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ABSTRACT 
Diagnosis decision support systems (DDSS) play an 
increasingly important role helping clinicians make 
informed diagnosis decisions. DDSS use the high-
dimensional clinical data stored in electronic health records 
and learn from it to recommend diagnosis for new patients. 
However, discovering which data is relevant to consider 
when diagnosing a patient can be very challenging. We 
present a novel DDSS, the diagnosis engine (DE), that 
discovers which patient data/features are most relevant 
(informative) to determine a specific diagnosis and 
subsequently use this information to make diagnosis 
recommendation for new patients. While DE is general and 
can be applied to diagnosing various diseases, we evaluate 
its performance in the context of breast cancer and show that 
DE significantly outperforms state-of-the-art solutions in 
terms of prediction error rates (by 7.47%) and false positive 
rates (by 13.25%) when the false negative rates is fixed to 
be below a threshold set by medical practice (usually 2%). 

Index Terms— Relevance Learning, Feature Selection, 
Healthcare Informatics, Diagnosis Decision Support System 

1. INTRODUCTION 
Clinicians are routinely faced with the practical challenge of 
integrating high-dimensional data in order to select proper 
tests and diagnosis for a given patient. As the understanding 
of complex diseases (such as cancer) is progressing and, 
together with it, the range of available tests grows as well, 
the difficulty of determining the appropriate diagnosis for a 
particular patient increases as well. Furthermore, statistics 
show that diagnostic errors yield around 10% of patient 
deaths; moreover, they represent the primary type of 
medical malpractice claims in United States [1]. This 
underscores the urgent need for building diagnosis decision 
support systems (DDSS) that can assist clinicians in 
determining the correct diagnosis [2]. DDSS can capitalize 
on the wealth of information that is being routinely collected 
in the electronic health records (EHR) of patients. This 
provides an unprecedented opportunity to 1) correctly 
diagnose a patient by appropriately considering the diversity 
of available information about him/her and 2) use historical 
information about similar patients and their diseases to learn 
the correct diagnosis for the current patient [3]. However, 
capitalizing on this information is difficult precisely because 
there is too much of it; thus, DDSS needs to extract the 

information that is actually relevant for diagnosis and 
diagnose among the wealth of available information [4]. 

In this paper, we present a novel DDSS approach – 
which we refer to as the Diagnosis Engine (DE) – that is 
able to discover out of the vast available EHR data the 
patient features (i.e. the intrinsic characteristics of a patient 
and/or his/her medical test results) that are relevant to 
establish a specific diagnosis and then use this information 
to issue personalized diagnosis recommendations for the 
current patient to the attending clinician. The feature 
discovery component of DE – which we refer to as 
Diagnosis-Relevant Feature Selection (DiReFS) – is capable 
of learning which features are most informative to consider 
in order to make an accurate diagnosis for a patient. 

While in this paper we apply DE to breast cancer 
diagnosis, its approach is general and can also be used for 
diagnosing other diseases. Moreover, while here we only 
show the applicability of DE to personalized diagnosis 
recommendations, the proposed method can be relatively 
easily extended to personalized treatment recommendations 
in addition to personalized diagnosis [5-6].  

The primary contributions of this paper are: 
 We develop a new method (DiReFS) for discovering what 

features are most relevant to consider when making a 
diagnosis.  Using the discovered relevant features, we developed a 
diagnosis recommendation system (DE) which can be 
used by the clinicians when attending to a patient. 
(Alternatively, DE can also be used by the clinicians 
and/or patients, to get a second, independent opinion.)  We apply DE to the diagnosis of breast cancer from 
images of cellular samples obtained from fine needle 
aspiration (FNA) of breast mass. DiReFS is used to 
discover which features are relevant to make a correct 
diagnosis and then use this knowledge to build a diagnosis 
recommendation system. We test DE on a well-known 
dataset and show that it consistently and significantly 
outperforms diagnostic systems based on state-of-the-art 
machine learning and feature extraction methods. 

2. RELATION TO PRIOR WORK 
Current medical practice relies on manually curated 
systematic reviews and clinical guidelines that provide 
diagnosis recommendations for large groups of patients 



rather than personalized diagnosis that are tailored to 
individual patients. DDSS have been proposed before to 
help clinicians make more informed decision, but many of 
them do not consider the specific characteristics (features) 
of patients and do not provide personalized diagnosis 
recommendations; hence, they are not very accurate and 
have only limited applicability in practice [7-8]. Some 
DDSSs issue accurate diagnosis recommendations for 
certain diseases, but based only on a small number of 
manually selected features [9-11].  Whenever the number of 
features is large (as it is the case for breast cancer diagnosis), 
these methods are not applicable [12]. Instead, our DE can 
robustly issue accurate diagnosis for patients even when the 
number of features is large by identifying the features that 
are most relevant to consider when diagnosing a patient. 

Another strand of literature related to this work is that 
on machine learning techniques such as Support Vector 
Machines (SVMs), AdaBoost, logistic regression etc. 
However, as shown in the experiments section, these 
methods are not able to issue accurate recommendations. 
The reason is that they cannot accurately capture the 
nuanced relationships between patient characteristics and 
various diagnosis decisions. 

Finally, feature selection algorithms such as correlation 
feature selection (CFS) and mutual information feature 
selection (MIFS) [13-15] are also related to DiReFS. 
However, DiReFS is very different from existing feature 
selection algorithms which focus on the patients’ 
characteristics and not on how these characteristics 
differently impact on different diagnosis: our approach is 
capable of discovering different features that are relevant to 
different diagnosis. This makes DiReFS similar to our prior 
work [16-17] – the RELEAF algorithm. However, unlike 
RELEAF, which is very slow because it must compare all 
combinations of features, DiReFS is able to discover the 
relevant features in a very fast and efficient manner because 
it adopts a new sequential feature selection approach. 

3. PROBLEM FORMULATION 
In this section, we introduce the proposed Diagnosis Engine 
(DE) which consists of the diagnosis-relevant feature 
selection and the diagnosis recommendation algorithm. 
Figure 1 depicts the proposed system as applied to breast 
cancer diagnosis: it issues a diagnosis recommendation 
(tumor is benign or malignant) for a patient based on the 
relevant features extracted from images of cellular samples 
obtained from FNA of breast mass.  

Let ࢞  = ,ଵݔ) ,ଶݔ … … , (ݔ  denote the patient’s feature 
information where ܦ  is the total number of features 
extracted from the imaging of a patient such as tumor radius, 
texture, perimeter, etc.; ܽ ∈ ܣ ≜ {ܽଵ, ܽଶ, … … , ܽ}  denotes 
the action (i.e., diagnosis recommendation) for the patient. 
For the breast cancer diagnosis used for illustration in this 
paper, the action/diagnosis recommendation is simply 
whether the tumor of the patient is benign or malignant 

(binary action). However, DE is applicable to any discrete 
number of actions. Each feature is denoted as ݂ ∈ ܨ ≜
{ ଵ݂, ଶ݂, … … , ݂}. ݕ is defined as the prediction accuracy of 
the diagnosis: if the diagnosis is correct, y is 1, otherwise, y 
is 0. Let ࢞(݊), ܽ(݊), (݊)ݕ  be the n-th patient information 
which includes her imaging, action and prediction accuracy 
and ऒே = ,(݊)࢞) ܽ(݊), ୀଵே((݊)ݕ  be the information 
available for the ܰ  previously seen patients as stored in 
EHR. This information becomes the basis for making 
diagnostic decisions for the (ܰ  1)-th patient.  

The diagnosis of breast cancer does not depend on all 
the features that can be extracted from the FNA images. We 
assume that the diagnosis ܽ  depends only on a subset of 
features ℛ(ܽ) ⊆  which we refer to as the relevant features ܨ
for diagnosis ܽ.  A key challenge is that the features that are 
relevant for recommending the breast cancer diagnosis are 
not known a priori; they need to be discovered/learned. 
Hence, we should discover the relevant features of each 
diagnosis ܽ (this may be different for each diagnosis). 

The recommended diagnosis based on the relevant 
features extracted from the FNA images is determined as: ܽ∗(࢞) ≜ ݃ݎܽ max ॱ௬|,࢞ℛ(ೌ)(ݕ|ܽ,  (ℛ()࢞
where ܽ∗(࢞)  is the diagnosis that yields the highest 
prediction accuracy for a patient whose imaging is 
characterized by the information vector ࢞. 

4. ALGORITHMS 
4.1. Diagnosis-Relevant Feature Selection (DiReFS) 
The proposed DiReFS algorithm sequentially discovers the 
relevant features which yield maximum relevance to the 
specific diagnosis with minimum redundancy (compared 
with the previously discovered relevant features).  

To describe DiReFS, we start by introducing a few 
notations. Let ݕොௌ(࢞ௌ)  and ܰௌ(࢞ௌ)  be the sample mean 
prediction accuracy estimator and the number of patients 
(whose feature information contains ࢞ௌ  and was provided 

Figure 1: Diagnosis decision support system using DE 



diagnosis ܽ). Let ݕො and ܰ be the sample mean prediction 
accuracy estimator and the number of patients who received 
the diagnosis ܽ. 

First, we define a relevance metric ℎ(ܽ)  which 
measures how the expected diagnosis accuracy for patients 
having the feature ݔ  differs from that obtained for the entire 
set of patients in ऒே(previously defined in section 3) when 
diagnosis ܽ is chosen. We formalize this as: 

ℎ(ܽ) ≜  ܰ൫ݔ൯
ܰ

|
௫

(ݔ)ොݕ −  |ොݕ
Second, we define a redundancy metric ℎ,௦ௗ (ܽ) which 

measures how the expected diagnosis accuracy made for a 
patient is affected by considering an additional feature ݔ  
when diagnosis ܽ is chosen. We formalize this as: 

ℎ,௦ௗ (ܽ) = −  ܰ,௦൫ݔ , ௦൯ݔ
ܰ(ݔ௦)௫,௫ೞ

ݔ)ො,௦ݕ| , (௦ݔ −  |(௦ݔ)ො௦ݕ
Next, we use the minimum-redundancy-maximum-

relevance (mRMR) criterion [15] to combine the above 
metrics to select diagnosis-relevant features. Before we 
describe DiReFS, let us define ࣯(ܽ) as the utility obtained 
if feature ݔ  is selected as a relevant feature for diagnosis ܽ. 
If ℛ(ܽ) is the relevant features set discovered by DiReFS 
for diagnosis ܽ, the utility ࣯(ܽ) is determined as: 

࣯(ܽ) = ℎ(ܽ) − 1
หℛ(ܽ)ห  ℎ,௦ௗ (ܽ)

௦∈ℛ() , 
where 1/|ℛ(ܽ)| is used as a normalization factor. 

The main steps of the DiReFS are outlined below:  
Step 1: Define ℛ(ܽ)  as the relevant feature set 

discovered by DiReFS for diagnosis ܽ  and ℛ (ܽ)  as the 
complementary set of ℛ(ܽ). G and H are defined as selected 
relevant features in step 2 and step 3, respectively. For each 
diagnosis ܽ , initialize ℛ(ܽ)  as the empty set (i.e. ∅) and 
ℛ(ܽ) as the set of all features. 

Step 2: The algorithm selects the first relevant feature 
that maximizes the relevance metric (ℎ(ܽ)), i.e., 

G = ݃ݎܽ max∈ℛ () ℎ(ܽ) 
ℛ(ܽ) = ℛ(ܽ) ∪ G 

Step 3: The algorithm finds the subsequent relevant 
feature that maximizes utility function (࣯(ܽ)), i.e., 

H = ݃ݎܽ max∈ℛ () ࣯(ܽ) 
ℛ(ܽ) = ℛ(ܽ) ∪ H 

Step 4: The algorithm iteratively runs Step 3 until ݉-th 
relevant feature is selected, where m is an input parameter 
for the algorithm. 
4.2. Diagnosis recommendation algorithm The proposed diagnosis recommendation algorithm is a 
modified contextual multi-armed bandit algorithm [16-19] 
which uses the contexts (features) selected by DiReFS to 
recommend the optimal diagnosis for each patient. The main 
steps of the recommendation engine are outlined below:  

Step 1: Find the set of underexplored actions for the 
patient with information vector ࢞ℛ(). 

ܷ = ቄܽ ∈ ቚܣ ܰℛ
()൫࢞ℛ()൯ < ܥ ∙ log(݊)ቅ 

where ܥ ∙ log(݊)  is a control function. If there are 
underexplored actions, DE abstains from making diagnosis 
recommendation and only updates ܰℛ

()൫࢞ℛ()൯  and 
ොℛݕ

() ൫࢞ℛ()൯ based on the actual label (benign/malignant) 
obtained from post-examination. Hence, note that DE only 
issues recommendations when it is sufficiently confident 
about its predictions and it abstains otherwise. 

Step 2: If there is no underexplored actions for the 
patient with information vector ࢞ℛ(), the optimal diagnosis 
with respect to the relevant feature set ℛ(ܽ) is determined 
as 

ොܽ(࢞) = ݃ݎܽ max ොℛݕ
() ൫࢞ℛ()൯ 

This optimization selects the action with the highest 
estimated prediction accuracy for the patient with 
information vector ࢞ℛ(). The pseudo-code of DE is given 
in Algorithm 1. 
Algorithm 1 Diagnosis Engine (DE) 
Input: ݉,  ܥ
Initialize: ℛ(ܽ) = ∅, ℛ(ܽ) = { ଵ݂, ଶ݂, … … , ݂} for each ܽ  
for each diagnosis  ܽ        G = ݃ݎܽ max∈ℛ() ℎ(ܽ)
       ℛ(ܽ) = ℛ(ܽ) ∪ G  

do      H = ݃ݎܽ max∈ℛ() ࣯(ܽ)  
      ℛ(ܽ) = ℛ(ܽ) ∪ H  
while (หℛ(ܽ)ห < ݉) 

end for 
ܷ = {ܽ ∈ |ܣ ܰℛ

()൫࢞ℛ()൯ < ܥ ∙ log(݊)} 
if (ܷ = ∅)  
      ොܽ(࢞) = ݃ݎܽ max ොℛݕ

() ൫࢞ℛ()൯  
end if  
Update ܰℛ

()൫࢞ℛ()൯, ොℛݕ
()൫࢞ℛ()൯  based on the actual

label (benign/malignant) 
5. EXPERIMENTS 

In this section we evaluate the performance of DE for breast 
cancer diagnosis using the well-known UCI dataset [20]. 
The dataset contains 30 patient features extracted from FNA 
images. The diagnosis (label) for each patient is either 
malignant or benign. 

We compare the performance of DE algorithms with 
four existing machine learning algorithms and three existing 
feature selection algorithms:  Logistic Regression (LogitR);  Linear Regression (LinearR);  Support Vector Machines (SVMs); we use a radial basis 

function (RBF) kernel SVM; 



 Adaptive Boosting (AdaBoost);  Correlation Feature Selection (CFS): a well-known 
feature selection algorithm based on correlation [14];  Mutual Information Feature Selection (MIFS): a well-
known feature selection algorithm based on mutual 
information [15];  Relevance Learning with Feedback (RELEAF): an action 
dependent relevance learning algorithm based on the 
expected rewards [16, 17]; 

5.1. Simulation Setup First, we compare our DE algorithm against state-of-the-art 
machine learning algorithms: LogitR, LinearR, SVM and 
AdaBoost. The training set contains 10% of the patients in 
the dataset and standard 50-fold stratified cross-validation 
was applied in the simulation.  

Second, to highlight the importance of DiReFS, we 
performed two additional sets of simulations. In the first set, 
we compare the performance of our DE system using 
DiReFS with the performance of the DE system where 
DiReFS was replaced with one of the three different feature 
selection algorithms: CFS [14], MIFS [15], and RELEAF 
[16-17]. This comparison shows the impact of DiReFS on 
the overall performance of the DE. 

In the second set of simulations, we use the features 
selected by DiReFS in conjunction with the diagnosis 
recommendation made by the benchmark algorithms - linear 
regression, logistic regression, SVM - to highlight the 
specific impact of our feature selection algorithm.  
5.2. Measuring Success 
Given a patient, DE as well as the other benchmark 
algorithms classify the tumors as malignant or benign. To 
quantify the performance, we apply three performance 
metrics: the prediction error rate (PER), the false positive 
rate (FPR), and the false negative rate (FNR). PER is 
defined as the fraction of times the classification of our 
algorithm is different from the actual label. FPR and FNR 
are defined as the diagnosis error rate for benign tumors and 
the diagnosis error rate for malignant tumors, respectively. 
The goal of DDSS is to minimize the FPR given an 
allowable threshold for FNR as selected by the clinicians. 
(In practice, this is often set to be below 2% [21].) 
Comparison with machine learning algorithms: As the 
table 1 shows, our DE algorithm has 2.23% prediction error 
rates and 2.62% false positive rates which is 7.47% and 
13.25% better than the second best algorithm (LogitR) when 
the tolerable threshold of FNR is set to below 2%. There are 
two reasons for the outstanding performance of the DE 
algorithm. First, our diagnosis recommendation algorithm 
yields high accuracy for classification, because it is able to 
provide personalized diagnosis, while other comparable 

algorithms apply the same model for all patients. Second, 
DE  can discover different relevant features for different 
diagnosis based on DiReFS, while the other algorithms base 
their decisions on all the features. 
 Comparison with feature selection algorithms: In this 
subsection, we demonstrate the impact of DiReFS algorithm 
on the DE system. We compare the performance of the DE 
using DiReFS with the performance of DE using different 
feature selection algorithms. As it can be seen in table 2, 
DiReFS significantly outperforms all the other feature 
selection algorithms when the tolerable threshold of FNA is 
set to below 2%. This is because DiReFS is capable of 
discovering diagnosis relevant features based on their 
impact on the expected diagnosis accuracies. Although 
RELEAF also considers the dependence between diagnosis 
and feature selection, it is extremely slow and not able to 
exploit the redundancy existing among features.  
Table 2: Performance of DE with other feature selection methods 

% DiReFS RELEAF CFS MIFS 
PER 2.23 18.37 5.69 9.97 
FPR 2.62 24.11 9.81 16.4 
FNR 1.92 1.96 1.98 1.89 
Next, we replace the recommendation part of DE with 

conventional machine learning algorithms and demonstrate 
the importance of DiReFS when used for diagnosis 
decisions in conjunction with such alternative decision 
methods. As it can be seen in table 3, DiReFS is capable of 
improving the performance of all the benchmark algorithms 
because it is able to discover and selecting different relevant 
features for different diagnosis. 

Table 3: Impact of the DiReFS in conjunction with  
alternative machine learning algorithms 

 PER (%) FPR (%) 
DiReFS w/o DiReFS DiReFS w/o DiReFS 

Linear R 21.30 35.44 26.31 45.19 
Logit R 6.32 9.70 10.28 15.87 
SVMs 6.51 10.15 10.76 16.22 

6. CONCLUSION 
We describe a Diagnosis Engine (DE) which uses past 
patients’ information (medical tests and diagnosis) to 
discover the relevant features extracted from images of 
cellular samples obtained from FNA of breast mass and uses 
these features to provide personalized diagnosis for the 
current patient. When applied to a well-known breast cancer 
dataset, our results demonstrate that DE is capable of 
significantly outperforming (by 13.25%) existing techniques 
in terms of false positive rates. This improvement is 
extremely important because it saves numerous patients 
unnecessary distress and saves spending on unnecessary 
treatments. We also show that our diagnosis-relevant feature 
selection, DiReFS, can be applied in conjunction with other 
machine learning algorithms to significantly improve their 
performance by discovering different features that are 
relevant to different diagnosis.  

Table 1: Comparison with typical machine learning algorithms 
% DE LogitR LinearR SVMs AdaBoost 

PER 2.23 9.70 35.44 10.15 11.94 
FPR 2.62 15.87 45.19 16.22 18.35 
FNR 1.92 1.94 1.96 1.98 1.99 
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