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ABSTRACT 

Cross-layer optimization aims at improving the performance 
of network users operating in a time-varying, error-prone 
wireless environment. However, current solutions often rely 
on ad-hoc optimization approaches, which ignore the 
different environmental dynamics experienced at various 
layers by a user and violate the layered network architecture 
of the protocol stack. This paper presents a new theoretic 
framework in which the cross-layer optimization problem is 
formulated as a layered Markov decision process (MDP). In 
this framework, each layer adapts its own protocol 
parameters and exchanges information (messages) with 
other layers in order to cooperatively maximize the 
performance of the wireless user. Hence, this layered cross-
layer framework does not change the current layered 
architecture and is suitable for the delay-sensitive 
applications over wireless networks.

Index Terms— Cross-layer optimization, layered 
MDP, information exchange, environmental dynamics.

1. INTRODUCTION 

To optimize the different protocol parameters from different 
layers in the Open Systems Interconnection (OSI) model 
[1], the wireless stations (WSTAs) need to consider the 
dynamic wireless network “environment” resulting from the 
repeated interaction with other stations, the experienced 
time-varying channel conditions and, for delay-sensitive 
applications, the time-varying source characteristics. 
Moreover, it should be noted that a WSTA needs to jointly 
optimize the selected protocol parameters within each layer 
such that the utility of the WSTA is maximized. The joint 
optimization of the transmission strategies at the various 
layers is referred to as cross-layer design [2][3].  

The advantage of the current layered architecture is that 
the designer or implementer of the protocol or algorithm at a 
particular layer can focus on that layer without worrying 
about the rest of stack [3]. However, most existing cross-
layer design solutions advocate improving the system utility 
by violating the current layered architecture of wireless 
networks. These cross-layer interactions create the 
dependencies among the layers which will affect not only 
the concerned layer but also other layers. Hence, such 

solutions are undesirable because they require a complete 
redesign of current networks and protocols and thus, require 
a high implementation cost [3].  

Furthermore, some existing cross-layer design solutions 
aim at maximizing the WSTA’s utility by jointly adapting 
the transmission strategies across multiple layers to the 
current environmental dynamics [2]. These solutions, 
however, neglect that the environmental dynamics are also 
affected by the cross-layer transmission strategies, thereby 
affecting the future utility derived by the network users.   

Unlike the previous works that jointly optimize the 
cross-layer strategies in a centralized way, we propose a 
layered MDP solution to drive the cross-layer optimization. 
In this layered MDP framework, each layer makes its 
transmission decision (i.e. selects the transmission 
strategies, e.g. packet scheduling in the application (APP) 
layer, retransmission in the MAC layer and modulation 
selection in the physical (PHY) layer) in an autonomous 
manner, by considering the dynamics experienced at that 
layer as well as the information available from other layers. 
Importantly, using this layered optimization framework, we 
do not change the current layered architecture of the 
protocol stack. Moreover, the current algorithms and 
protocols currently implemented at each layer also remain 
unaffected, as the proposed framework requires only the 
exchange of information across layers and the optimization 
of available parameters at each layer. To exchange 
information across multiple layers, we define a message 
exchange mechanism in which the content of the message 
captures the performed transmission strategies and 
experienced dynamics at each layer However, the format of 
the message is independent of the transmission strategies, 
protocols and dynamics implemented at each layer.  

The rest of the paper is organized as follows. Section 2 
discusses the problem settings for the cross-layer 
optimization and formulates the cross-layer design as an 
MDP problem. Section 3 presents a layered value iteration 
algorithm for optimally solving the layered MDP. Section 4 
discusses the advantage of the layered MDP. The paper 
concludes in Section 5. 

2. CROSS-LAYER PROBLEM STATEMENT  

We consider one WSTA transmitting its time-varying traffic 
(e.g. multimedia) to another WSTA (e.g. base station) over 
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a wireless network (e.g. wireless LAN, cellular network, 
etc.). We also assume that there are L  participating layers1

in the protocol stack. Each layer is indexed 1, ...,l L

with layer 1 corresponding to the lowest participating layer 
(e.g. PHY layer) and layer L  corresponding to the highest 
participating layer (e.g. APP layer). The WSTA interacts 
with the dynamic environment at various layers in order to 
maximize the application utility.   
2.1 States  

In this paper, the state of the layers is defined such that 
future transmission strategies can be determined 
independent of the past history given the current state. In 
other words, the state encapsulates all the past information 
required for future strategy adaptation. We refer to this type 
of state as Markovian state. When considering the layered 
architecture of current networks, we are able to define a 
state l ls  for each layer l . Then, the state of the entire 
WSTA is denoted by s , with 

1

L
ll
.

2.2 Actions  
 In a layered architecture, a WSTA takes different 

transmission actions in each state of each layer. The 
transmission actions can be classified into two types at each 
layer l : an external action is performed to determine the 
state transition, and an internal action is performed to 
determine the service (i.e. QoS) provided to the upper layers 
for the packet(s) transmission.  

The external actions at each layer l  are denoted by 
l la , where l  is the set of the possible external actions 

available at layer l . The external actions for the WSTA in 
all the layers are denoted by 1, ..., La aa  , where 

1

L
ll

. The internal actions are denoted by l lb ,
where l  is the set of the possible internal actions available 
at layer l . The internal actions for the WSTA across all the 
layers are denoted by 1, ..., Lb bb , where 

1

L
ll
. Hence, the action at layer l  is the 

aggregation of external and internal actions, denoted by 
l l l la b , where l l l . The joint action 

of the WSTA is denoted by 1 1
, ...,

L
L ll

.

Due to the layered architecture of the wireless network, 
the state transition probability in this paper can be 
decomposed as follows.  

1

1 -1 1 -1
1

| , | , , | , , ,
L

l l l l L L L
l

p p s s a p s as s s s s b  (1) 

where 1 1, ...,l ls ss .
This decomposition is due to the layered network 

architecture and enables us to develop a layered MDP 
framework, which will be presented in Section 3. 

1 If one layer does not participate in the cross-layer design, it can simply be 
omitted. Hence, we consider here only the L participating layers.

2.3 Utility function 
The utility gain obtained in layer L  is based on the 

states and internal actions at each layer and it is denoted by 
,g s b . The transmission cost at layer l  represents the cost 

of performing both the external and internal actions, e.g. the 
amount of power allocated to determine the channel 
conditions or the tax (tokens, money) spent for consuming 
wireless resources. In general, the transmission cost of 
performing the external (internal) action at layer l  is 
denoted by ,l l lc s a  ( ,l l ld s b ), which is a function of 
the external (internal) action and the state of layer l . For 
illustration, we assume that the reward is defined as  

1 1

, , , ,
L L

a b
l l l l l l l l

l l

R g c s a d s bs s b  (2) 

where a
l  ( b

l ) is a external (internal) Lagrangian multiplier 
in layer l , determined by the WSTA to trade off the utility 
and transmission cost. We assume that the Lagrangian 
multipliers a

l  and b
l  are known. The optimal Lagrangian 

multipliers depend on the available resource budget and can 
be obtained as in [6].  
2.4 Foresighted decision making 

As described in Section 2.2, the state transition at each 
layer is controlled by the external actions. For simplicity, 
we assume that the state transition in each layer is 
synchronized and operates at the same time scale, such that 
the transition can be discretized into stages during which the 
WSTA has constant state and performs static actions. We 
use a superscript k  to denote stage k .

Unlike the tradition cross-layer adaptation that focuses 
on the myopic (i.e. immediate) utility, in the proposed cross-
layer framework, the goal is to find the optimal internal and 
external actions at each stage such that a cumulative 
function of the rewards is maximized. We refer to this 
decision process as the foresighted cross-layer decision. By 
maximizing the cumulative reward, the WSTA is able to 
take into account the impact of the current actions on the 
future reward.  

Specifically, we assume that the WSTA will maximize 
the discounted accumulative reward, which is defined as 

0

0

, |k kk

k

R s s  (3) 

where  is a discounted rate with 0 1  and 0s  is the 
initial state.   

3. LAYERED MDP FORMULATION 

Existing cross-layer optimization frameworks require a 
central controller to decide the parameter configuration 
assuming that the complete information from all the layers is 
available to the central controller [7]. The foresighted cross-
layer optimization can be formulated as an MDP and solved 
using value iteration [8]. To solve this central MDP 
problem, the central optimizer needs to know the following: 

the state space at each layer; 
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the action space at each layer; 
probability distribution describing the state transition (i.e. 
environmental dynamics); 
state reward function of the states and performed actions; 

Although the centralized cross-layer optimization 
(formulated as the MDP problem) considers the information 
exchange among the layers in an indirect way, it 
unfortunately violates the layered architecture. However, 
the problem structure discussed in Section 2 enables us to 
decompose the MDP into a layered MDP for the cross-layer 
optimization problem which is defined as follows:  
Definition (Layered MDP with information exchange)
The layered MDP model with information exchange is given 
by the tuple 

1
, 1 , 11 1 2

, , , , , , ,L LL
l l l l ll l l

p R , where  
1, ...,L  is a set of L  layers, each of which takes 

the internal and external actions individually. 
is a finite set of states, each element s  of which 

contains 1, , Ls s .
l  is a finite set of actions available to layer l , each 

element l l  of which contains the external and 
internal actions, i.e. ,l l la b .

, 1l l  is the message set sent by layer l  to its upper layer 
1l , where , 1 , 1l l l l  represents a message sent by 

layer l  to its upper layer 1l  (i.e. upward message). 
, 1l l  is the message set sent by layer l  to its lower layer 
1l , and , 1 , 1l l l l  represents a message sent by 

layer l  to its lower layer 1l  (i.e. downward message). 
p  is the transition probability function. | ,p s s  is the 
probability of moving from state s  to the state 
s  when layer l  performs action l . We assume 
that the transition model is stationary and independent of 
the stage (i.e. time). 

1
:

L
ll

R  is the system stage reward 
function which has the form of ,R s , i.e. the reward is 
determined by the state and actions in each layer. 

 is the discounted factor. 
The framework of the layered MDP with information 

exchange for the foresighted cross-layer optimization 
problem is illustrated in Figure 1. From this figure, we 
observe that the layer optimizer is not required to know 
other layers’ state space, action space and dynamics models. 

Upward message: At state ks , by deploying the internal 
actions, the WSTA can determine for each layer (i) the 
probability of the packet being successfully received at the 
destination; (ii) the amount of time it takes to transmit on 
average; and (iii) the cost associated with its transmission. 
The transmission result of whether a packet is successfully 
received, is represented by the average packet loss ratio 
(PLR) at layer l  at stage k , which is denoted by 

1 1,k k k
l l ls b  where , ...,k k k

l l l l
s ss  and 

, ...,k k k
l l l lb bb  with l l . The average amount of 

time spent on transmitting one packet at layer l  at stage k  is 
denoted by 1 1,k k k

l l lt s b . The aggregated transmission cost 
incurred by performing internal actions at layer l is defined 
by 1 1 1

, ,
lk k k b k k

l l l ll l ll
f d s bs b .
To compute the reward function associated with the 

internal actions, i.e. 
1

, ,
L

k b k k k
in l l l l

l

k kR g d s bs b ,

layer L  has to know the packet loss probability, the average 
amount of time for packet transmission and the internal 
transmission cost provided from the lower layers in stage 
k . We can define a message which captures this 
information from lower layers. This message is the QoS at 
layer l  which is defined as a three-tuple , ,

Tk k k k
l l l lZ t f .

The QoS at layer l  represents the service layer l  provides 
to its upper layer 1l . Using the QoS, layer 1l  does 
not need to know the actions and dynamics at lower layers.  

By knowing QoS 1
k
LZ  provided from layer 1L , layer 

L  can computed k
inR . In other words, the internal reward 

k
inR  is independent of the states and actions in the lower 

layers, given QoS 1
k
LZ  provided from layer 1L . Hence, 

the upward message is , 1l l
k
l  where k

l  is the 
necessary QoS levels required by the upper layers. The 
more details about the upward message are presented in [9]. 

...

1
ks

1
ka

1
kb

,
1
a k

,
1
b k

k
Ls

k
La

k
Lb

,a k
L

,b k
L

k
LZ

Environm
ent

Layer 1

Layer L

QoS

Optimal policy

Optimal policy

Layer 
Optimizer

QoS

Layer 
Optimizer

1,2 2,1

, 1L L 1,L L

State transition

1 1| , , ,L L L L Lp s s a Zs

1 1 1| ,p s s a
State transition
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policy
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policy
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Message

Internal 
policy

External 
policy

Dynamics

Dynamics

Figure 1. Layered cross-layer optimization framework 
Downward message: As in the definition of the layered 

MDP, each layer is regarded as an autonomous entity that 
performs its own actions. However, the layers can cooperate 
via the information exchange to find the optimal state-value 
function *V s  as in the value iteration for the central 
MDP [8]. By decomposing the value iteration for the central 
MDP given in [9], we can obtain the following theorem. 
Theorem 1: The state-value function *V s
corresponding to the optimal policy can be obtained using a 
layered value iteration algorithm. At iteration n , each layer 
performs a sub-value iteration which is given in Table 1.  
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The proof is omitted here due to the space limitation and 
can be found in [9].  

Table 1. Sub-value iteration at each layer. 
Layer Sub-value iteration form at iteration n

L

*
, 1 1 -1

,

*
1 1 1, 1

max

, ,

| , , ,

L L L L

L L

n L L
a Z

in L L L L L L

L L L L L n L L

s

V

R s Z c s a

p s s a Z V

s

s s

         (4) 

l

*
, 1 1 -1

*
1 1 , 1

max

, | , ,

l l

l l

n l l
a

l l l l l l l l n l l

V

c s a p s s a V
s

s

s s
     (5) 

1
1 1

1 1

*
, 1

*
1 1 1 1 1 1 1 ,1 1

max

, | ,

n L L
a

n

V

c s a p a V
s

s

s s s
                 (6) 

The layered value iteration is performed as follows: at 
each iteration n , layer L  performs the sub-value iteration 
as in Eq. (4) to obtain the state-value function 

*
, 1 1 -1n L LV s  which services as future state-value 

function at layer 1L . Then, in general, layer l  performs 
the sub-value iteration as in Eq. (5) based on the future 
state-value function from layer 1l  to generate  

*
1 1n lV s .  Finally, layer 1 performs the sub-value 

iteration as in Eq. (6) to generate the state-value function 
*
, 1n L LV s , which is *

nV s  as in the centralized value 
iteration.  

Then the message exchanged from layer 1l  to layer 
l  is *

1, 1 1l l n lV s . The upward and downward 
message exchanges are presented in Table 2. 
Table 2. Message exchanges between layers at iteration n .

Layer Upward Message , 1l l  Downward Message , 1l l

L *
1 1n LV s

l l
*

1 1n lV s

1 1

4. ADVANTAGES OF LAYERED VALUE 
ITERATION 

In this section, we highlight the advantages of the 
proposed layered value iteration for the layered MDP, 
compared to the centralized value iteration as in [9].  

In the central MDP, the central optimizer is required to 
completely know dynamics model (i.e. states, transition 
probability) and possible internal and external actions of all 
the layers which are protocol-dependent. Hence, the 
mechanism of information exchange between the central 

optimizer and the layers is also protocol-dependent. 
However, in the proposed algorithm, the optimization of 
solving the optimal actions are decomposed into layered 
optimization sub-problems each of which corresponds to a 
value iteration shown in Table 1. First, each layer is not 
required to know the dynamics model and possible internal 
and external actions from other layers, but only its own 
dynamics and actions. Second, the format of the messages 
listed in Table 2 between layers is independent of the 
protocols deployed in each layers although the content of 
the messages characterizes the dynamics and performed 
actions at each layer. This layered framework is essential for 
the design of time-varying delay-sensitive applications over 
wireless networks. 

5. CONCLUSION 

In this paper we formulated the dynamic cross-layer 
optimization problem as a layered MDP with information 
exchanges among layers. For the layered MDP, we design a 
layered value iteration algorithm and message exchange 
mechanism among layers. The layered cross-layer 
framework does not break up the current layered network 
architecture and hence, is suitable for the time-varying, 
delay-sensitive applications (e.g. multimedia) over dynamic 
wireless networks.   
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