
Learning Latent Student Design Decisions in Python Programming Classes

Elena Glassman ELG@MIT.EDU

MIT CSAIL, 32 Vassar St., Cambridge, MA 02139 USA

1. Introduction

Programming courses produce a collection of student so-
lutions for each programming exercise. The solutions to
each exercise vary along many dimensions, including bugs,
naming, syntax, and semantics. The distribution of solu-
tions along these dimensions reflect student prior knowl-
edge, teacher explanations, and common misconceptions.

Solutions can be thought of as a collection of design de-
cisions along the various dimensions of solution variation.
Some design decisions are mutually exclusive, e.g. looping
over a particular array with a for or a while, some deci-
sions are correlated with one another, and some decisions
are completely independent. Each new solution submitted
by a student may introduce a novel design decision into the
collection. Every possible combination of design decisions
(that arent mutually exclusive) may be observed as new stu-
dent solutions are submitted.

Hundreds or thousands of student solutions become painful
or prohibitively exhausting to review by hand. Automated
testing is a noisy predictor of code quality. Students get
little or no expert feedback on the design decisions they
made in their solutions.

The paper presents a potential resolution to this problem by
describing how to factorize student solutions into combi-
nations of student design decisions. Rather than reviewing
individual solutions from the collection, teachers could re-
view student design decisions, and written feedback could
be propagated back to all the students which express that
design decision.

2. Dataset

The dataset of solutions is collected from 6.00x, an intro-
ductory programming course in Python that was offered on
edX in fall 2012. This paper focuses on Python solutions
from one exercise problem, which will be the running ex-
ample throughout this paper. Specifically, it is a collection
of 3875 student solutions to the problem of writing a func-
tion iterPower(base,exp) that iteratively exponen-
tiates base to an exponent exp. Figures 1, 2, and 3 provide
some concrete examples of the iterPower solutions.

Figure 1. Example of a recursive student solution.

Figure 2. Example of a while-based student solution.

In early pilot studies, python programming teachers given
the same set of solutions partitioned the space of solutions
in a variety of ways, producing different numbers and/or
compositions of clusters. Since teachers found multiple
reasonable clusterings, the pilot results can be explained
by one or both of the following reasons: (1) Teachers have
different internal clustering metrics. (2) Solutions can rea-
sonably belong to multiple clusters. While (1) is probably
true as well, this paper focuses on addressing (2).

3. Methods

3.1. Features

Learning latent variables has been applied in a variety of
contexts. For processing text, it is common to treat doc-
uments as exchangeable as well as treat the words within
each document as exchangeable. This matches the genera-
tive model of Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). Topics, i.e., distributions over words, are learned, as
well as the distributions over topics found in each docu-
ment.

A similar process could be applied to programs. Consider
each Python program as a separate “document”, and the
“words” in each document are the tokens that a Python

Learning Latent Student Design Decisions in Python Programming Classes

Figure 3. Example of a while-based student solution, where the
student has not modified any input arguments, i.e., better pro-
gramming style.

parser would produce, i.e., the nodes of an Abstract Syn-
tax Tree including language keywords, operators, variable
names, the values of primitive times, and the names of
functions called. However, given that the datasets currently
available for this work range from hundreds to a few thou-
sands of solutions instead of millions of documents, there
may not be enough data to infer reasonable cross-program
topics from this token-level data.

Fortunately, programs are also executable. Features from
dynamic analysis can complement static token-level fea-
tures, as was demonstrated in (Kim et al., 2015). Of par-
ticular interest in this work are the features produced by
the OverCode program analysis method (Glassman et al.,
2015).

Common Variables The OverCode (Glassman et al.,
2015) analysis pipeline was initially developed to dedupli-
cating Python programs that differ only by variable names,
statement order, formatting, and comments. In the process
of this deduplication process, OverCode executes all pro-
grams on a common set of test cases and records the se-
quence of values taken on by each variable in the program.

Sequence of variable values observed while executing
iterPower(5,3) as defined in the following figures:
Figure 1

• exp: 3, 2, 1, 0, 1, 2, 3

• base: 5

Figure 2

• exp: 3, 2, 1, 0

• base: 5

• result: 1, 5, 25, 125

Figure 3

• exp: 3

• base: 5

• iter: 3, 2, 1, 0

• result: 1, 5, 25, 125

This sequence of values taken on by each variable in each
program becomes a signature, i.e., the key to recognizing
semantically equivalent variables across programs. Over-
Code assumes that variables in different programs that tran-
sition through the same sequence of values on the same test
cases are in fact fulflling the same role in the program and
can therefore be considered the same common variable

Table 1. Variable-by-Solution Matrix for Programs, where vari-
ables are uniquely identified by their sequence of values while
run on a set of test case(s)

PRO- 5 1,5,... 3,2,1,0, 3,2,1,0 3

GRAM 25,125 ...1,2,3

FIG. 1 1 1 1 0 0
FIG. 2 1 1 0 1 0
FIG. 3 1 1 0 1 1

uniquely defined by that sequence of values.

In the previous examples, the input argument base would
be considered a common variable found in all three pro-
grams, but the input argument exp would not be. The vari-
able result would also be considered a common variable
shared across just the definitions in Figure 2 and Figure 3.
This allows us to distinguish between programs that cal-
culate the answer in distinct ways, without getting bogged
down in discrimating between the low-level syntax-based
design decisions.

In order to focus on identifing higher-level design deci-
sions about how to compute an answer, the programs in
the dataset were represented as bags of variables instead of
bags of tokens. Textual documents can be represented as
a W ⇥ N term-by-document matrix of counts, where W
is the vocabulary size across all documents and N is the
number of documents. This is one way to represent a doc-
ument as a set of word counts, i.e., how many times each
word appears in each document. The corresponding matrix
for a bag-of-variables approach to the programs in Figures
1 through 3 produced by executing iterPower(5,3) is
shown in Table 1.

Note that, while the entries in Table 1 only take on val-
ues 0 or 1, more complicated definitions may have n in-
stances of, e.g., a variable that takes on the sequence of
values 3,2,1,0. In that case, there would be an n in the
3,2,1,0 for the row corresponding to that solution. In
other words, true to the assumptions made by LDA, these
are occurrence counts, not binary indicators.

3.2. Model Choice

As new solutions are submitted by students, the number of
observed distinct student design decisions may grow with-
out bound, and each solution may be a mixture of multi-
ple design decisions. Therefore, a Hierarchical Dirichlet
Process (Teh et al., 2012) for learning these underlying de-
sign decisions may be a good model choice for this data.
However, since some design decisions may be correlated
with each other, it may be even more accurate to replace
the (conveniently conjugate) Dirichlet prior with a (non-

Learning Latent Student Design Decisions in Python Programming Classes

conjugate) logistic normal prior that can model correlated
topics in addition to uncorrelated topics. This would be
a non-parametric version of the Correlated Topic Model
(Blei & Lafferty, 2006). If, as is likely, the chosen features
can belong to multiple design decisions, it may be useful to
add in elements of the Indian Buffett Process (Ghahramani
& Griffiths, 2005).

While these models’ assumptions may better match the re-
ality of this dataset of student programs, LDA (Blei et al.,
2003) as implemented in the Gensim toolbox (Řehůřek &
Sojka, 2010) was chosen as the model to evaluate. The
performance of the more sophisticated models will be ex-
plored in future work. Simpler models and transformations,
like TF-IDF and pLSA/pLSI (Hofmann, 2000) were not
considered because they reveal little in the way of inter-
or intra-solution statistical structure and are not a proper
Bayesian models, respectively.

3.3. Procedure

All 3875 student solutions were run on a set of test cases
within the OverCode analysis pipeline. The OverCode
pipeline produced a set of 977 deduplicated Python pro-
grams and a set of features for each program, including
which variable sequences were observed during execution.
Another script turned this output into a variable-by-solution
matrix for the 977 deduplicated programs, which were
then fed into various models for analysis. The learned
latent variables, e.g., LDA “topics,” were then inspected,
since perplexity and held-out likelihoods are not necessar-
ily good proxities for human interpretability (Chang et al.,
2009). Interpretability is the only end goal, because the
end result will be directly visualized within a teacher-facing
user interface.

4. Results

Since LDA does not infer the number of topics K from the
data itself, the behavior of LDA on the data was collected
for two values of K: 25 and 100.

4.1. Fitting 100 LDA Topics

As shown in Figure 5, a small number of topics were in-
ferred to be present in many dedpulicated solutions when K
is at a larger setting, i.e., K = 100. Here are solutions as-
sociated with some of these “popular” topics in the dataset:

(K = 100) Deduplicated solutions containing a popular
topic:

def iterPower(base, exp):

result = base

if exp == 0:

result = 1

while exp > 1:

result

*

=base

exp -=1

return result

def iterPower(base, exp):

result = base

if exp == 1:

result = base

if exp == 0:

result = 1

while exp > 1:

result

*

= base

exp -= 1

return result

(K = 100) Deduplicated solutions containing a different
popular topic:

def iterPower(base, exp):

result = 1

while exp > 0:

result = result

*

base

exp = exp - 1

return result

def iterPower(base,exp):

result=1

while exp>0:

exp-=1

result=base

*

result

return result

The two topics above correctly tease apart the difference
between while-based solutions with extra (unnecessary)
conditional statements from those without them.

4.2. Fitting 25 LDA Topics

(K = 25) Solutions containing four different popular top-
ics:

def iterPower(base, exp):

result = 1

while exp > 0:

result = result

*

base

exp = exp - 1

return result

def iterPower(base,exp):

result=1

while exp>0:

result

*

=base

exp-=1

return result

Learning Latent Student Design Decisions in Python Programming Classes

These two deduplicated solutions are examples of the many
solutions associated with all the first four most popular top-
ics. Popularity, in this case, was determined by whether the
topic was associated with at least 500 deduplicated solu-
tions (see Figure 4 for details). The first two of the popular
topics overlap to the point that they are assigned to the same
deduplicated solutions 578 times; they are not assigned to
the same deduplicated solution only 101 times.

For additional context, when K = 25, the first recorded
run of LDA inferred that each solution was a mixture of 5
different topics, on average.1 For comparison, when K =
100, each deduplicated solution was found to be a mixture
of only 1.2 topics, on average.

(K = 25) Solution containing a different popular topic:

def iterPower(base,exp):

result=1

i=0

while i<exp:

result

*

=base

i+=1

return result

def iterPower(base,exp):

if exp==0:

return 1.0

b=exp

result=base

while b>1:

result

*

=base

b-=1

return result

These two groups of solutions above containing some dif-
ferent popular topics correctly tease apart the difference be-
tween using the input argument exp as a counter and cre-
ating a separate variable as a counter, so as not to modify
function inputs. This can be considered a superior software
development choice.

Figure 4. Histogram of topic assignments for 977 deduplicated
solutions, when LDA’s maximum number of topics is set to 25.

1Subsequent runs show that this average number of topics as-
sociated with each deduplicated solution, and the concentration of
deduplicated solutions per topic, is highly variable.

Figure 5. Histogram of topic assignments for 977 deduplicated
solutions, when LDA’s maximum number of topics is set to 100.

5. Discussion

LDA applied to a variable-by-solution matrix is a promis-
ing method for factoring student solutions into their con-
stituent design decisions. LDA is not the most correct
model for this dataset, e.g., it cannot model interdependent
(correlated) decisions that are very likely to occur in Python
solutions, but inspection of the latent topics clearly reflects
the design decisions teachers might want to comment on in
this particular dataset. However, the choice of topics has
non-trivial consequences in terms of topic clarity. This is
evidence that the additional effort of finding or implement-
ing HDP is worth exploring.

In the future, a generative model specifically for this kind
of dataset may be worth designing and building around.
Encoding solutions in a variable-by-solution matrix only
allows the mixture model to separate solutions based on
variable behavior. Variable behavior carries a lot of in-
formation about how a student approached computing the
solution, but this representation ignores the important dif-
ferences between solutions using, e.g., idiomatic Python
syntax vs. tangled syntax that, by some “miracle,” still
works. A pedagogical tool that supports teachers at both
levels would be ideal. Consider the plate model of LDA.
If one adds one more level of hierarchy, as illustrated in
Figure 6, then ✓ can be the distribution over combinations
of variables in a solution and can be the distribution over
the possible syntax to create the execution behavior that de-
fined those variables. Finally, what is observed, w, is a set
of lines of syntax that manipulate the variables described
by ✓. Future work includes exploring whether inference
based on this generative model is tractable.

Figure 6. Alternative plate model for modeling Python solutions

Learning Latent Student Design Decisions in Python Programming Classes

Acknowledgments

The author is grateful for the clarifications provided by both
Finale Doshi-Velez and Tamara Broderick.

References

Blei, David and Lafferty, John. Correlated topic models.
Advances in neural information processing systems, 18:
147, 2006.

Blei, David M, Ng, Andrew Y, and Jordan, Michael I. La-
tent dirichlet allocation. the Journal of machine Learn-
ing research, 3:993–1022, 2003.

Chang, Jonathan, Gerrish, Sean, Wang, Chong, Boyd-
Graber, Jordan L, and Blei, David M. Reading tea leaves:
How humans interpret topic models. In Advances in neu-
ral information processing systems, pp. 288–296, 2009.

Ghahramani, Zoubin and Griffiths, Thomas L. Infinite la-
tent feature models and the indian buffet process. In
Advances in neural information processing systems, pp.
475–482, 2005.

Glassman, Elena L, Scott, Jeremy, Singh, Rishabh, Guo,
Philip, and Miller, Robert C. Overcode: visualizing
variation in student solutions to programming problems
at scale. Transactions on Computer-Human Interaction,
2015.

Hofmann, Thomas. Learning the similarity of documents:
An information-geometric approach to document re-
trieval and categorization. 2000.

Kim, Been, Glassman, Elena, Johnson, Brittney, and Shah,
Julie. ibcm: Interactive bayesian case model empower-
ing humans via intuitive interaction. 2015.

Řehůřek, Radim and Sojka, Petr. Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pp. 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/

884893/en.

Teh, Yee Whye, Jordan, Michael I, Beal, Matthew J, and
Blei, David M. Hierarchical dirichlet processes. Journal
of the american statistical association, 2012.

