Hypothesis Testing and the boundaries between Statistics and Machine Learning

The Data Science and Decisions Lab, UCLA

April 2016

Statistics vs Machine Learning: Two Cultures

Statistical Inference vs Statistical Learning

Leo Breiman, "Statistical Modeling: The Two Cultures," Statistical Science, 2001

- <u>Descriptive statistics</u>: describing a data sample (sample size, demographics, mean and median tendencies, etc) without drawing conclusions on the population.
- Inferential (inductive) statistics: using the data sample to draw conclusions about the population (conclusion still entail uncertainty = need measures of significance)
- Statistical Hypothesis testing is an inferential statistics approach but involves descriptive statistics as well!

Statistical Inference problems

- Inferential Statistics problems:
- Point estimation
- Interval estimation
- Classification and clustering
- **Rejecting hypotheses**
- Selecting models

- Frequentist inference:
- Key idea: Objective interpretation of probability any given experiment can be considered as one of an infinite sequence of possible repetitions of the same experiment, each capable of producing statistically independent results.
- Require that the correct conclusion should be drawn with a given (high) probability among this set of experiments.

• Frequentist inference:

The same conclusion is reached with high probability by resampling the population and repeating the experiment.

- Frequentist inference:
- Measures of significance: p-values and confidence intervals
- Frequentist methods are objective: you can do significance testing or confidence interval estimation without defining any explicit (subjective) utility function.
- Do not need to assume a prior distribution over model parameters, but assume they take fixed, unknown values.

- Frequentist inference:
- Measures of significance: p-values and confidence intervals

The Data Science and Decisions Lab, UCLA

• Frequentist inference:

Confidence intervals are random!

The fraction of such intervals that contain the true parameter = confidence level 1- δ

- **Bayesian inference**:
- Key idea: Subjective interpretation of probability statistical propositions that depend on a posterior belief that is formed having observed data samples. Subjective because it depends on prior beliefs (and utility functions).
- Measures of significance: credible intervals and Bayes factors.

- **Bayesian inference**:
- Credible intervals for parameter estimation: an interval in the domain of a posterior probability distribution or predictive distribution used for interval estimation
- Credible intervals vs. Confidence intervals: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.

- <u>Bayesian inference</u>: Estimation problems
- Credible intervals vs. Confidence intervals

- <u>Bayesian inference</u>: Comparison problems
- Bayes factors vs. p-values
- Bayesian factors are natural alternative to classical hypothesis testing that measure the strength of evidence through "risk rations"

$$K = \frac{P(X|H_o)}{P(X|H_1)} = \frac{\int P(\theta_o|H_o)P(X|\theta_o, H_o)d\theta_o}{\int P(\theta_1|H_1)P(X|\theta_1, H_1)d\theta_1}$$

• Guidelines on the value of K: K<1 negative, K>100 decisive, etc.

Statistical Hypothesis Testing: Problems

- Many statistical inference problems involve hypothesis testing:
- Examples:
- Which model best fits the data?
- Is treatment X more effective for males than females?
- Is smoking a risk factor for coronary heart diseases?
- Is the chance of a certain intervention being successful depends on a specific feature of the patient?
- Does this subpopulation of patients belong to the same category?
- Usually a Yes-No question. Inference = answer this question from a data sample. <u>Understanding the data independent of</u> <u>any specific ML algorithm</u>

Statistical Hypothesis Testing: the setting

- Usually we want to test:
- 1) Whether two samples can be considered to be from the same population.
- 2) Whether one sample has systematically larger values than another.
- 3) Whether samples can be considered to be correlated.

Significance of conclusions: predict the likelihood of an event associated with a given statement (i.e. the hypothesis) occurring by chance, given the observed data and available information.

<u>Testing is usually objective</u>: frequentist significance measures!

<u>Testing is usually objective</u>: frequentist significance measures!

- Complex phenomena (no solid model), inference not necessary associated with specific utility (need objective conclusions)
- e.g. signal detection vs. medical study

Statistical Hypothesis Testing: Main steps

Parametric Tests

Assumes a certain parametric form of the underlying distribution

Less applicability, more statistical power

Nonparametric Tests

Assumes no specific functional form on the underlying distribution

More applicability, less statistical power

Null Hypothesis test

Ho: Statement is true *H1:* Statement is not true

We want to accumulate enough evidence to reject the null hypothesis.

Nonparametric Tests

Distribution-free, but need other assumptions!

Bayesian framework = Neyman-Pearson Lemma: Likelihood is the test statistic, and can be always used to find a UMP Frequentist framework = Can compute closed form p-vaues **One-sample tests**

Testing whether a coin is fair

Testing whether two coins have the same probability of heads

$$H_0: p = 0.5$$
$$H_1: p \neq 0.5$$

$$H_0: p_1 = p_2$$
$$H_1: p_1 \neq p_2$$

Measures of significance, type-I and type-II errors, and criteria for rejection

Significance level α : the rate of false positive (type-I) errors, called the size of the test.

Significance power $1-\beta$: the rate of false negative (type-II) errors, 1- β is called the power of the test.

 $\alpha = P(\text{reject } H_0 | H_0 \text{ is correct})$

 $\beta = P(\text{do not reject } H_0 | H_0 \text{ is incorrect})$

	H_0 is correct	H_0 is incorrect
Reject null hypothesis	false positive	true positive
	type I error (α)	
Fail to reject null hypothesis	true negative	false negative
		type II error (β)

Measures of significance, type-I and type-II errors, and criteria for rejection

The null hypothesis is rejected whenever the p-value is less than the significance level α

P-value computation

$$p = P(X < x | Ho)$$

	1-sample	2-sample independent	2-sample dependent (paired)		
Parametric	t-test	t-test	paired <i>t</i> -test		
		Welch's <i>t</i> -test			
Non-parametric	sign test	median test	sign test		
	Wilcoxon signed-rank test	Mann-Whitney U -test	Wilcoxon signed-rank test		

Decide the hypothesis and whether the test is one sample or two-sample

Pick an appropriate parametric test

Test the validity of Assumptions of the parametric test

- Assumes that the data is normally distributed: the Shapiro-Wilk test is used to check the validity of that assumption
- The test statistic follows a **Student-t distribution**
- One sample t-test: test whether the data sample has a mean that is close to a hypothetical mean
- Two sample t-test: test whether two data samples have significantly different means

• Null hypothesis: the population mean is equal to some value μ_0

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \qquad t \sim \mathcal{T}_{n-1}$$

The Data Science and Decisions Lab, UCLA

• Null hypothesis: the population mean of two groups are equal

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_{12}\sqrt{n_1^{-1} + n_2^{-1}}} \qquad t \sim \mathcal{T}_{n_1 + n_2 - 2}$$

$$\underbrace{\frac{\bar{x}_1 - \bar{x}_2}{s_{12}\sqrt{n_1^{-1} + n_2^{-1}}}}_{\frac{\bar{x}_1 - \bar{x}_2}{s_{12}\sqrt{n_1^{-1} + n_2^{-1}}}} \quad t$$

 Null hypothesis: the population mean of two groups are equal, but does not assume both groups have the same variance

• Two tailed tests: the p-values are computed with regard to the two sides of the Student-t distribution, e.g. if significance level is 0.05, then area under each side is 0.025

Typical cutoff on the t-statistic

Typical significance level is α = 0.05, the CDF of Student-t distribution is tabulated

Magic number t = 2. (t-statistic cutoff)

0.10

0.20

1.310

1.303

1.296

1.289

1.282

			· .		PROPORTION IN ONE TAIL			
			0.25	0.10	0.05	0.025	0.01	0.005
					PROPORTIO	N IN TWO TAILS		
istic cu	toff)	df	0.50	0.20	0.10	0.05	0.02	0.01
		1	1.000	3.078	6.314	12.706	31.821	63.657
		2	0.816	1.886	2.920	4.303	6.965	9.925
		3	0.765	1.638	2.353	3.182	4.541	5.841
		4	0.741	1.533	2.132	2.776	3.747	4.604
		5	0.727	1.476	2.015	2.571	3.365	4.032
		6	0.718	1.440	1.943	2.447	3.143	3.707
		7	0.711	1.415	1.895	2.365	2.998	3.499
		8	0.706	1.397	1.860	2.306	2.896	3.355
		9	0.703	1.383	1.833	2.262	2.821	3.250
PROPORTIO	N IN ONE T	ATT			1.812	2.228	2.764	3.169
ROPORTIO	IN IN ONE I	AIL			1.796	2.201	2.718	3.100
0.05	0.025		0.01	0.005	1.782	2.179	2.681	3.055
					1.771	2.160	2.650	3.012
ROPORTIO	N IN TWO T/	ILS			1.761	2.145	2.624	2.97
0.10	0.05		0.02	0.01	1.755	2.131	2.602	2.94
0.10	0.05		0.02	0.01	1.740	2.120	2.565	2.92
1000					1.740	2.110	2.507	2.090
1.697	2.042		2.457	2.750	1.734	2.101	2.532	2.870
1.684	2.021		2.423	2.704	1.725	2.095	2.539	2.80
1 671	2 000		2 390	2 660	1.721	2.080	2.518	2.83
1.071	2.000		2.390	2.000	1.717	2.074	2.508	2.819
1.658	1 980		2.358	2.617	1.714	2.069	2.500	2.80
1.645	1.960		2.326	2.576	1.711	2.064	2.492	2.797
		25	0.684	1.316	1.708	2.060	2.485	2.787
	26	0.684	1.315	1.706	2.056	2.479	2.779	
	27	0.684	1.314	1.703	2.052	2.473	2.771	
	28	0.683	1.313	1.701	2.048	2.467	2.763	
	29	0.683	1.311	1.699	2.045	2.462	2.750	
		30	0.683	1.310	1.697	2.042	2.457	2.750
		40	0.681	1.303	1.684	2.021	2.423	2.704
	60	0.679	1.296	1.671	2.000	2.390	2.660	
		120	0.677	1.289	1.658	1.980	2.358	2.61
		∞	0.674	1.282	1.645	1.960	2.326	2.576

0.25

0.50

0.683

0.681

0.679

0.677

df

30

40

60

120

 ∞

Typical cutoff on the t-statistic

- Typical Statistical Inference in a research study:
- Research Question: Is smoking a risk factor for high blood pressure?

- Testing multiple hypotheses simultaneously
- Should we take decision on every hypothesis separately using its marginal p-value? NO!
- Multiple testing matters! We may care about the whole set of tests, need a method to control false discoveries
- Example:
- If α = 0.05, and we are doing 100 tests, then the probability of making at least one true null hypothesis is rejected is given by

$$1 - (1 - 0.05)^{100} = 0.994$$

Multiple testing: p-value adjustments and type-I errors control

 For testing M hypotheses, we have a vector of t-statistics and pvalues as follows

$$[t_1, t_2, ..., t_M], [p_1, p_2, ..., p_M]$$

When people say "adjusting p-values for the number of hypothesis tests performed" what they mean is controlling the Type I error rate.

Type-I error notions for multiple testing

$$FWER = \mathbb{P}\left(\sum_{i=1}^{M} \mathbf{1}_{\{t_i > t_i^*\}} \ge 1\right) \quad FDR = \mathbb{E}\left[\frac{\sum_{i=1}^{M} \mathbf{1}_{\{t_i > t_i^*\}}}{M}\right]$$

Single-step methods

Individual test statistics are compared to their critical values simultaneously

Sequential methods

Stepdown methods therefore improve upon single-step methods by possibly rejecting `less Signiant' hypotheses in subsequent steps.

Bonferroni method

Holm's method

Bonferroni method

- Reject any hypothesis with a p-value less than $\frac{\alpha}{M}$
- $\tilde{p} = \min(M p, 1)$
- No assumption on dependency structure, all p-values are treated similarly

The Data Science and Decisions Lab, UCLA

- **Counter-intuitive:** interpretation of finding depends on the number of other tests performed
- **High probability of type-II errors**: not rejecting the general null hypothesis when important effects exist.

"Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)

Holm's sequential method

- Scales different p-values differently based on their significance
- Order the p-values by their magnitudes $p_{(1)} < p_{(2)} < \cdots < p_{(M)}$

•
$$\tilde{p}_{(i)} = \min((M - i + 1) p_{(i)}, 1)$$

Holm's vs. Bonferroni Discoveries

• For M = 10, α = 0.05

The Data Science and Decisions Lab, UCLA

P. Ioannidis, ``Why most published research findings are false?", PLoS medicine, 2005

Y. Hochberg, and Y. Benjamini, ``More powerful procedures for multiple significance testing", Stat. in Medicine, 1990.

Hypothesis testing or parameter estimation?

 Confidence intervals on t-static instead of p-values if the numeric values are themselves of interest

Personalization as a multiplicity of nested tests

- Key idea: clustering is based on inference of subpopulation properties independent of the classifier and its complexity
- Group homogeneous subpopulation together
- FWER is now an analog of a PAC confidence bound on the homogeneity of subpopulations!!

Classification algorithms that conduct research

The Data Science and Decisions Lab, UCLA

Classification algorithms that conduct research

