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Abstract

In this paper, we consider decentralized sequential decision making in distributed online recommender systems,

where items are recommended to users based on their search query as well as their specific background including

history of bought items, gender and age, all of which comprise the context information of the user. In contrast to

centralized recommender systems, in decentralized recommender systems each seller/learner only has access to the

inventory of items and user information for its own products and not the products and user information of other

sellers, but can get commission if it sells an item of another seller. We formulate this problem as a cooperative

contextual bandit problem, analytically bound the performance of the sellers compared to the best recommendation

strategy given the complete realization of user arrivals and the inventory of items, as well as the context-dependent

purchase probabilities of each item, and verify our results via numerical examples on a distributed data set adapted

based on Amazon data.

Index Terms
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I. INTRODUCTION

One of the most powerful benefits of a social network is the ability for cooperation and coordination on a large

scale over a wide range of different agents [1]. For example, companies can collaborate to sell products, charities

can work together to raise money, and a group of workers can help each other search for jobs. Through such

cooperation, agents are able to attain much greater rewards than would be possible individually. We analyze a

group of agents that are connected together via a fixed network, each of whom experiences inflows of users to its

page. Each time a user arrives, an agent chooses from among a set of items to offer to that user, and the user will

either reject or accept each item. These items can represent a variety of things, from a good that the agent is trying

to sell to a cause that the agent is trying to promote. In each application, the action of accepting or rejecting by the

user will likewise have a distinct meaning. When choosing among the items to offer, the agent is uncertain about

the user’s acceptance probability of each item, but the agent is able to observe specific background information

about the user, such as the user’s gender, location, age, etc. Users with different backgrounds will have different

probabilities of accepting each item, and so the agent must learn this probability over time by making different

offers.
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We allow for cooperation in this network by letting each agent recommend items of neighboring agents to

incoming users, in addition to its own items using commissions as an incentive. When defined appropriately, this

commission ensures that both sides will benefit each time a recommendation occurs and thus is able to sustain

cooperation. However, since agents are decentralized, they do not directly share the information that they learn

over time about user preferences for their own items. Thus agents must learn about their neighbor’s acceptance

probabilities through their own trial and error, unlike in other social learning papers such as [2]–[5], where agents

share information directly with their neighbors.

Another key feature of our algorithm is that it is non-Bayesian unlike [2], [3]. Instead we model the learning

through contextual bandits, where the context is based on the user’s background. We produce a class of mechanisms

that allows agents to take near-optimal actions even with decentralized learning. We prove specific bounds for the

regret, which is the difference between the total expected reward of an agent using a learning algorithm and

the total expected reward of the optimal policy for the agent, which is computed given perfect knowledge about

acceptance probabilities for each context. We show that the regret is sublinear in time in all cases, which implies

that time-averaged regret goes to 0, hence our algorithm has no-regret.

Table I provides a summary of how our work is related to other work. Of note, there are several papers that also

use a similar multi-armed bandit framework for recommendations [6], [7]. Apart from these, collaborative filtering

algorithms such as [8]–[16] make recommendations by predicting the user’s preferences based on a similarity

measure with other users. Items with the highest similarity score are then recommended to each user; for instance

items may be ranked based on the number of purchases by similar users. There are numerous ways to perform the

similarity groupings, such as the cluster model in [10], [13] that groups users together with a set of like-minded

users and then makes recommendations based on what the users in this set choose. An important difference to keep

in mind is that the recommendation systems in other works are a single centralized system, such as Amazon or

Netflix. However, in this paper each agent is in effect its own separate recommendation system, since agents do

not directly share information with each other. Therefore the mechanism we propose must be applied separately by

every agent in the system based on that agent’s history of user acceptances.

II. PROBLEM FORMULATION

There are M decentralized agents/learners which are indexed by the set M := {1, 2, . . . ,M}. Each agent i has

an inventory of items denoted by Fi, which it can offer to its users and the users of other agents when requested by

these agents. Let F := ∪i∈MFi be the set of items of all agents. We assume that there is an unlimited supply of

each type of item. This assumption holds for digital goods such as e-books, movies, videos, songs, photos, etc. An

agent does not know the inventory of items of the other agents but knows an upper bound on |Fj |1, j ∈M which

is equal to Fmax. Let Ki = Fi ∪M−i be the set of options of agent i. At each time step t = 1, 2, . . ., a user with

a specific search query indicating the type of item the user wants, or other information (price-range, age, gender

etc.), arrives to agent i. We define all the properties of the arriving user known to agent i at time t as the context

1For a set A, |A| denotes its cardinality.
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Item- Memory- Uses Performan- Similarity Central-
based based, context ce distance ized(C),
(IB), model- info. measure Decent-
user- based ralized(D)
based
(UB)

[17] UB Memory- No Ranking - C
based precision

[8] UB Bayesian- No MAE, Pearson C
based latent RMS, correlation

semantic 0/1 loss
model

[9] UB Bayesian- No Precision& Pearson C
based Recall correlation

Markov
model

[10] IB Cluster model No - Cosine C
[11] UB Memory- Yes Precision& - C

based Recall
[12] UB Bayesian No Precision& Pearson C

classifier Recall correlation
model

[13] UB Cluster model No MAE& Pearson C
Coverage correlation

[14] UB MDP model No Recall Self-defined C
similarity

[6] UB MAB model No Reward Lipschitz C
continuous

[7] UB MAB model Yes Regret Lipschitz C
continuous

Our UB MAB model Yes Regret Lipschitz D
work continuous

TABLE I

COMPARISON WITH WORKS IN RECOMMENDER SYSTEMS.

of that user, and denote it by xi(t). We assume that the contexts of all users belong to a known space X , which

without loss of generality is taken to be [0, 1]d, where d is the dimension of the context space. Our results in this

paper will hold without any assumptions on the context arrivals.2 In order to incentivize the agents to recommend

each other’s items, they will provide commissions. These commissions are fixed at the beginning and do not change

over time. The system model is shown in Fig. 1. When there is sales commission, if agent i recommends an item

fj of agent j to its user, and if that user buys the item of agent j, then agent i obtains a fixed commission which

is equal to ci,j > 03.

Agent i recommends N (fixed) items to its user at each time step. For example, N can be the number of

recommendation slots the agent has on its website, or it can be the number of ads it can place in a magazine. An

item can be chosen from the inventory of agent i, i.e., Fi, or agent i can call another agent j and send the context

2Although the model we propose in this paper has synchronous arrivals, it can be easily extended to the asynchronous case where agents

have different user arrival rates, and even when no user arrives in some time slots.
3All of our results in this paper will also hold for the case when the commission is a function of the price of the item fj sold by agent j,

i.e., ci,j(pfj )
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Fig. 1. Operation of the system for agent i for N = 3 recommendations. At each time a user arrives to agent i with context xi(t), agent i

recommends a set of its own items and items from other agents.

information of the user xi(t), then agent j returns back an item fj with price pfj
4 to be recommended to agent i

based on the context information. Let Ni(t) be the set of items recommended by agent i to the user at time t. For

simplicity, we will consider the case when the user’s purchase probabilities of recommended items are independent

of each other. Our framework can also be extended to the case when the purchase probabilities are dependent. Let

AN be the set of subsets of F with N items. Let N ∈ AN be a set of recommendations.

Assumption 1. Independent purchase probability: For each item f offered along with the items in the set N ∈ AN ,

a user with context x will buy the item with an unknown probability qf (x), independent of the other items in Ni(t),

for which there exists L > 0, α > 0 such that for all x, x′ ∈ X , we have |qf (x) − qf (x′)| ≤ L||x − x′||α, where

||.|| denotes the Euclidian norm in Rd.

When Assumption 1 holds, the agents can estimate the purchase probability of an item by using the empirical

mean of the number of times the item is purchased by users with similar context information. The goal of agent

i is to maximize its total expected revenue from its own users. One-step expected revenue of agent i from

recommending a set of items Ni to its user with context x is given by Qi,Ni(x) :=
∑
f∈Ni−Fi ci,j(f)qf (x) +∑

f∈Ni−(Ni−Fi) pfqf (x), where j(f) is the agent who owns item f . Then, the optimal set of items for agent i is

N ∗i (x) := arg maxN∈AN Qi,Ni(x). Since the inventory of other agents and qf (x), x ∈ X , N ∈ AN are unknown

a priori to agent i, N ∗i (x) is unknown to agent i for all contexts x ∈ X .

4If agent j does not want to reveal the price to agent i, then the recommendation rule can be modified as follows: Agent j’s item will be

recommended by agent i without a price tag, and when the user clicks to agent j’s item it will be directed to agent j’s website where the price

will be revealed to the user.
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The set of actions available to agent i at any time step is the pair (ui, nui), where ui denotes the item to be

recommended for ui ∈ Fi or another agent to be recommended for ui ∈ M−i, and nui denotes whether item ui

is recommended (nui = 1) or not (nui = 0) for ui ∈ Fi, or how many distinct items agent ui should recommend

to agent i for ui ∈ M−i. Based on this, let Li = {(ui, nui) ∈ Fi × {0, 1} or (ui, nui) ∈M−i × {0, 1, . . . , N} :∑
ui∈Ki nui = N

}
, be the set of actions available to agent i. We assume that |Fj | ≥ N for all j ∈M. Let αi be

the recommendation strategy adopted by agent i for its own users, i.e., based on its past observations and decisions,

agent i chooses a vector αi(t) ∈ Li at each time step. Let βi be the recommendation strategy adopted by agent i

when it is called by another agent to recommend its own items. Let α = (α1, . . . , αM ) and β = (β1, . . . , βM ). Let

Siα,β(T ) be the total expected reward agent i can get based only on recommendations to its own users by time T .

Agent i’s goal is to maximize its total reward Siα,β(T ) from its own users for any T . Since agents are cooperative

agent i also helps other agents j ∈ M−i to maximize Sjα,β(T ) by recommending its items to them. We assume

that user arrivals to the agents are independent of each other. Therefore, agent j will also benefit from agent

i if its item can be sold by agent i. In this paper, we develop distributed online learning algorithms for the

agents in M, i.e., (αi, βi)i∈M such that the expected total reward for any agent Siα,β(T ) is maximized for all

i ∈ M. In other words, we define the regret of agent i to be Ri(T ) :=
∑T
t=1

∑
f∈N∗i (xi(t))−Fi

ci,jqf (xi(t))

+
∑
f∈Fi−(N∗i (xi(t)))−Fi)

pfqf (xi(t)) − Siα,β(T ), and design online learning algorithms that will minimize the

regret. Note that the regret is calculated with respect to the highest expected reward agent i can obtain from its

own users, but not the users of other agents. Therefore, agent i does not act strategically to attract the users of

other agents, such as by cutting its own prices or paying commissions even when an item is not sold to increase

its chance of being recommended by another agent. We will show that the regret of the algorithms proposed in this

paper will be sublinear in time, which means that the distributed learning scheme converges to the average reward

of the best recommender strategy N ∗i (x) for each i ∈ M, x ∈ X . Moreover, the regret also provides us with a

bound on how fast our algorithm converges to the best recommender strategy.

III. CONTEXT BASED RECOMMENDATIONS

We call the algorithm in this section context based multiple recommendations (CBMR) whose pseudocode is given

in Fig. 2 and Fig. 3. The algorithm which agent i uses to recommend items to other agents when called by them

is simple. Basically agent i will either explore one of its own items or exploit its item with the highest estimated

purchase probability in that case. Therefore its pseudocode is not given. Basically, an agent using CBMR forms a

partition of the context space [0, 1]d, depending on the final time T , consisting of (mT )d sets where each set is a

d-dimensional hypercube with dimensions 1/mT ×1/mT × . . .×1/mT , and mT is an integer that is non-decreasing

in T which is an input parameter of CBMR. The sets in this partition are indexed by IT = {1, 2, . . . , (mT )d}. We

denote the set with index l with Il. Agent i learns the purchase probability of the items in each set in the partition

independently from the other sets in the partition based on the context information of the users that arrived to agent

i and the users for which agent i is recommended by another agent. Since users with similar contexts have similar

purchase probabilities, it is expected that the optimal recommendations are similar for users located in the same set
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in IT . Since the best recommendations are learned independently for each set in IT , there is a tradeoff between

the number of sets in IT and the estimation of the best recommendations for contexts in each set in IT .

In order to exploit the independence of the purchase probabilities of the items, we decouple the action space

Li of agent i. For this, let Ji,j := {1j , 2j , . . . , Nj} denote the set of the number of recommendations agent i

can request from agent j, where we use the subscript j to denote that the recommendations are requested from

agent j. Let J̃i := ∪j∈M−iJi,j , Ji := Fi ∪ J̃i be the set of arms of agent i. We have |Ji| = |Fi|+ (M − 1)N ,

which is linear in |Fi|, M , N . For an arm u, let j(u) denote the agent that provides the recommendations for u

and n(u) denote the number of recommendations from u. CBMR has exploration and exploitation phases for each

arm u ∈ Fi, and exploration, exploitation and training phases for each arm u ∈ J̃i. At each time step t, CBMR

forms reward estimates for each arm u ∈ Ji based on the sample mean of the observed rewards of agent i at times

t′ ∈ {1, . . . , t − 1} agent i selected arm u in exploration and exploitation phases while xi(t′) ∈ Il′ , where l′ is

such that xi(t) ∈ Il′ . When an arm u is selected in a training phase, agent i does not update the estimated reward

from that arm because it believes that the items recommended by agent j(u) may not be the best set of items

agent j(u) can offer to i. This means that agent i will form an incorrect estimate of the expected reward of arm

u ∈ J̃i if it uses observations from trainings to calculate the estimate. In contrast, agent i uses all the observations

from exploration and exploitation phases to estimate the reward of an arm u. At each time step t, CBMR selects

a combination of arms for agent i such that the number of recommendations from this combination is equal to N .

Agent i keeps two counters for arms u ∈ J̃i. The first one, i.e., N i
1,u,l(t), counts the number of context arrivals to

agent i in set l by time t which are also sent to agent j(u) in the training phases of i. The second one, i.e., N i
2,u,l(t),

counts the number of context arrivals to agent i in set l by time t which are used to estimate the expected reward

of agent i from choosing arm u. Similarly for u ∈ Fi, N i
u,l(t) denotes the number of context arrivals to agent i in

set l by time t for which agent i recommended its item u. For notational convenience let N i
u,l(t) := N i

2,u,l(t) for

u ∈ J̃i.

At each time t, agent i first checks which set in the partition IT context xi(t) belong to. CBMR gives priority

to arms that are under-explored or under-trained. An arm u ∈ Fi will be given priority to be explored if N i
u,l(t) ≤

D1(t). An arm u ∈ J̃i will be given priority to be trained if N i
1,u,l(t) ≤ D2,u(t), and it will be given priority

to be explored if N i
1,u,l(t) > D2,u(t) and N i

2,u,l(t) ≤ D3(t), where D1(t), D2(t) and D3(t) are monotonically

non-decreasing deterministic functions of t. Let

Si,l(t) :=
{
u ∈ Fi : N i

u,l(t) ≤ D1(t) or

u ∈ J̃i : N i
1,u,l(t) ≤ D2,u(t) or N i

2,u,l(t) ≤ D3(t)
}
.

Basically, agent i exploits at time t if Si,l(t) = ∅. Otherwise it trains or explores. At time t if there are no other

under-trained or under-explored arms, agent i chooses the remaining arms by exploitation such that the total number

of recommendations at time t will be N . Basically, it chooses a set of arms Bt such that it is feasible, i.e., for all

u, u′ ∈ Bt − Fi, we have j(u) 6= j(u′) and
∑
u∈B n(u) = N , and sum of the sample mean rewards of the arms

in Bt is the maximum over all possible sets of feasible arms. The estimated reward of an arm ui ∈ Ji can be
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updated based on the received reward whenever any action Li that contains arm ui is selected by agent i. In order

to analyze the regret of CBMR, we will bound the regret in exploration and training phases by showing that the

number of explorations and trainings is linear in |Ji|. Then, we will bound the regret in the exploitation phases by

bounding the regret of sub-optimal and near-optimal arms selections as in the previous subsection.

Context Based Multiple Recommendations (CBMR for agent i):

1: Input: D1(t), D2,u(t), u ∈ J̃i, D3(t), T , mT

2: Initialize: Partition [0, 1]d into (mT )d sets, indexed by the set IT = {1, 2, . . . , (mT )d}. N i
u,l = 0, ∀u ∈ Fi, l ∈ IT ,

N i
1,u,l = 0, N i

2,u,l = 0,∀u ∈ J̃i, l ∈ IT .
3: while t ≥ 1 do
4: Ni = ∅, N et

i = ∅, N e
i = ∅, N t

i = ∅, cnt = 0

5: while |Ni| < N do
6: for l = 1, . . . , (mT )d do
7: if xi(t) ∈ Il then
8: l∗ = l

9: for u ∈ Ji do
10: if u ∈ Fi such that N i

k,l ≤ D1(t) then
11: Ni = Ni ∪ {u}, N e

i = N e
i ∪ {u}, cnt = cnt + 1

12: else if u ∈ J̃i such that N i
1,u,l ≤ D2,u(t) and cnt + u ≤ N then

13: Ni = Ni ∪ {u}, N t
i = N t

i ∪ {u}, cnt = cnt + u

14: else if u ∈ J̃i such that N i
k,l ≤ D3(t) and cnt + u ≤ N then

15: Ni = Ni ∪ {u}, N e
i = N e

i ∪ {u}, cnt = cnt + u

16: end if
17: end for
18: end if
19: end for
20: end while
21: N ′ = N − |Ni|
22: N et

i = Choose(N ′, Ni, (r̄iu,l∗)u∈Ji )
23: Ni = Ni ∪N et

i

24: Play(Ni,N e
i ,N t

i ,N et
i , (N i

u,l∗)u∈Fi , (N
i
1,u,l∗)u∈J̃i , (N i

2,u,l∗)u∈J̃i , (r̄iu,l∗)u∈Ji )
25: t = t + 1

26: end while

Fig. 2. Pseudocode for the CBMR algorithm.

For an arm u let j(u) denote the agent which sends the recommendations when arm u is selected by agent i,

and n(u) denote the number of items agent j(u) recommends to agent i. For an item f , let j(f) denote the agent

that owns the item. For simplicity, in this paper we assume that agents have different sets of items. For an item

fi ∈ Fi, let λi,fi(x) := pfiqfi(x) be the expected reward of that item for agent i, and for an item f ∈ F − Fi,

let λi,f (x) := ci,j(f)qfi(x) be the expected reward of that item for agent i, whent agent i’s user’s context is x.

Recall that N ∗i (x) is the set of N items in F which maximizes agent i’s expected reward for context x. For an

item f ∈ F and Il ∈ IT let

λi,f,l := inf
x∈Il

λi,f (x),
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Choose(N , N , r):
1: Select arms u ∈ Ji−N such that u /∈ Ji,j if ∃ u′ ∈ N ∩Ji,j for j ∈M−i,

∑
u nu ≤ N and

∑
u ru is maximized.

Play(N , N1, N2, N3 N , r):
1: Take action N , get the recommendations of other agents, recommend Ni(t) to the user.
2: for u ∈ N do
3: if u ∈ Ni(t) ∩ Fi then
4: Receive reward ru(t) = I(u ∈ Fi(t)). ru =

Nu,lru+ru(t)

Nu,l+1
, Nu,l + +.

5: else if u ∈ (N −Fi) ∩N t
i then

6: Receive reward ru(t) =
∑

f∈Fj I(f ∈ Fi(t)), N1,u,l + +
7: else
8: Receive reward ru(t) =

∑
f∈Fj I(f ∈ Fi(t)), ru =

N2,u,lru+ru(t)

N2,u,l+1
, N2,u,l + + N2,u,l + +

9: end if
10: end for

Fig. 3. Pseudocode of choose and play modules.

and

λi,f,l := sup
x∈Il

λi,f (x).

In order to define the set of suboptimal arms in a hypercube Il, we will define expressions related to variation of

the expected rewards of items and arms in Il. Let fn(N , x) denote the item in N with the nth highest expected

reward for agent i for context x. The expected reward of arm u for agent i is given by

µi,u(x) :=

n(u)∑
n=1

λi,fn(Fj(u),x)(x).

For an arm u and Il ∈ IT let

µ
i,u,l

:= inf
x∈Il

µi,u(x),

and

µi,u,l := sup
x∈Il

µi,u(x).

We next define the feasible sets of arms. A set B of arms is feasible if for all u, u′ ∈ B−Fi we have j(u) 6= j(u′)

for u 6= u′ and
∑
u∈B n(u) = N . Let CF denote the set of all sets of feasible arms. Then, for a set of arms B, the

expected reward is

µi,B(x) :=
∑
u∈B

µi,u(x).

For a set of arms B, let µ
i,B,l := infx∈Il µi,B(x), and µ̄i,B,l := supx∈Il µi,B(x). Let

µ∗
i,l

:= max
B∈BF

µ
i,B,l.

When choosing an arm for a user with context in Il ∈ IT , our learning algorithm will only use the past

observations and decisions it had made for contexts belonging to Il. Therefore it is important for us to characterize

the total variation of the expected reward of an item in set Il. For simplicity, we assume that all prices and
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commisions are in the unit interval [0, 1]. Then as a result of Assumption 1 we have for any item f ∈ F and for

any Il ∈ IT

sup
x,x′∈Il

|µi,f (x)− µi,f (x′)| ≤ Ldα/2(mT )−α. (1)

Using (1), for any arm u and for any Il ∈ IT , we have

sup
x,x′∈Il

|µi,u(x)− µi,u(x′)| ≤ n(u)Ldα/2(mT )−α. (2)

This implies that for any Il ∈ IT and x ∈ Il

µ̄i,B,l = sup
x∈Il

(∑
u∈B

µi,u(x)

)

≥
∑
u∈B

(
µ̄i,u,l − n(u)Ldα/2(mT )−α

)
=
∑
u∈B

µ̄i,u,l −NLdα/2(mT )−α, (3)

and

µ
i,B,l = inf

x∈Il

(∑
u∈B

µi,u(x)

)

≤
∑
u∈B

(
µ
i,u,l

+ n(u)Ldα/2(mT )−α
)

=
∑
u∈B

µ
i,u,l

+NLdα/2(mT )−α. (4)

Using the results of (3) and (4) we get∑
u∈B

µ̄i,u,l −NLdα/2(mT )−α ≤ µ̄i,B,l ≤
∑
u∈B

µ̄i,u,l, (5)

and ∑
u∈B

µ
i,u,l
≤ µ

i,B,l ≤
∑
u∈B

µ
i,u,l

+NLdα/2(mT )−α. (6)

For the set Il of the partition IT , the set of suboptimal feasible sets of arms for agent i at time t is given by

U il (t) :=
{
B ∈ CF such that µ∗

i,l
− µ̄i,B,l ≥ a1tθ

}
, (7)

where we will optimize over a1 and θ5. We divide the regret into three parts: Rei (T ), Rsi (T ) and Rni (T ), where

Rei (T ) is the regret due to trainings and explorations by time T , Rsi (T ) is the regret due to suboptimal action

selections by time T , and Rni (T ) is the regret due to near optimal arm selection by time T . We bound each of

these terms seperately. In the following lemma, we bound the regret of CBMR due to explorations and trainings.

Let YR be the difference between expected rewards of the best N items for agent i and the worst N items for agent

5This optimization is done to derive the regret bound. The actual performance of our algorithm does not depend on what is a1 and θ. By

optimizing over them, we get tighter performance bounds for our algorithm.
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i. When the prices and commissions are in the unit interval, an upper bound on YR is N . However, depending on

the prices, commission and the purchase probabilities YR can be much smaller than N .

Lemma 1. When CBMR is run by agent i with parameters D1(t) = tz log t, D2,u(t) =
(
Fmax

n(u)

)
tz log t, u ∈ J̃i,

D3(t) = tz log t and mT = dT γe , where 0 < z < 1 and 0 < γ < 1/d, we have

E[Rei (T )] ≤ YR2d(|Ji|+ (M − 1)N)T γd

+ YR2d

(
|Ji|+ (M − 1)

N∑
a=1

(
Fmax

a

))
T z+γd log T.

Proof: For a set Il ∈ IT , the number of exploration steps of agent i is bounded by |Ji| dT z log T e. Agent

i spends at most
∑N
z=1

(
Fmax

z

)
dT z log T e time steps to train agent j. Note that this is the worst-case number of

trainings for which agent j does not learn about the purchase probabilities of its items in set Il from its own users,

and from the users of agents other than agent i. The worst case expected regret at each training or exploration step

is YR. The result follows from summing over all sets in IT .

In the next lemma, we bound E[Rsi (T )].

Lemma 2. When CBMR is run with parameters D1(t) = tz log t, D2,u(t) =
(
Fmax

n(u)

)
tz log t, u ∈ J̃i, D3(t) = tz log t

and mT =
⌈
T z/2α

⌉
, where 0 < z < 1, we have

E[Rsi (T )] ≤ YR(2Nβ2 + (M − 1)N2Fmaxβ2) + T z/2(2YR(M − 1)N2Fmaxβ2/z).

Proof: Let Ω denote the space of all possible outcomes, and let w be a sample path. Let li(t) denote the set

in IT which includes context xi(t). When clear from the context of presentation, to simplfy the notation, we will

use l instead of li(t) to denote the set that includes xi(t). Let

Wi(t) := {w ∈ Ω : Si,li(t)(t) = ∅}

denote the event that CBMR is in the exploitation phase at time t. The idea is to bound the probability that agent

i selects a suboptimal set of arms in an exploitation phase, and then using this to bound the expected number of

times a suboptimal set of arms is selected by agent i. For an arm u, r̄iu,l(t) denotes the sample mean of the rewards

collected from explorations and trainings of arm u in set Il by learner i by time t. Similarly for a set of arms

B ∈ CF , r̄iB,l(t) denotes the sum of the sample mean rewards of arms in B, i.e,

r̄iB,l(t) =
∑
u∈B

r̄iu,l(t).

When the agent we refer to is clear from the context we will drop the superscript in the notation of the sample

mean rewards. The set of suboptimal arms for agent i at time t is given by

CiS(t) = CF − U ili(t)(t).

Let

B∗S(t) := arg max
B∈CiS(t)

r̄iu,li(t)(t)



11

denote the best (or one of the best if there are multiple) suboptimal set of arms at time t, i.e., the suboptimal set

of arms whose sample mean reward is highest among all feasible suboptimal set of arms.

Let Vi(t) be the event that a suboptimal set of arms in CiS(t) is chosen by agent i at time t. Since Rs(T ) is a

random variable we have

Rsi (T ) ≤ YR
T∑
t=1

I(Vi(t),Wi(t)),

with probability one, where I(A) is the indicator function of event A which is equal to 1 if event A happened and

0 otherwise. Taking the expectation with respect to the randomness of the rewards, we get

E[Rsi (T )] ≤ YR
T∑
t=1

P (Vi(t),Wi(t)). (8)

In the next part of the proof, we will bound P (Vi(t),Wi(t)) with a decaying function of t.

Let E iu,li(t)(t) denote the set of rewards collected by agent i from arm u as a result of recommendations to

agent i’s users whose context are in the set Ili(t) by time t. Let Hili(t)(t) be the event that for all arms u ∈ J̃i at

most tφ samples in E iu,li(t)(t) come from recommendations made by agent j(u) such that at least one of the n(u)

items recommended by agent j(u) is a suboptimal item for that particular recommendation. To be more precise, let

σij = (σij(1), σij(2), . . . , σij(|Fj |)) be an ordering of items of agent j in terms of their expected rewards for agent i

such that σij(k) ≥ σij(k+ 1) for all k ∈ {1, . . . , |Fj | − 1}. When clear from the context, we will drop the subscript

an superscript denoting the agents from the notation. For arm u and Il ∈ IT , an item f ∈ Fj(u) is suboptimal if

λi,σi
j(u)

(n(u)),l − λi,f,l ≥ a2tθ. (9)

Next, we define three events which are going to be used to bound the probability that a suboptimal set of arms is

chosen at exploitation steps.

O1(t) :=
{
r̄B∗S(t),li(t)(t) ≥ µi,B∗S(t),li(t) +Ht,Hili(t)(t),W

i(t)
}

O2(t) :=
{
r̄B∗(li(t)),li(t)(t) ≤ µi,B∗(li(t)),li(t) −Ht,Hili(t)(t),W

i(t)
}

O3(t) :=
{
r̄B∗S(t),li(t)(t) ≥ r̄B∗(li(t)),li(t)(t), r̄B∗S(t),li(t)(t) < µi,B∗S(t),li(t) +Ht, r̄B∗(li(t)),li(t)(t) > µ

i,B∗(li(t)),li(t)
−Ht,

Hili(t)(t),W
i(t)
}
.

We have

{Vi(t),Wi(t)}

⊂ {r̄B∗S(t),li(t)(t) ≥ r̄B∗(li(t)),li(t)(t),W
i(t)}

⊂ {r̄B∗S(t),li(t)(t) ≥ r̄B∗(li(t)),li(t)(t),W
i(t),Hili(t)(t)} ∪ {r̄B∗S(t),li(t)(t) ≥ r̄B∗(li(t)),li(t)(t),W

i(t), (Hili(t)(t))
C}

⊂ O1(t) ∪ O2(t) ∪ O3(t) ∪
{

(Hili(t)(t))
C ,Wi(t)

}
, (10)

for some Ht > 0, where for an event A, AC denotes the complement of that event. This implies that

P
(
Vi(t),Wi(t)

)
≤ P (O1(t)) + P (O2(t)) + P (O3(t)) + P (Hili(t)(t))

C ,Wi(t)) (11)
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Next, we prove that the following condition (C1)

C1 :
(

2NLdα/2(mT )−α + 2Ht − a1tθ ≤ 0
)
,

implies that P (O3(t)) = 0.

Step 1: Under C1 since −a1tθ ≥ µi,B∗S(t),li(t) − µi,B∗(li(t)),li(t) we have

C1⇒ µi,B∗S(t),li(t) +NLdα/2(mT )−α −
(
µ
i,B∗(li(t)),li(t)

−NLdα/2(mT )−α
)

+ 2Ht ≤ 0. (12)

Step 2: Using the relations between µi,B,l and µi,u,l, u ∈ B, B ∈ CF , l ∈ IT given by (5) and (6) together with

(12), we get

(12)⇒
∑

u∈B∗S(t)

µi,u,li(t) −
∑

u∈B∗(li(t))

µ
i,u,li(t)

+ 2Ht ≤ 0.

Step 3: In O3(t), we have

r̄B∗S(t),li(t)(t) < µi,B∗S(t),li(t) +Ht ≤
∑

u∈B∗S(t)

µi,u,li(t) +Ht,

and

−r̄B∗(li(t)),li(t)(t) < −µB∗(li(t)),li(t) +Ht ≤ −
∑

u∈B∗(li(t))

µ
i,u,li(t)

+Ht,

hence

r̄B∗S(t),li(t)(t)− r̄B∗(li(t)),li(t)(t) <
∑

u∈B∗S(t)

µi,u,li(t) −
∑

u∈B∗(li(t))

µ
i,u,li(t)

+ 2Ht. (13)

Step 4: Equations (12) and (13) together imply that

r̄B∗S(t),li(t)(t) < r̄B∗(li(t)),li(t)(t).

However on event O3(t) we must have r̄B∗S(t),li(t)(t) ≥ r̄B∗(li(t)),li(t)(t). Therefore C1 implies P (O3(t)) = 0.

Next, we will bound P (O1(t)). Recall that B∗S(t) is a random variable since rewards are random, and CiS(t) is

a deterministic set.

Step 1: By law of total probability we have

P (O1(t)) =
∑

B∈CiS(t)

P (O1(t)|B∗S(t) = B)P (B∗S(t) = B)

≤
∑

B∈CiS(t)

P (B∗S(t) = B) max
B∈CiS(t)

P (O1(t)|B∗S(t) = B)

= max
B∈CiS(t)

P (O1(t)|B∗S(t) = B).
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Step 2: For any B ∈ CiS(t),

P (O1(t)|B∗S(t) = B) = P
(
r̄B,li(t)(t) ≥ µi,B,li(t) +Ht,Hili(t)(t),W

i(t)
)

= P

(∑
u∈B

r̄u,li(t)(t) ≥ µi,B,li(t) +Ht,Hili(t)(t),W
i(t)

)

≤ P

(∑
u∈B

r̄u,li(t)(t) ≥
∑
u∈B

µi,u,li(t) −NLd
α/2(mT )−α +Ht,Hili(t)(t),W

i(t)

)

≤ P

(∑
u∈B

r̄best
u,li(t)

(|E iu,li(t)(t)|) ≥
∑
u∈B

µi,u,li(t) −NLd
α/2(mT )−α +Ht

)

For any u ∈ Ji, B ∈ CF and Il ∈ IT let

Obest
u,B,l(t) :=

{
r̄best
u,l (|E iu,l(t)|) ≥ µi,u,l −

N

|B|
Ldα/2(mT )−α +

Ht

|B|

}
,

and

Zbest
B,l (t) :=

{∑
u∈B

r̄best
u,l (|E iu,l(t)|) ≥

∑
u∈B

µi,u,l −NLdα/2(mT )−α +Ht

}
.

We have ⋂
u∈B

(Obest
u,B,l(t))

C ⊂ (Zbest
B,l (t))

C ⇒ Zbest
B,l (t) ⊂

⋃
u∈B
Obest
u,B,l(t).

Hence

P
(
Zbest
B,li(t)(t)

)
≤
∑
u∈B

P
(
Obest
u,B,li(t)(t)

)
. (14)

Therefore

P (O1(t)) ≤
∑
u∈B

P
(
Obest
u,B,li(t)(t)

)
≤ Ne−2t

z log t(Ht|B|−
N
|B|Ld

α/2(mT )
−α)

2

≤ Ne−2t
z log t(HtN −Ld

α/2(mT )
−α)

2

. (15)

Next, we will bound P (O2(t)). Steps are similar to bounding P (O1(t)). However, B∗li(t)(t) is deterministic.

Step 1: We have

P (O2(t)) ≤ P

 ∑
u∈B∗

li(t)
(t)

r̄u,li(t)(t) ≤
∑

u∈B∗
li(t)

(t)

µ
i,u,li(t)

+NLdα/2(mT )−α −Ht,Hili(t)(t),W
i(t)


≤ P

 ∑
u∈B∗

li(t)
(t)

r̄worst
u,li(t)

(|E iu,l(t)|) ≤
∑

u∈B∗
li(t)

(t)

µ
i,u,li(t)

+NLdα/2(mT )−α +Ntφ−1 −Ht

 ,

where the last inequality follows from the fact that there even when all arms in B∗li(t)(t) had all their recommen-

dations from suboptimal items in tφ time slots, the sum of the sample means of all arms in B∗li(t)(t) will be at
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most Ntφ lower than the sample mean when all the recommendation in those tφ time slots came from the best

items. This is true because the commissions and prices are in unit interval. This argument can be easily extended

to the case when commissions and prices are in a bounded interval by multiplying this factor by the maximum

commission or price. For any u ∈ Ji, B ∈ CF and Il ∈ IT let

Oworst
u,B,l(t) :=

{
r̄worst
u,l (|E iu,l(t)|) ≤ µi,u,l +

N

|B|
Ldα/2(mT )−α +

N

|B|
tφ−1 − Ht

|B|

}
and

Zworst
B,l (t) :=

{∑
u∈B

r̄worst
u,l (|E iu,l(t)|) ≤

∑
u∈B

µ
i,u,l

+NLdα/2(mT )−α +Ntφ−1 −Ht

}
We have ⋂

u∈B
(Oworst

u,B,l(t))
C ⊂ (Zworst

B,l (t))C ⇒ Zworst
B,l (t) ⊂

⋃
u∈B
Oworst
u,B,l(t).

Hence

P
(
Zworst
B∗
li(t)

(t),li(t)
(t)
)
≤

∑
u∈B∗

li(t)
(t)

P
(
Oworst
u,B∗

li(t)
(t),li(t)

(t)
)
. (16)

Therefore

P (O2(t)) ≤
∑

u∈B∗
li(t)

(t)

P
(
Oworst
u,B∗

li(t)
(t),li(t)

(t)
)

≤ Ne−2t
z log t(Ht|B|−

N
|B| t

φ−1− N
|B|Ld

α/2(mT )
−α)

2

≤ Ne−2t
z log t(HtN −t

φ−1−Ldα/2(mT )−α)
2

. (17)

Finally, we bound P ((Hili(t)(t))
C ,Wi(t)). For an arm u ∈ J̃i and l ∈ IT , let Xi

u,l(t) denote the random variable

which is the number of times at least one suboptimal item of agent j(u) is recommended to agent i in exploitation

steps in set Il of agent i by time t. We have

P ((Hili(t)(t))
C ,Wi(t)) ≤

∑
u∈J̃i

P (Xi
u,li(t)

(t) > tφ) ≤
∑
u∈J̃i

E[Xi
u,li(t)

(t)]/tφ.

Let Ξiu,l(t) be the event that a suboptimal item of agent j(u) is recommended to agent i, agent i is in exploitation

step at time t and the context of the user of agent i is in set Il. Let Sji,u,l(t) denote the set of suboptimal items of

agent j for agent i at time t for arm u for set Il. We have Sji,u,l(t) ⊂ {σ(n(u)) + 1, . . . , σ(|Fj(u)|)}. Then

E[Xi
u,li(t)

(t)] =

t∑
t′=1

P (Ξiu,li(t)(t)).



15

We have

P
(
Ξiu,l(t)

)
≤
n(u)∑
a=1

∑
b∈Sji,u,l(t)

P (s̄ji,σ(b),l(t) ≥ s̄
j
i,σ(a),l(t))

≤
n(u)∑
a=1

∑
b∈Sji,u,l(t)

(
P
(
s̄ji,σ(b),l(t) ≥ λi,σ(b),l +Ht,Wi(t)

)
+P

(
s̄ji,σ(a),l(t) ≤ λi,σ(a),l −Ht,Wi(t)

)
+ P

(
s̄ji,σ(b),l(t) ≥ s̄

j
i,σ(a),l(t),

s̄ji,σ(b),l(t) < λi,σ(b),l +Ht, s̄
j
i,σ(a),l(t) > λi,σ(a),l −Ht,Wi(t)

))
,

For a suboptimal item of agent j, σ(b) and an n(u)-best item σ(a), using (9), we have λi,σ(b),l−λi,σ(a),l ≤ −a2tθ.

This together with the second and third events in the last probability above imply that

s̄ji,σ(b),l(t)− s̄
j
i,σ(a),l(t) ≤ 2Ht − a2tθ.

This implies that when 2Ht− a2tθ ≤ 0, we have the third probability equal to 0. Since during an exploitation step

of agent i, at least tz log t recommendations are made for each item of each agent j in set Ili(t), we have

P
(
Ξiu,l(t)

)
≤ 2n(u)(Fmax − n(u))e−2(Ht)

2tz log t

≤ 2NFmaxe
−2(Ht)2tz log t. (18)

Bounding E[Rs
i (T)]:

Step 1: In order to bound E[Rsi (T )] given in (8), we need to use the bound for P (Vi(t),Wi(t)) given in (11).

This equation can be further bounded by using our bounds in (15), (17) and (18), all of which holds when

conditions C1: 2NLdα/2(mT )−α + 2Ht − a1t
θ ≤ 0 and C2: 2Ht − a2t

θ ≤ 0 hold. The exponential terms

of the bounds in (15), (17) and (18) are e−2t
z log t[Ht/N−Ldα/2(mT )−α]

2

, e−2t
z log t[Ht/N−tφ−1−Ldα/2(mT )−α]

2

and

e−2t
z log t(Ht)

2

respectively. If C3: Ht/N − tφ−1 − Ldα/2(mT )−α > 0, then the largest of these three terms will

be e−2t
z log t[Ht/N−tφ−1−Ldα/2(mT )−α]

2

, hence an upper bound on this will be an upper bound on all three terms.

Since mT = dT eγ , for t ≤ T , we have t−γ ≥ (mT )−1, hence

2NLdα/2(mT )−α + 2Ht − a1tθ ≤ 2NLdα/2t−γα + 2Ht − a1tθ.

Thus C1 holds if C4: 2NLdα/2t−γα + 2Ht − a1tθ ≤ 0 holds. Let Ht = A1t
φ−1 for some A1 > 0 which we will

set later. In the next lemma, we will show that time order of the regret bound due to selecting near optimal sets of

arms increases exponentially with θ. Therefore we should set θ as small as possible to minimize the regret bound

due to near optimal selections. Similarly from the result of Lemma 1, we need to choose the slicing exponent γ

as small as possible in the algorithm since the number of trainings and explorations, hence the time order of the

regret bound for trainings and explorations depend exponentially on γ. Since condition C4 hols if

2NLdα/2

tγα
+ 2A1t

φ−1 ≤ a1tθ,
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and since 1/tγα decreases in γ for t > 1, the smallest γ, θ and a1 values for which C4 holds are θ = φ − 1,

γ = (1− φ)/α and a1 = 2NLdα/2 + 2A1. We also need C3 to hold, moreover, we need the exponential term to

decay fast enough such that when we can bound the sum of the exponential terms from t = 1 to T by a small number

much less than T that does not depend on T . Again, since t−γ ≥ (mT )−1, for Ht/N − tφ−1−Ldα/2t−γα > 0 all

three exponential terms are upper bounded by

e−2t
z log t[Ht/N−tφ−1−Ldα/2t−γα]

2

.

Let Ht/N − tφ−1 − Ldα/2t−γα = tφ−1. Thus, we should have A1 = N(2 + Ldα/2). Finally when a1 = a2, C2

will hold when C1 holds.

Step2: Given Ht = N(2 + Ldα/2)tφ−1, γ = (1 − φ)/α, θ = φ − 1, a1 = a2 = 4N(1 + Ldα/2), all of the

conditions C1, C2 and C3 holds and we have

P (O1(t)) ≤ Ne−2t
z+2φ−2 log t,

P (O2(t)) ≤ Ne−2t
z+2φ−2 log t,

P (O3(t)) = 0,

P (Ξiu,l(t)) ≤ 2NFmaxe
−2tz+2φ−2 log t,

for all u ∈ J̃i, l ∈ IT . Let φ = 1 − z/2. Then we have P (O1(t)) ≤ N/t2, P (O2(t)) ≤ N/t2, P (Ξiu,l(t)) ≤

2NFmax/t
2. Thus E[Xi

u,li(t)
] ≤ 2NFmaxβ2 for all u ∈ J̃i, and

P ((Hili(t)(t))
C ,Wi(t)) ≤

∑
u∈J̃i

E[Xi
u,li(t)

(t)]/tφ

≤ (M − 1)N2Fmaxβ2/t
φ.

Hence by using (11)

P (Vi(t),Wi(t)) ≤ 2N

t2
+

(M − 1)N2Fmaxβ2
t1−z/2

.

Then,

E[Rsi (T )] ≤ YR
T∑
t=1

P (Vi(t),Wi(t)) (19)

≤ YR
(

2Nβ2 + (M − 1)N2Fmaxβ2

(
1 +

2T z/2

z

))
(20)

= YR(2Nβ2 + (M − 1)N2Fmaxβ2) + T z/2(2YR(M − 1)N2Fmaxβ2/z), (21)

where the inequality follows from the result of Appendix A.

Note that E[Rsi (T )] is linear in Ji instead of Li. In the next lemma, we bound the regret due to near-optimal

arm selections by agent i by time T , i.e., E[Rni (T )].
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Lemma 3. When CBMR is run with parameters D1(t) = tz log t, D2,u(t) =
(
Fmax

n(u)

)
tz log t, u ∈ J̃i, D3(t) = tz log t

and mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d, given that 2LYR(
√
d)αt−γα + 2(YR + 2)t−z/2 ≤ a1t

θ we

have

E[Rni (T )] ≤ 4N(N + 1)(1 + Ldα/2)
T 1−z/2

1− z/2
+ 2YRN

2Fmaxβ2.

Proof: Consider the case that agent i chooses a near optimal set of arms given in (7), with a1 = 4N(1+Ldα/2)

and θ = φ − 1 = −z/2 as given in the proof of Lemma 2. At all the time steps t in which agent i had chosen

a near optimal set of arms Bt, when all agents j(u) will recommend their n(u) near optimal items to agent i for

u ∈ Bt ∩ J̃i, agent i’s one step expected regret at time t will be (N + 1)a1t
θ. However, there can be some time

steps which are exploitation steps for agent i, but when agent i selects a near optimal set of arms Bt, an agent j(u)

may recommend one of its suboptimal items to agent i. This event is given by Ξiu,li(t)(t) in the proof of Lemma

2, and it is bounded by 2NFmax/t
2 for all u ∈ J̃i. Since at most N arms can be chosen at each time step, the

expected regret due to such events by time T is upper bounded by YRN(2NFmax)β2 = 2YRN
2Fmaxβ2. Thus we

have

E[Rni (T )] ≤
T∑
t=1

(N + 1)4N(1 + Ldα/2)tθ + 2YRN
2Fmaxβ2

≤ 4N(N + 1)(1 + Ldα/2)
θ + T 1+θ

1 + θ
+ 2YRN

2Fmaxβ2,

where last inequality follows from the bound in Appendix A.

Combining the above lemmas, we obtain the finite time, uniform regret bound for agents using CBMR given in

the following theorem.

Theorem 1. Let CBMR run with control functions D1(t) = D3(t) = t2α/(3α+d) log t, D2,u(t) =
(
Fmax

n(u)

)
t2α/(3α+d) log t,

u ∈ J̃i, and mT = bT 1/(3α+d)c . Then,

Ri(t) ≤ T
2α+d
3α+d ×

(
YR2dZi log T + 4N(N + 1)(1 + Ldα/2)

3α+ d

2α+ d

)
+ T

d
3α+d ×

(
YR2d(|Ji|+ (M − 1)N)

)
+ T

α
3α+d ×

(
YR(M − 1)M2Fmaxβ2

3α+ d

α

)
+ 2YRNβ2 + YRN

2Fmaxβ2(M + 1),

where Zi = |Ji|+ (M − 1)
∑N
a=1

(
Fmax

a

)
. Concisely we have Ri(T ) = O

(
|Ji|T

2α+d
3α+d

)
.

Proof: The highest orders of regret come from explorations, trainings and near optimal arms, which are

O(T (2α+1)z/(2α)) (Lemma 1) and O(T 1−z/2) (Lemma 3) respectively. Note that the first one is increasing in z,

while the second one is decreasing in z. Thus the best value of z is when they are equal to each other which is

given by z = 2α/(3α+ d). We have

Ri(T ) = E[Rei (T )] + E[Rsi (T )] + E[Rni (T )].
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Thus summing the results of Lemmas 1, 2 and 3, we get

Ri(t) ≤ T
2α+d
3α+d ×

(
YR2dZi log T + 4N(N + 1)(1 + Ldα/2)

3α+ d

2α+ d

)
+ T

d
3α+d ×

(
YR2d(|Ji|+ (M − 1)N)

)
+ T

α
3α+d ×

(
YR(M − 1)M2Fmaxβ2

3α+ d

α

)
+ 2YRNβ2 + YRN

2Fmaxβ2(M + 1).

The result of Theorem 1 indicates that the regret of CBMR is sublinear in time and linear in |Ji|. This proves that

CBMR’s performance converges to the best distributed recommendation strategy given the purchase probabilities

are exactly known by the sellers. The regret increases with the dimension of the context space d.

IV. NUMERICAL RESULTS

We simulate CBMR using a distributed data set adapted based on Amazon data [18]. The Amazon product

co-purchasing network data set includes product IDs, sales ranks of the products, and for each product the IDs

of products which are frequently purchased with that product. This data is collected by crawling the Amazon

website [18] and contains 410, 236 products and 3, 356, 824 edges between products that are frequently co-purchased

together. We simulate CBMR using the following distributed data set adapted based on Amazon data. For a set of

N1 chosen products, we take that product and the F1 products that are frequently co-purchased with that product.

The set of products that are taken in the first step of the above procedure is denoted by Ch. The set of all products

F contains these N1 products and the products co-purchased frequently with them, which we denote by set Cf . We

assume that each item has a unit price of 1, but have different purchase probabilities for different types of users.

Since user information is not present in the data set, we generate it by assuming that a user searches for a specific

item. This search query will then be the context information of the user. The context space is discrete, thus we set

IT = Ch. Based on this, the agent that the user arrives to recommends N items to the user. The agent’s goal is to

maximize the total number of items sold to the users.

We generate the purchase probabilities in the following way: When a product recommended for context x is in

the set of frequently co-purchased products, the purchase probability of that product will be gc. When it is not, the

purchase probability of that product will be gnc, for which we have gc > gnc. We assume that there are 3 agents

and evaluate the performance of agent 1 based on the number of users arriving to agent 1 with a specific context

x∗, which we take as the first item in set Ch. We assume that T = 100, 000, which means that 100, 000 users with

context x∗ arrive to agent 1. Since the arrival rate of context x∗ can be different for the agents, we assume arrivals

with context x∗ to other agents are drawn from a random process. We take N1 = 20, F1 = 2 and N = 2. As a

result, we get 30 distinct items in F which are distributed among the agents such that |Fi| = 10.
A. Effect of commission on the performance

We assume that agent 1 has one of the frequently co-purchased items for context x∗, while agent 3 has the other

frequently co-purchased item. The total reward of agent 1 as a function of the commissions c1,2 = c1,3 = c is given
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in Table II. We note that there is no increase in the total reward when the commission is increased to 0.1, because

this amount is not enough to incentivize agent 1 to recommend other agent’s items. However, for commissions

greater than 0.1, the optimal policy recommends the two frequently co-purchased items together, hence agent 1

learns that it should get recommendations from other agents. Therefore, when commission is greater than 0.1, the

total reward of the agent is increasing in the commission. Selecting commissions adaptively over time is a future

research topic.

B. Effect of the set of items of each agent on the performance

Fig. 4. Time averaged regret of CBMR for independent purchase probabilities when agent 1 has both frequently co-purchased items (C-1),

only one of the frequently co-purchased items (C-2) and none of the frequently co-purchased items (C-3).

In C-1 agent 1 has both items that are frequently co-purchased in context x∗, in C-2 it has one of the items

that is frequently co-purchased in context x∗, and in C-3 it has none of the items that are frequently co-purchased

in context x∗. The total reward of agent 1 for these cases is 17744, 14249 and 9402 respectively, while the total

expected reward of the optimal policy is 20000, 15000 and 10000 respectively. Note that the total reward for C-3 is

almost half of the total reward for C-1 since the commission agent 1 gets for a frequently co-purchased item is 0.5.

The time averaged regret of CBMR for all these cases is given in Figure 4. We see that the convergence rate for C-1

is slower than C-2 and C-3. This is due to the fact that in all of the trainings step in C-1 a suboptimal set of items

is recommended, while for C-2 and C-3 in some of the training steps the optimal set of items is recommended.

APPENDIX A

A BOUND ON DIVERGENT SERIES

For p > 0, p 6= 1,
∑T
t=1 1/(tp) ≤ 1 + (T 1−p − 1)/(1− p).

Proof: See [19].

Commission c 0 0.1 0.2 0.3 0.4 0.5
Reward (CBMR) 10471 10422 11476 12393 13340 14249

TABLE II

THE TOTAL REWARD OF AGENT 1 AS A FUNCTION OF THE COMMISSION IT CHARGES TO OTHER AGENTS.
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