the look-up table (p̃ij(a∆τ, b∆s))i,j,a,b, we can implement a
forward-filtering inference algorithm using dynamic programming (by virtue of the recur-
sive formula in (10)). In particular, the posterior probability of the patient’s current clinical
state in terms of the forward messages can be written as

P(X(tm) = j | y(t1), . . ., y(tm)) =

∑m
w=1 αm(j, w)∑N

k=1

∑m
w=1 αm(k,w)

. (16)
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Algorithm 3 Forward filter inference

1: procedure ForwardFilter(Γ, {y(tw)}mw=1, ϵ)
2: Input: Observed samples {y(tw)}mw=1, HASMM parameters Γ, and precision ϵ
3: Output: The posterior state distribution {P(X(tm) = j | {y(tw)}mw=1)}

N
j=1

4: p̃ij(a∆τ, b∆s)← TransitionLookUp(π = {πij}i,j , β = {βi}i, λ = {λi}i, ϵ)
5: α1(j, 1) = P(y(t1) |X(t1) = j)

∑N
i=1 p̃ij(t1, 0) · poi , ∀j ∈ X

6: for z = 2 to m do
7: for w = 1 to z do
8: a∗(z, w) = arg mina |tz − tz−w − a∆τ |
9: b∗(z, w,w

′
) = arg minb

∣∣tz−w − tz−w−w′+1 − b∆s
∣∣

10: αz(j, w) = P({y(tu)}zu=z−w+1 |X(tz) = j)×

N∑
i=1

z−w∑
w′=1

p̃ij(a
∗(z, w)∆τ, b∗(z, w,w

′
)∆s) · (1− Vj(tz − tz−w+1|λj)) · αz−w(i, w

′
)

11: end for
12: end for
13: P(X(tm) = j | {y(tu)}mu=1 ) =

∑m
w=1 αm(j,w)∑N

k=1

∑m
w=1 αm(k,w)

14: return {P(X(tm) = j | {y(tw)}mw=1)}Nj=1

15: end procedure

Algorithm 3, ForwardFilter, implements real-time inference of a patient’s clinical state
given a sequence of measurements {y(t1), . . ., y(tm)}. In Algorithm 3, we invoke TransitionLookUp
initially to construct the look-up table of transition probabilities, but in practice, the look-
up table can be constructed in an offline stage once the HASMM parameter set Γ is known.
The number of computations can be reduced by limiting the lags w for every forward mes-
sage αm(j, w) to the samples in T that reside in a period tm− Tmax, where Tmax is derived
from the Gamma distribution of the sojourn time (e.g. Tmax can be selected such that
vi(s ≤ Tmax|λi) > 90%). The complexity of ForwardFilter is similar to the conventional
forward algorithms in (Rabiner (1989)).

Inference Task 2: Prognostic Dynamic Survival Analysis

In this task, we focus on inferring the patient’s survival function given the sequence of
observed variables {y(tu)}mu=1, i.e. we compute the function

S̄(tm, τ) = P(Ts > tm + τ | {y(tu)}mu=1)

= 1− P(X(tm + τ) = N | {y(tu)}mu=1). (17)

That is, the patient’s survival function, which is the probability that her clinical state is not
absorbed in the catastrophic state N after a time period τ starting from tm, is equivalent
to the complement of the probability of that the hidden state process is absorbed in state
N in less than a period of τ starting from time instance tm.
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Note that the survival function S̄(tm, τ) in (17) can be written as

S̄(tm, τ) = 1− P(X(tm + τ) = N | {y(tu)}mu=1)

= 1−
N∑
j=1

P(X(tm + τ) = N |X(tm) = j) · P(X(tm) = j | {y(tu)}mu=1)

= 1−
N∑
j=1

pjN (τ, 0) ·
∑m

w=1 αm(j, w)∑N
k=1

∑m
w=1 αm(k,w)

. (18)

Using the procedures TransitionLookUp and ForwardFilter, we can update the patient’s
survival curve at every time instance tm by plugging in the interval transition probabili-
ties obtained from TransitionLookUp, together with the forward messages computed via
ForwardFilter as follows

S̄(tm, a∆τ) = 1−
N∑
j=1

p̃jN (a∆τ, 0) ·
∑m

w=1 αm(j, w)∑N
k=1

∑m
w=1 αm(k,w)

. (19)

Survival analysis plays an important role in guiding many clinical decisions, such as decid-
ing the frequency of breast cancer screening (Taghipour et al. (2013)), predicting hospital
readmission (Kansagara et al. (2011)), making discharge decisions for ICU or critically ill
inpatients (Moreno et al. (2005)), and planning multi-stage interventions (Foucher et al.
(2007)). The survival function in (19) is computed for an individual patient through her
individual physiological trajectory {y(tu)}mu=1, and hence can guide various survival-related
clinical decisions for a monitored patient in an individualized manner.

Inference Task 3: Prognostic Risk Scoring

Prognostic risk scoring plays an important role in designing screening guidelines (Gail and
Mai (2010)), acute care interventions (Knaus et al. (1985)) and surgical decisions (Foucher
et al. (2007)). A risk score is an aggregate measure of the survival function S̄(tm, τ), i.e.
it corresponds to the probability that the patients encounters an adverse event (abstracted
as state N in our model) at any futuristic time step starting from time tm. That is, the
patient’s risk score at time tm can be formulated as

R(tm) = P(AN | {y(tu)}mu=1)

= 1− P(X(∞) = N | {y(tu)}mu=1), (20)

which can be computed using the outputs of TransitionLookUp and ForwardFilter as
follows

R(tm) =

N∑
j=1

p̃jN (A, 0) ·
∑m

w=1 αm(j, w)∑N
k=1

∑m
w=1 αm(k,w)

. (21)

Therefore, the procedures TransitionLookUp and ForwardFilter suffice for executing all
the diagnostic and prognostic inference tasks of inference. Performance of these algorithms
is investigates in Section 4. In the next Subsection, we focus on the HASMM learning task.
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3.2 The HASMM Learning Task

3.3 The HASMM Learning Task

In Section 3.1, we developed (diagnostic and prognostic) inference algorithms that can deal
with patients in real-time assuming that the true HASMM parameter set Γ is known. In
practice, the parameter set Γ is not known, and has to be learned from an offline EHR
dataset D that comprises D episodes for previously hospitalized or monitored patients, i.e.

D =
{
{y(d)(t(d)m )}M(d)

m=1 , {t(d)m }M
(d)

m=1 , T
(d)
c , l(d)

}D

d=1
.

In this Section, we develop efficient algorithms that compute the Maximum Likelihood
(ML) estimate of Γ given a dataset D, defined as Γ∗ = arg maxΓ Λ(D |Γ), where Λ(D |Γ) =
P(D |Γ) is the likelihood of the dataset D given the parameter set Γ.

We focus on the challenging scenario when no domain knowledge or diagnostic assessments
for the patient’s latent states are provided in the dataset D17 (with the exception of the
absorbing state which is declared by the variable l(d)), i.e. the learning algorithm is unsuper-
vised. For such a scenario, the main challenge in constructing the ML estimator Γ∗ resides
in the hiddenness of the patients’ state trajectories in the training dataset D; the dataset
D contains only the sequence of observable variables, their respective observation times,
the episodes censoring time and the state in which the trajectory was absorbed. If the pa-
tients’ latent state trajectories (X(t))t∈R+ were observed in D, the ML estimation problem
Γ∗ = arg maxΓ P(D |Γ). would have been straightforward; the hiddenness of (X(t))t∈R+ en-
tails the need for marginalizing over the space of all possible latent trajectories conditioned
on the observed variables, which is a hard task even for conventional continuous-time HMM
models (Liu et al. (2015); Nodelman et al. (2012); Leiva-Murillo et al. (2011); Metzner
et al. (2007)). As we will show later in this Section, more complications are faced in an
HASMM model due to the time-inhomogeneity and semi-Markovianity of state transition,
and the segmental nature of the observation variables (i.e. temporal correlation between
the observed variables).

In order to construct the ML estimator for Γ, we start by writing the complete likelihood,
i.e. the likelihood of an HASMM with a parameter set Γ to generate both the hidden states

trajectory {X(d)
n , S

(d)
n }K

(d)

n=1 and the observable variables {y(d)(t(d)m )}M(d)

m=1 of the dth episode
in the dataset D as follows

P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
)

=

17. For some problems, such as chronic kidney disease progression estimation (Eddy and Neilson (2006)),
the EHR records may include some anchors or assessments to the latent states over time. A simpler
version of the learning algorithm proposed in this Section can be used to deal with such datasets. In
critical care settings, it is more common that the EHR records are not labeled with any clinical state
assessments over time (Yoon et al. (2016)).
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P(X
(d)
1 |Γ) · P(S

(d)
1 |X

(d)
1 ,Γ) · P({y(d)(t(d)m )}

t
(d)
m ∈T (d)

1

|X(d)
1 ,Γ)×

K(d)∏
n=2

P(X(d)
n

∣∣∣X(d)
n−1, S

(d)
n−1,Γ) · P(S(d)

n

∣∣∣X(d)
n ,Γ) · P({y(d)(t(d)m )}

t
(d)
m ∈T (d)

n

∣∣∣X(d)
n ,Γ). (22)

The factorization in (22) follows from the conditional independence properties of the HASMM

variables. Since we cannot observe the latent states trajectory {X(d)
n , S

(d)
n }K

(d)

n=1 , the ML es-
timator deals with the expected likelihood Λ(D |Γ), which is evaluated by marginalizing the
complete likelihood over the latent paths (X(t))t∈R+ , i.e.

Λ(D |Γ) =

∫
· · ·

∫
P
({
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

}D

d=1

∣∣∣∣ Γ

)
dX(1)(t) · · · dX(D)(t).

(23)

Assuming that the episodes in D are independent, we can write (23) as

Λ(D |Γ) =

∫
· · ·

∫ D∏
d=1

P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
)
dX(1)(t) · · · dX(D)(t)

=
D∏

d=1

∫
P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
)
dX(d)(t), (24)

which can be further decomposed as

Λ(D |Γ) =
D∏

d=1

∫
P(X

(d)
1 |Γ) · P(S

(d)
1 |X

(d)
1 ,Γ) · P({y(d)(t(d)m )}

t
(d)
m ∈T (d)

1

|X(d)
1 ,Γ)×

K(d)∏
n=2

P(X(d)
n

∣∣∣X(d)
n−1, S

(d)
n−1,Γ) · P(S(d)

n

∣∣∣X(d)
n ,Γ) · P({y(d)(t(d)m )}

t
(d)
m ∈T (d)

n

∣∣∣X(d)
n ,Γ) dX(d)(t).

(25)

Finding the ML estimate Γ∗ by direct maximization of Λ(D |Γ) is not possible due to the
intractability of the integral in (25), i.e. Λ(D |Γ) has no analytic maximizer. The hardness
of evaluating the expected likelihood Λ(D |Γ) follows from the fact that we need to average
the complete likelihood over an infinite number of continuous paths. That is, for every

episode d, both the number of states K(d) and the sets T (d)
n are random; evaluating the

integral in (25) requires enumerating a large number of possible associations between the
observable variables and latent states, which renders the evaluation of Λ(D |Γ) intractable.

As it is the case for classical discrete and continuous-time HMMs, solving the maximization
problem Γ∗ = argmaxΓΛ(D |Γ) can be approached using the Expectation-Maximization
(EM) algorithm (Liu et al. (2015); Nodelman et al. (2012); Rabiner (1989)). The iterative
EM algorithm starts with an initial guess Γo for the parameter set, and maximizes a proxy
for the log-likelihood function in the pth iteration through the following steps:
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Time tt7t6t5t4t3t2t1t = 0

{Xn}
K
n=1

t8

l = N

Tc

T2 = ∅ T3 = {t4, t5}T1 = {t1, t2, t3}

T4 = {t6, t7, t8}
{Y (tm)}

8
m=1

Figure 8: An episode that comprised 8 observable samples, censored at time Tc, and absorbed in state
N (catastrophic state). The dashed state trajectory is a trajectory that could have generated the
observables with a positive probability. Computing the proximal log-likelihood requires averaging
over infinitely many paths that, as the depicted dashed path, could have generated the observables
with a positive probability.

• E-step: Q(Γ; Γp−1) =

D∑
d=1

E
[

log
(
P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))∣∣∣ {y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
]
.

• M-step: Γp = arg maxΓQ(Γ; Γp−1).

The E-step computes the proximal expected log-likelihood Q(Γ; Γp−1), which entails evalu-
ating the following integral

Q(Γ; Γp−1) =

D∑
d=1

∫
log

(
P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))
×

P
(
{X(d)

n , S(d)
n }K

(d)

n=1

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
)
dX(d)(t). (26)

That is, the proximal expected log-likelihood Q(Γ; Γp−1) is computed by marginalizing

the likelihood of the observed samples of the dth episodes {y(d)(t(d)m )}M(d)

m=1 over all paths

(X(t))t∈R+ that are censored at time T
(d)
c and absorbed in state l(d). Figure 8 depicts the

procedure for computing Q(Γ; Γp−1): given the observed absorbing state l(d) and the cen-

soring time T
(d)
c , we average the likelihood of the observed samples {y(d)(t(d)m )}M(d)

m=1 over all

the latent paths that could have been absorbed in l(d) and censored at T
(d)
c .

Direct adoption of the conventional Baum-Welch implementation (e.g. the implementa-
tion in (Rabiner (1989))) of the EM algorithm for an HASMM is not possible due to the
intractability of the integral in the E-step. In fact, the Baum-Welch approach has been
successful for discrete-time HMM models (e.g. HMM (Rabiner (1989)), HSMM (Mur-
phy (2002)), EDHMM and VDHMM (Yu (2010)), etc); contrarily, previously investigated
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continuous-time HMM models have constantly struggled with the implementation of the
E-step due to the need for integrating over latent continuous paths (Liu et al. (2015);
Nodelman et al. (2012)). Previous EM approaches for learning continuous-time HMMs
were restricted to time-homogeneous Markovian state trajectories: for these models, the
properties of the transition matrix make the computation of Q(Γ; Γp−1) boil down to com-
puting the expected state durations and transition counts (e.g. see Equations (12) and
(13) in (Liu et al. (2015))). Different approaches have been developed in the literature for
computing these quantities: (Wang et al. (2014)) assumes that the transition rate matrix is
diagonalizable, and hence utilize a closed-form estimator for the transition rates, whereas
(Liu et al. (2015)) uses the Expm and Unif methods (originally developed in (Hobolth and
Jensen (2011))) to evaluate the integrals of the transition matrix exponential. Unfortu-
nately, none of these methods could be utilized for computing the proximal log-likelihood
Q(Γ; Γp−1) of an HASMM due to the time-inhomogeneity and semi-Markovianity of the
state trajectory (i.e. state-durations are not exponentially distributed as it is the case in
(Liu et al. (2015); Nodelman et al. (2012); Hobolth and Jensen (2011); Wang et al. (2014))).
Further complication is encountered by our model due to the segmental nature of observa-
tions; the observed samples are not conditionally independent given the latent states, which
requires enumerating all possible memberships of the observation samples in their respective
latent states in order to account for their correlations. Moreover, non of the previous works
considered informative censoring, i.e. our training set does not comprise equal duration
episdoes, but rather the censoring times and absorbing states convey information about
the latent path. In the rest of this Section, we develop an efficient EM algorithm that can
compute Q(Γ; Γp−1) by directly distilling information from the censoring events that are
apparent in the episdoes in D.

Since computing Q(Γ; Γp−1) does not admit a closed-form solution, we resort to a Monte
Carlo approach for approximating the integral involved in the E-step (Caffo et al. (2005)).
That is, in the pth iteration of the EM algorithm, we draw G random trajectories

(
{X(d,p,g)

n , S(d,p,g)
n }K(d,p,g)

n=1

)G

g=1

for every episode d, and use those trajectories to construct a Monte Carlo approximation
for the proximal log-likelihood function. Sample trajectories are drawn from the joint
posterior distribution of the latent states and sojourn times given the observable variables
and censoring information, i.e. the gth sample trajectory is drawn as follows

{X(d,p,g)
n , S(d,p,g)

n }K(d,p,g)

n=1 ∼ P
(
{X(d)

n , S(d)
n }K

(d)

n=1

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
)
,

(27)
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for g ∈ {1, . . ., G}. Hence, the proximal log-likelihood Q(Γ; Γp−1) can be approximated as
follows

Q(Γ; Γp−1) =

D∑
d=1

∫
log

(
P
(
{X(d)

n , S(d)
n }K

(d)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))
×

P
(
{X(d)

n , S(d)
n }K

(d)

n=1

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
)
dX(d)(t)

≈
D∑

d=1

1

G

G∑
g=1

log
(
P
(
{X(d,p,g)

n , S(d,p,g)
n }K(d,p,g)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))

. (28)

Convergence of Q(Γ; Γp−1) to its Monte Carlo estimate for a large sample size G follows
from the law of large numbers.

Sampling trajectories from the posterior distribution

P
(
{X(d)

n , S(d)
n }K

(d)

n=1

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
)
,

as specified in (27) is not a straight forward task, for that the sampler needs to jointly sample
the states and their sojourn times taking into account the time-inhomogeneous transitions
among states, and that the number of variables sampled (number of states) K(d,p,g) in each
trajectory is itself random.

The availability of the censoring information (censoring time Tc and absorbing state X(d)(Tc) =
l(d)) for every episode d in D stimulates the development of a forward-filtering backward-
sampling algorithm that goes in the reverse-time direction and sequentially samples the
latent states conditioned on future states (Godsill et al. (2012)). That is, unlike the gen-
erative process (described by the routine GenerateHASMM(Γ)) which uses the knowledge of
the parameter set Γ to generate sample trajectories by drawing an initial state and then
sequentially goes forward in time and sample future states until absorption, the inferential
process naturally goes the other way around: it exploits informative censoring by start-
ing from the knowledge of the final absorbing state and censoring time, and sequentially
sampling a trajectory by traversing backwards in time and conditioning on the future. We
start constructing our forward-filter backward-sampler by first formulating the posterior

probability of a latent trajectory {X(d)
n , S

(d)
n }K

(d)

n=1 (from which we sample the G trajectories
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as shown in (27)) in the pth iteration of the EM algorithm as follows

P
(
{X(d)

n , S(d)
n }K

(d)

n=1

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , X
(d)(T (d)

c ) = l(d),Γp−1
)

(a)
= P

(
X

(d)

K(d) = l(d), S
(d)

K(d)

∣∣∣{y(d)(t(d)m )}M(d)

m=1 , Tc,Γ
p−1

)
×

K(d)−1∏
n=1

P

X(d)
n , S(d)

n

∣∣∣∣∣∣∣∣X
(d)
n+1, . . ., X

(d)

K(d) , S
(d)
n+1, . . ., S

(d)

K(d)︸ ︷︷ ︸
Future trajectory

, {y(d)(t(d)m )}M(d)

m=1 , Tc,Γ
p−1


(b)
= P

(
X

(d)

K(d) = l(d)
∣∣∣{y(d)(t(d)m )}M(d)

m=1 ,Γ
p−1

)
× P

(
S
(d)

K(d)

∣∣∣X(d)

K(d) = l(d), S
(d)

K(d) ≤ Tc,Γ
p−1

)
×

K(d)−1∏
n=1

P

X(d)
n , S(d)

n

∣∣∣∣∣∣∣∣∣∣∣
X

(d)
n+1, . . ., X

(d)

K(d) , S
(d)
n ≤ Tc −

K(d)∑
w=n+1

S(d)
w︸ ︷︷ ︸

Elapsed time in the episode

, {y(d)(t(d)m )}M(d)

m=1 ,Γ
p−1


(c)
= P

(
X

(d)

K(d) = l(d)
∣∣∣{y(d)(t(d)m )}M(d)

m=1 ,Γ
p−1

)
× P

(
S
(d)

K(d)

∣∣∣X(d)

K(d) = l(d), S
(d)

K(d) ≤ Tc,Γ
p−1

)
×

K(d)−1∏
n=1

P

X(d)
n , S(d)

n

∣∣∣∣∣∣∣∣∣X
(d)
n+1, S

(d)
n ≤ Tc −

K(d)∑
w=n+1

S(d)
w , {y(d)(t(d)m )}

t
(d)
m ∈T /∪K(d)

v=n+1Tv︸ ︷︷ ︸
Observable variables up to state n

,Γp−1

 .

(29)

Part (a) in (29) decomposes the likelihood of the latent trajectory (using the Markovian
nature of the process) into factors in which the likelihood of every state n is conditioned
on the future trajectory starting from n (i.e. the states Xn+1 up to the absorbing states,
together with their corresponding sojourn times). In part (c), a sufficient statistic for the
distribution of the sojourn time of state n is the time elapsed in the episode up to state n,
i.e. the duration of state n cannot exceed the difference between the censoring time Tc and
the sojourn time of the futuristic trajectory that stems from state n. In part (b), we further
reduce the terms in the future trajectory that are relevant to sampling the past trajectory:
a sufficient statistic for state n is state n + 1, and the observable variables that do not
lie in the futuristic trajectory. Thus, the factorization in part (c) of (29) shows that the
likelihood of the nth state and sojourn time depends on the future trajectory only through
the next state, i.e. state n+1, the time elapsed in the episode by the end of state n, and the
observable variables up to state n. Using Baye’s rule, we can further represent the factors
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in part (c) of (29) in terms of familiar quantities that characterize the HASMM as follows

P

X(d)
n , S(d)

n

∣∣∣∣∣∣X(d)
n+1, S

(d)
n ≤ Tc −

K(d)∑
w=n+1

S(d)
w , {y(d)(t(d)m )}

t
(d)
m ∈T /∪K(d)

v=n+1Tv
,Γp−1


∝ P

(
X(d)

n

∣∣∣∣{y(d)(t(d)m )}
t
(d)
m ∈T /∪K(d)

v=n+1Tv
,Γp−1

)
︸ ︷︷ ︸

Forward message

× P
(
X

(d)
n+1

∣∣∣X(d)
n , S(d)

n ,Γp−1
)

︸ ︷︷ ︸
Transition function

×

P

S(d)
n

∣∣∣∣∣∣X(d)
n , S(d)

n ≤ Tc −
K(d)∑

w=n+1

S(d)
w ,Γp−1


︸ ︷︷ ︸

Truncated sojourn time distribution

. (30)

Thus, a sampler for the latent states trajectories can be constructed using the forward
messages (which we can compute via the ForwardFilter routine using the pth iteration’s
parameter set Γp−1), the pth estimate of the HASMM’s transition functions (gij(s))i,j , and
the pth estimate of the sojourn time distributions (which we have specified to be the Gamma
distribution). A compact representation for the factors in (30) is given by

αd,p
m̄ (j) = P

(
X(d)

n = j
∣∣∣{y(d)(t(d)m )}m̄m=1,Γ

p−1
)
, j ∈ X ,

gpij(s) = P
(
X

(d)
n+1 = j

∣∣∣X(d)
n = i, S(d)

n = s,Γp−1
)
, i, j ∈ X ,

vj(s|λp−1
j ) = P

(
S(d)
n = s

∣∣∣X(d)
n = j,Γp−1

)
, j ∈ X , (31)

where the truncated sojourn time distribution, which captures the sojourn time of a state
conditioned on the time elapsed in the episode, is given by

P
(
S(d)
n = s

∣∣∣X(d)
n , S(d)

n ≤ s̄,Γp−1
)

=
vj(s|λp−1

j ) · 1{s≤s̄}

Vj(s̄|λp−1
j )

. (32)

Given (30), (31) and (32), the sampler in (27) boils down to a sampler that operates
sequentially in the reverse time direction by sampling from the posterior probability of
every state n given the future trajectory of states that starts from state n+1, i.e. in the pth

iteration of the EM algorithm, state n in the gth sample of episode d is sampled as follows

(X(d,p,g)
n = i, S(d,p,g)

n = s)
∣∣∣X(d,p,g)

n+1 = j ∼
αp
m̄(i) · gpij(s) ·

vi(s|λp−1
i ) ·1{s≤s̄}

Vi(s̄|λp−1
i )∑N

k=1 α
p
m̄(k) · gpkj(s) ·

vk(s|λp−1
k ) ·1{s≤s̄}

Vk(s̄|λp−1
k )

, (33)

where s̄ = Tc −
∑K(d,p,g)

w=1 S
(d,p,g)
w is the time elapsed in episode d by the end of state n,

and m̄ = arg maxm

{
t
(d)
m : t

(d)
m ∈ T /

∪K(d,g)

v=n+1 Tv
}

is the index of the most recent observation

sample that does not belong to the future trajectory. It is clear from (33) that sampling
a trajectory requires first a forward pass on the episode in which the forward messages
are computed via the forward filtering algorithm using the current EM estimated of Γ (i.e.
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Figure 9: Depiction of the backward sampling pass for the last and penultimate states for an episode
d. States are sampled in the reverse-time direction using the forward messages and the sampled
future trajectory.

forward filtering), and then a backward pass is applied on the episode where starting from
the censoring time, we sequentially sample states in the reverse time direction using the
forward messages computed in the forward pass as described in (33).
Now that we have described the forward-filtering backward-sampling procedure for sam-

pling the latent state trajectories conditioned on the episodes in the dataset D, we provide
a complete recipe for the Monte Carlo EM algorithm in terms of 4 main steps as follows

• Step 1: The forward filtering pass

For every episode d in D, compute the forward messages for all time instances t
(d)
m ∈

T (d) using the current estimate for the parameter set Γp−1, i.e. invoke the routine

ForwardFilter(Γp−1, {y(d)(t(d)m )}M(d)

m=1 , ϵ). The mth forward message for episode d in
the pth iteration is denoted as αp

m(j), ∀j ∈ X .

• Step 2: The backward sampling pass
Generate G sample trajectories for every episode d as follows:

1. Given the absorbing state l(d), sample S
(d,p,g)

K(d,p,g)
18

S
(d)

K(d,p,g) ∼ vl(d)(s|λ
p−1

l(d)
).

18. Note that K(d,p,g) is random and is not known ahead of time; however we will index the state variables
with respect K(d,p,g) for simplicity of exposition.
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2. Traverse backwards in time and sequentially sample states K(d,p,g)−1, K(d,p,g)−
2,. . ., 1. The nth state is sampled as follows

m̄ = arg maxm

t(d)m : t(d)m ∈ T /
K(d,p,g)∪
v=n+1

Tv

 .

s̄ = Tc −
K(d,p,g)∑
w=1

S(d,p,g)
w

(X(d,p,g)
n = i, S(d,p,g)

n = s)
∣∣∣X(d,p,g)

n+1 = j ∼
αp
m̄(i) · gpij(s) ·

vi(s|λp−1
i ) ·1{s≤s̄}

Vi(s̄|λp−1
i )∑N

k=1 α
p
m̄(k) · gpkj(s) ·

vk(s|λp−1
k ) ·1{s≤s̄}

Vk(s̄|λp−1
k )

.

The sequential sampling process above proceeds until s̄ becomes sufficiently
small, i.e. almost all the patient’s episode duration is covered with a sampled
latent state. Figure 9 provides a pictorial depiction for the process of sampling
a single trajectory g using the procedure described above.

3. Step 3: The E-step
Compute the proximal log-likelihood function using the Monte Carlo approxi-
mation of average complete likelihood computed for all the sample trajectories
generated in Setp 3:

Q(Γ; Γp−1) =

D∑
d=1

1

G

G∑
g=1

log
(
P
(
{X(d,p,g)

n , S(d,p,g)
n }K(d,p,g)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))

.

4. Step 4: The M-step
Update the HASMM parameters set Γp = arg maxΓQ(Γ; Γp−1), and then go to
Step 1.

Two obstacles hinder the direct application of the 4 steps listed above. First, sampling

the bivariate random variable (X
(d,p,g)
n = i, S

(d,p,g)
n = s) requires marginalizing over one of

the two variables, which yields an intractable integral. Second, sampling G trajectories for
every episode in every iteration of the EM algorithm can be computationally expensive. To
overcome the first obstacle, we implement Step 2 via a Gibbs sampler, which operates as
follows

If K(d,p,g) − n + 1 ≤ K(d,p,g−1):

X(d,p,g)
n = i

∣∣∣S(d,p,g−1)
n = s,X

(d,p,g)
n+1 = j ∼

αp
m̄(i) · gpij(s) ·

vi(s|λp−1
i ) ·1{s≤s̄}

Vi(s̄|λp−1
i )∑N

k=1 α
p
m̄(k) · gpkj(s) ·

vk(s|λp−1
k ) ·1{s≤s̄}

Vk(s̄|λp−1
k )

.

S(d,p,g)
n = s

∣∣∣X(d,p,g)
n = i ∼

vi(s|λp−1
i ) · 1{s≤s̄}

Vi(s̄|λp−1
i )
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If K(d,p,g) − n + 1 > K(d,p,g−1):

X(d,p,g)
n = i ∼ αp

m̄(i)

S(d,p,g)
n = s

∣∣∣X(d,p,g)
n = i,X

(d,p,g)
n+1 = j ∼

αp
m̄(i) · gpij(s) ·

vi(s|λp−1
i ) ·1{s≤s̄}

Vi(s̄|λp−1
i )∑N

k=1 α
p
m̄(k) · gpkj(s) ·

vk(s|λp−1
k ) ·1{s≤s̄}

Vk(s̄|λp−1
k )

. (34)

That is, if the state n in sample trajectory g has a counterpart in sample g − 1 (i.e. the
length of sample trajectory g − 1 is large enough that it has more than n states), then we
sample state n in trajectory g conditioned on the sojourn time of state n in trajectory g−1,
and then sample the sojourn time of state n using the truncated sojourn time distribution.
If state n has no counterpart in trajectory g − 1, we first sample state n from the corre-
sponding forward message, and then we sample the sojourn time conditioned on the state
realization.

The second obstacle is solved by sampling G trajectories of the latent states only once,
and then using these samples in all EM iterations, but with an adjustment for the com-
puted proximal log-likelihood using importance weights (Booth and Hobert (1999)). That
is, in the initial iteration, we generate the sample trajectories(

{X(d,o,g)
n , S(d,o,g)

n }K(d,o,g)

n=1

)G

g=1
,

and then in the pth EM iteration we implement the E-step as follows

Q(Γ; Γp−1) =

D∑
d=1

1

G

G∑
g=1

log
(
P
(
{X(d,o,g)

n , S(d,o,g)
n }K(d,o,g)

n=1 , {y(d)(t(d)m )}M(d)

m=1

∣∣∣ Γ
))
·
P
(
{X(d,o,g)

n , S
(d,o,g)
n }K(d,o,g)

n=1

∣∣∣ Γp−1
)

P
(
{X(d,o,g)

n , S
(d,o,g)
n }K(d,o,g)

n=1

∣∣∣ Γo
)

︸ ︷︷ ︸
Importance weights

,

which makes it sufficient for the EM algorithm to rely on one sample of the latent trajectories
in all its iterations, without the need to re-run the forward-filtering backward-sampling
algorithm in each EM iteration.

4. Experiments

Experiments were conducted on data from a cohort of 6,321 patients who were hospitalized
in a general medicine floor in a large academic medical center during the period between
March 3rd 2013, to February 4th 2016. The patient population is heterogeneous with a wide
variety of diagnoses. The patients in the cohort had a wide variety of diagnoses including
septicemia, leukemia, hypertension, pneumonia, anemia, renal failure, heart failure, etc.
Some of these patients underwent organ transplant surgeries or received chemotherapy
which significantly ablate their immune system and leaves them at increased risk of clinical
deterioration. Of the 6,321 patients, around 5% were admitted to the ICU; we handle the
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Figure 10: The ROC curve for the proposed risk score compared to state-of-the-art scores.

data imbalance by focusing on the sensitivity and precision measures for accuracy. The
data associated with each patient involves 17 temporal physiological data streams that
comprise vital signs (diastolic and systolic, blood pressure, Glasgow coma scale score, heart
rate, respiratory rate, temperature, O2 saturation, etc) and laboratory tests (white blood
cell, Hemoglobin, Glucose, etc). The vital signs are sampled (approximately) once every 4
hours, whereas the laboratory tests are typically conducted every 24 hours. The length of
the oatients’ stay in the ward ranged from 4 hours to 2000 hours.

We first run our SMC-EM algorithm on the training set in order to find the HASMM
parameter set Γ that best describes the observed episodes (physiological histories of the pa-
tients). We note that unlike the case of disease progression models where domain knowledge
can inform the number of states, e.g. long-term stages of chronic disease progression (Liu
et al. 2015), there is no domain knowledge on the nature of the clinical states for subacute
care patients. Hence, we select the number of states via model selection; the Bayesian Infor-
mation Criterion is used to select the least complex model that fits the observed episodes.
The average sojourn time in each state was about 12 hours.

We validated the utility of the proposed risk score by evaluating the sensitivity, precision
and timeliness of the early warning alarms prompted by our system as compared to the state-
of-the-art risk scores currently deployed in hospital wards; namely MEWS and Rothman
index, in addition to the APACHE and SOFA scores, which are normally used to predict
mortality in the ICU, but have been recently validated for prognostication in wards (Yu et
al. 2014). The Rothman index is the state-of-the-art risk scoring methodology in wards
and is currently deployed in more than 70 hospitals in the US (Finaly 2014). Comparisons
with baseline predictors including linear regression, random forest and LASSO were also
conducted. The training set D comprises 5,130 episodes for patients who were admitted to
the ward in the period between March 2013 and July 2015, whereas the remaining (most
recently) admitted patients’ episodes were used for testing.

Fig 2 demonstrates the ROC curves achieved by MEWS, Rothman index, APACHE,
SOFA and the proposed risk score. It can be seen that the ROC curve achieved by the
proposed score dominates those achieved by all other scores for all settings of precision and
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Figure 11: The ROC curve for the proposed risk score compared to baseline classifiers.

−25 −20 −15 −10 −5 0
5

10

15

20

25

30

35

40

45

Time Preceding actual ICU admission

Pr
ec

is
io

n 
(%

)

 

 
Sensitivity = 50%

Proposed risk score
MEWS
SOFA
APACHE II
Rothman Index

Figure 12: The timeliness of the proposed risk score compared to state-of-the-art scores.

sensitivity. The proposed risk score outperforms the Rothman index by many –perhaps all–
measures. In particular, the proposed score offers a gain of 23.3% (p-value < 0.01) with
respect to the AUC of the most competitive risk score, the Rothman index. Moreover, the
proposed score provides significant improvements in precision at all sensitivity levels. For
instance, for a sensitivity of 50%, the proposed risk score achieves a precision of 41% which
is around 22% higher than that achieved by the Rothman index for the same sensitivity.
This means that the proposed risk score can significantly reduce the rate of false ICU alarms
in the subacute care wards, which would mitigate alarm fatigue and enhance a hospital’s
resource utilization. Fig 3 demonstrates the performance of the proposed risk score as
compared to the baseline predictors; an AUC gain of 7% (p-value < 0.01) compared to
random forest is reported.

To demonstrate the potential reductions of the false alarm rates that would result from
improvements in the risk scoring precision achieved by our model, we list the number of
false alarms per one true alarm for all the proposed risk model and the Rothman index at
different levels of sensitivity in Table 1. As we can see, at a sensitivity of 50%, the proposed
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risk score leads to only 0.84 false alarms for every 1 true alarm, whereas the Rothman index
lead to 2.34 false alarms per true alarm.

The improvements achieved by our model can be attributed to: incorporating the entire
physiological trajectory while assessing the current risk via forward-filtering (the Rothman
index considers the only the latest physiological measurement), and accounting for tem-
poral correlations and the cross correlations among the different vital signs and lab tests
measurements via the multitask GP model (the Rothman index ignores those correlations
and hence double-counts risk factors (see Eq. (1) in (Rothman et al. 2013)).

Table 1: Number of false alarm per one true alarm for different levels of sensitivity.

Sensitivity 0.6 0.55 0.5 0.45

Proposed risk score 1.14 0.96 0.84 0.8

Rothman index 3.11 2.67 2.34 2.01

Note that unlike state-of-the-art risk scores such as the Rothman index, which assigns
high risk scores only to patients who appear to be in the absorbing clinical deterioration
state (See Fig A1 in (Rothman et al. 2013)), our algorithm introduces foresightedness in
the risk scoring methodology; it computes a patient’s risk score taking into account the
future trajectory of state evolution and not just the estimated acuity at the current mo-
ment, which provides significant gains in terms of the timeliness of its early warnings as
compared to the other risk scores. This is illustrated in Fig 6 where we show the trade-off
between the timeliness of an ICU admission alarm and its accuracy. It can be seen that for
a sensitivity of 50% and precision of 32%, the proposed risk model can issue ICU alarms
that are as early as 10 hours before the actual clinician’s ICU transfer decision. Note that
for the same prediction time and the same sensitivity, the Rothman index can only provide
a precision of 12%. Therefore, the proposed risk model can provide the ward staff with a
greater safety net for focusing their attention and delivering the care to the patients who
are in real need in a timely manner, and allow them to plan for early ICU transfers that
can boost the efficacy of consequent therapeutic interventions.

5. Conclusions

In this paper, we have developed a risk scoring and early warning system that can predict
clinical deterioration for monitored patients on the wards, allowing for timely ICU admission
and more efficient therapeutic interventions. The proposed risk scoring algorithm is based on
a novel Hidden Absorbing Semi-Markov Model (HASMM) that relates a patient’s evolving
acuity to her observed physiology, and captures important aspects of the physiological
data gathering process, such as the irregularly sampled physiological measurements and
the informatively censored patients’ episodes. We developed novel inference and learning
algorithms that can use the EHR data to calibrate the HASMM model parameters and
compute the patients’ risks in real-time. Experiments conducted on a heterogeneous cohort
of 6,321 patients show that the proposed risk score significantly outperforms the state-of-
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the-art risk scoring technologies in terms of accuracy and timeliness, which translates into
a significantly improved subacute care in hospital wards.
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