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Abstract
Test-taking (assessment) and grading are com-
monly treated as two separate processes and per-
formed by two different groups of people. Re-
cently, the boundaries between test-taking and
grading have started to blur. Peer-grading, for
example, leverages student knowledge and ef-
fort to grade other students’ answers. Despite
the considerable success of peer-grading in mas-
sive open online courses (MOOCs), the process
of test-taking and grading are still treated as
two distinct tasks which typically occur at dif-
ferent times, and require an additional overhead
of grader training and incentivization. In order
to overcome the drawbacks of peer-grading, we
propose joint assessment and grading (JAG), a
novel approach that fuses test-taking and grad-
ing into a single, streamlined process that appears
to students in the form of an explicit test, but
where everyone also acts as an implicit grader.
We demonstrate the effectiveness and limits of
JAG via simulations and a real-world user study.

1. Introduction
Multiple-choice questions (MCQs) are a common way to
overcome the so-called scaling problem in assessment:
grading a large number of submissions from many students
in an efficient manner (Roediger III & Marsh, 2005). The
immense scaling potential of MCQs to large classroom set-
tings such as massive open online courses (MOOCs), how-
ever, comes at the cost of rigidity and considerable sensitiv-
ity to its design—questions and options that are designed
without the consideration of the students’ likely miscon-
ceptions, for example, can yield uninformative questions
(Haladyna, 1997; Rodriguez, 2005) (e.g., when the distrac-

tors are easy to eliminate). As a consequence, the effort
saved in grading is often offset by the effort required to de-
sign an effective MCQ test.

More recently, the practical realization of MOOCs opened
another opportunity to solving the problem of scaling in
large-scale assessments, one that leverages the size of the
classroom to its advantage: peer-grading. In its traditional
form, peer-grading assigns to each student a secondary role
of a grader. Students are responsible for validating the cor-
rectness of other students’ solutions in order to assign a
score, typically in accordance with a rubric provided by
an instructor. The advantage of peer-grading is its flex-
ibility to students’ submissions, which may range from
short answers, to essays, diagrams, code, or entire projects
(Kulkarni et al., 2015). Peer-grading, however, introduces
several challenges to guarantee a successful deployment.
First, each student differs in their ability to grade, and the
grades assigned by different students must be reconciled
in a reasonable way. Second, grading becomes an addi-
tional burden on the students, and mechanisms must be put
in place that not only incentivize participation and effort,
but prevent students from “gaming” the process. Recent
research in peer-grading has started to address these chal-
lenges (Piech et al., 2013; Raman & Joachims, 2014; Wu
et al., 2015)

1.1. JAG: an alternative to Peer Grading

We present a novel alternative approach to peer-grading
that naturally resolves the challenges of grade aggrega-
tion and incentivization. We propose joint assessment and
grading (JAG), which fuses grading and assessment into a
single, streamlined process by re-framing grading as addi-
tional testing. Our approach is motivated by the fact that a
“grader” that has no answer key, when presented with the
listing of other students’ answers, is no different than a test-
taker facing a multiple-choice question (with multiple pos-
sible correct or incorrect answers). In other words: a stu-
dent selecting what they believe to be the correct answer in
an MCQ constructed from the open-response submissions
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of other students is in effect simultaneously (i) grading the
other students and (ii) being assessed by his or her ability to
select the correct answer. In peer-grading, we already face
the challenge of noisy inputs from the (potentially unmoti-
vated) graders. By re-framing the act of grading as that of
MCQ testing, the source of the apparent noise in grading
becomes distributed according to the ability of the students
in the class.

The proposed mechanism of JAG combines the advantages
of both worlds: the structure of multiple choice questions
and the flexibility to general response types offered by
peer-grading. First, by constructing the MCQs directly
from students’ open-response submissions, the questions
naturally capture the distribution of misconceptions present
in the population of students being tested, requiring lit-
tle to no instructor input. Second, our framework offers
a mechanism for automatically grading open-response sub-
missions, thus facilitating greater student engagement and
higher-order thinking characteristic to open-response ques-
tions (Haladyna, 1997). Third, by re-framing the task of
grading as that of testing, the students are incentivized in
the context of a familiar task: namely by expending their
effort towards correctly answering an MCQ, they are im-
plicitly directing that effort towards grading other students’
submissions. At the same time, the students are not bur-
dened with (what they may perceive as) a “thankless” job
of grading, but instead in the process of answering the addi-
tional MCQs, the students are provided with an additional
opportunity to demonstrate their knowledge.

In this paper, we formalize the process of JAG as a sta-
tistical estimation problem. At the heart of our approach
is the traditional Rasch model that captures the interac-
tion between student abilities and question difficulties in
determining the likelihood of a student answering a ques-
tion correctly (Rasch, 1993). We develop an expectation
maximization (EM) algorithm for estimating the parame-
ters of the proposed model in an unsupervised setting (i.e.,
in absence of an answer key), and demonstrate the effec-
tiveness of our framework through a real-world user-study
conducted on Amazon’s Mechanical Turk. Additionally,
we investigate the key properties and limitations of our ap-
proach via simulations.

2. Related Work
Our work builds on the recent progress in two distinct ar-
eas: crowd-sourcing and peer-grading, that we unite and
extend within our proposed framework for joint assessment
and grading (JAG).

2.1. Crowdsourcing

An important task in crowdsourcing is known as label-
aggregation, and is concerned with the problem of opti-
mally recovering some underlying ground truth (e.g., im-
age class label) from a number of (unreliable) human
judgements. See (Hung et al., 2013) for a detailed review.
In the context of education, the task of automatically identi-
fying the correct answers from open-response submissions
is closely related to the task of label aggregation. Within
the field of crowd-sourcing, the work of (Dawid & Skene,
1979; Whitehill et al., 2009; Bachrach et al., 2012) are the
most related to our approach. (Dawid & Skene, 1979) was
the first to suggest an expectation maximization (EM) algo-
rithm for label aggregation, motivated by a clinical setting
of making a diagnosis. More recently, (Whitehill et al.,
2009) extended this approach to model the variation in task
difficulty in the context of image labeling. In the context of
education, (Bachrach et al., 2012) has proposed a statistical
model for aggregating answers from “noisy” students, with
the goal of automatically identifying the correct answers to
MCQs. They deploy an EM algorithm for Bayesian infer-
ence, and demonstrate the ability to infer correct answers
accurately in a setting of an IQ test. Our work can be
seen as a generalization of (Whitehill et al., 2009; Bachrach
et al., 2012), where we explicitly model the dependence
among question choices and students that generate those
choices in the context of answering open-response ques-
tions.

2.2. Peer-grading

Much of the recent research in peer-grading addresses a
related problem of aggregating a number of “noisy” grades
submitted by students in a statistically principled manner.
Models such as the ones in (Piech et al., 2013; Raman
& Joachims, 2014) pose the problem of peer-grading as
that of statistical estimation. Since traditional grading as-
sumes that graders are in possession of a grading rubric,
statistical models of peer-grading are concerned primarily
with accounting for the reliability and bias of graders in
evaluating assignments against a gold-standard. In con-
trast to such “explicit” models of grading, we view grading
as an implicit process that results as a by-product of stu-
dents’ genuine attempt to answer MCQs constructed from
the open-response submissions of other students. As such,
we do not require additional “grader-specific” parameters,
as grading in our framework is subsumed by the response
model (model of how students answer questions as a func-
tion of their ability and question difficulty). We do note,
however, that one of the proposed models in (Piech et al.,
2013) explicitly couples grading and ability parameters in
an attempt to capture the intuition that better students may
also be better graders. This intuition can be viewed as be-
ing taken to its extreme in our setting: blurring the bound-
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aries between grading and test-tasking ensures that betters
students are more reliable graders by construction.

2.3. Clustering submissions

We also take note of an emerging area of work focused
on clustering open-response submissions (not necessarily
for peer-grading). An important by-product of scaling in
the context of assessment is the inevitable increase in sim-
ilarity between student open-response submissions, which
results in redundancy during grading. Moreover, a recent
theoretical result of (Shah et al., 2014) indicates that with-
out some way of reducing dimensionality of submissions,
there will always be a constant number of misgraded as-
signments (assuming certain scaling properties of the class-
room). In an effort to reduce the workload of the instruc-
tors (or peers), there has been a number of successful at-
tempts to cluster responses in specific domains, e.g., lan-
guage (Basu et al., 2013; Brooks et al., 2014) and mathe-
matics (Lan et al., 2015). Answer clustering is even more
critical in the framework of JAG, where the practical con-
straints of testing limit the number of options that can be
shown in a multiple choice question. To generate effec-
tive questions, the presented options must offer a represen-
tative sample of the diverse open-response submissions in
a large classroom. In Section 7, we demonstrate that the
pattern of selected options alone provides the necessary
signal to perform domain-agnostic clustering of submis-
sions (i.e., without considering the content of the answers).
This observation demonstrates the tremendous versatility
of this framework to jointly assess, grade and cluster open-
response submissions.

3. Model
3.1. Fully observed setting

We start by reviewing the classic IRT Rasch model that will
serve as the foundation of our approach. Consider a set of
students S and a set of questions Q, where a student i ∈ S
is endowed with an ability parameter si ∈ R, and each
question j ∈ Q is endowed with a difficulty parameter qj ∈
R (note that we capitalize all sets in our notation). By abuse
of notation, we will often overload si to refer to both, the
student index i and their ability, depending on the context;
the same applies to qj , which we use to refer to the question
itself as well as its difficulty. The well-established 1-PL
IRT Rasch model (Rasch, 1993) expresses the probability
that the student si answers question qj correctly via the
following likelihood function:

P (zi,j | si, qj) =
1

1 + exp (−zij(si − qj))
, (1)

where zi,j ∈ {+1,−1} is the binary outcome of student
si’s attempt of question qj ; we use +1 and −1 to desig-

nate correct and incorrect responses, respectively. If we are
in the possession of an answer key for each question, then
we also know {zi,j}, ∀i, j (we will refer to this as the fully
observed setting). This allows us to estimate the ability of
each student and the difficulty of each question by maxi-
mizing the likelihood of all outcomes under our model:

{si,∀i, qj ,∀j} = argmax
si,qi

∏
zi,j∈D

P (zi,j | si, qj), (2)

where D = {zij} is the set of outcomes (e.g., of a test).

3.2. Partially observed setting

Consider now the setting where some (or all) of the out-
comes zi,j ∈ D are not observed. In practice, this is the
case, for example, when the answer key to some of (or
all) the questions is not available. In our setting, where
the choices in the multiple choice question are in fact other
students’ submissions, the correctness of these submissions
are not known a priori. Let Aj be the set of open-response
answers submitted by a subset of students in Sopen ⊆ S in
response to the question qj . At some later time, a student
si ∈ Smcq ⊆ S is presented with the same question qj , but
in the form of a multiple-choice question, with the options
being exactly the answers inAj (note that Smcq need not be
disjoint with Sopen). The student si is informed that there
may be zero or more correct answers in the set of options
in Aj and they are instructed to select “all that apply.” The
student si goes through each option in Aj and submits a
response to that option. Let yi,j = {yki,j} be the set of
such responses made by student si on the set of answers
Aj , where yki,j ∈ {+1,−1} is the student sth

i selection on
the kth answer (option) in Aj . In other words the variables
yki,j are the observations of whether the student si “clicked”
on answer k to question j (i.e., that student judged that par-
ticular answer to be correct). In what follows, we describe
the statistical model that relates the student and question
parameters which we are interested in estimating, to the set
of response observations. Our model consists of two com-
ponents: (i) the open-response component that models the
students (and their responses) that generate open-response
answers, and (ii) the multiple choice model component that
models the students (and their responses) that are presented
with the multiple choice version of each question.

Open-response model: Because we do not know whether
the submitted open-response answers are correct, we treat
the correctness of each submission as a hidden variable
zi,j ∈ {+1,−1}; this allows us to express the component
of the overall likelihood of our data, responsible for the
open-response answers only as follows:

P ({zi,j} | Sopen, Q) =
∏
zi,j

P (zi,j | si, qj),
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where P (zi,j | si, qj) is the Rasch likelihood given in (1).
Note that we drop the k-superscript notation for the zi,j
variables because each student is assumed to provide at
most one open-response submission to each question (since
k indexes the answers to a specific question). The observed
responses to the multiple-choice version of each question
(described next) will provide the necessary data to estimate
the parameters in the model, including the hidden variables
zi,j , i.e. the correctness of each open-response submission.

Multiple choice model: Now consider the setting where
each question is presented in the form of a MCQ. Recall
that the student answering the multiple choice question is
presented with multiple options, each generated by some
(other) student in the set Sopen, and where several options
(or even no options) may be correct. The intuition that we
want to capture in our model is that a student of great rel-
ative ability (i.e., si � qj) will select (yki,j = +1) the op-
tion (i.e., judge it as being correct) if that option is actually
correct (zkj = +1). The same student will not select that
option (ykij = −1) if that option is incorrect (zkj = −1).
At the same time, a student of poor relative ability (i.e.,
si � qj) will not not be able to identify the correct an-
swer, regardless of whether the option is correct, i.e., they
will guess. This intuition can be captured by the follow-
ing function that parametrizes the likelihood of student si
selecting the option k to question qj to be correct:

P
(
yki,j | si, qj , zkj

)
=

1

2

(
1

1 + exp
(
−ykijzkj (si − qj)

) + 1

)
. (3)

One can easily verify that this likelihood satisfies the re-
quirements outlined above by considering every combina-
tion of the assignment to yki,j and zkj , and taking the limits
of si − qj → ∞ (great relative ability) and qi − sj → ∞
(poor relative ability). Note that this time we drop the index
i (index of the student who generated the option k in ques-
tion qj) in zkj , as in the above, we use si to refer to the stu-
dent answering the multiple choice version of the question.
Note that the above likelihood follows the same intuition as
proposed by (Bachrach et al., 2012), but in a setting with
an arbitrary number of choices and one correct answer. In
Figure 1 we illustrate both components of the likelihood
(the open-response and the multiple choice component) as
a graphical model. In this illustration, we use the notation
si′ to refer to the student that generated the answer and si
to refer to the student that observes the answer as a choice
in a multiple choice version of question qj .

If we make a leap of assuming conditional independence
between the student sth

i responses to each option in a multi-
ple choice question (conditional on si, qj and zkj ), then we
can express the likelihood of observing every response to

every multiple choice questions as follows:

P ({Yj} | Smcq,Q, {Zj})
=

∏
si∈Smcq

∏
qj∈Q

∏
yk
i,j∈Yj

zk
j ∈Zj

P (yki,j | si, qj , zkj ).

The assumption of conditional independence requires some
additional justification in our setting. Intuitively, we are
justified in claiming conditional independence when we be-
lieve that the set of conditioning variables accounts for ev-
erything that may be shared across observations, such that
the only remaining source of the variance is noise. For
example, observations of different students answering the
same question on the test are conditionally independent
given the difficulty of that question. In modeling the likeli-
hood of a student selecting each option in a multiple choice
question, however, we overlook the potential for the op-
tions to be related. In an extreme example, two options
may be identical or paraphrases of each other, which we
expect to be common-place when these options are gener-
ated by students in a large classroom. In this case, condi-
tional independence no longer holds without an introduc-
tion of additional conditioning variables that group the re-
lated options in some way. To some extent, this problem
can be mitigated by pre-processing and clustering similar
answers before displaying them as options in a multiple
choice question. This is a strategy that we take in this work.
In Section 7, we discuss our ongoing work in automatically
clustering answers based on the response patterns to multi-
ple choice questions.

To complete our model, we combine the open-response and
the multiple-choice components:

P (y, z | s, q) = P (y | z, s, q)︸ ︷︷ ︸
multiple choice

P (z | s, q)︸ ︷︷ ︸
open response

, (4)

where we adopt vector notation for the variables and pa-
rameters in our model that will facilitate the development
of the learning algorithm in Section 4. In order to give
the dimensions for each of the variables in (4), assume that
each student in Sopen provides an open-response answer to
each of the questions in Q and that each student in Smcq
also answers each question in Q (which entails providing
a response to each option contained in a given question).
Under these assumptions then, z ∈ {+1,−1}|Sopen||Q|,
y ∈ {+1,−1}|Sopen||Smcq||Q|, s ∈ R|Smcq∪Sopen| and q ∈ R|Q|.

4. Parameter Learning
We now derive the expectation maximization (EM) algo-
rithm for obtaining an approximate maximum likelihood
estimate (MLE) of the parameters s and q of the model
in (4). We briefly outline the key steps in obtaining the
algorithm.
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Figure 1. A probabilistic graphical model that summarizes the
proposed joint assessment and grading (JAG) framework. Our
model jointly captures the statistical dependencies between the
abilities of students that generate open-response answers (Sopen),
the abilities of students that select the correct answers when
they are presented in a form of a multiple choice test (Smcq),
the underlying question difficulty qj and the observed responses
(yk

ij ∈ {+1,−1}). The correctness of each open-response answer
zkj ∈ {+1,−1} (omitting the index of student that generated the
answer) is a hidden variable, the state of which is inferred in ad-
dition to the remaining parameters during inference. Note that the
model is able to “grade” the open-response submissions of stu-
dents by integrating the response patterns of other students who
were presented a multiple choice version of the question.

E-step: We compute the expectation of the log-likelihood
(the logarithm of Equation 4) with respect to the unob-
served variables z which yields a function f(s, q) of the pa-
rameters s and q only. The expectation is performed with
respect to the posterior distribution of z given a previous
estimate of s and q (or an initial guess).

M-step: We obtain an updated estimate of parameters s
and q by maximizing f(s, q) obtained in the E-step.

The above procedure iterates until convergence. Below we
give both steps explicitly in the context of the joint assess-
ment and grading (JAG) framework.

E-step: Let ŝ and q̂ be an intermediate estimate of the
parameters. Conditioning on these estimates, the posterior
of zkj (correctness of answer (option) k to question qj) is
a Bernoulli random variable with the probability of being

correct given by (up to a normalizing constant):

P (zkj = 1 | ŝ, q̂j) ∝
P (zkj = 1 | ŝi′ , q̂j)︸ ︷︷ ︸

open response

∏
si∈Smcq

P
(
yki,j | ŝi, q̂j , zkj = 1

)
︸ ︷︷ ︸

multiple choice responses

.

(5)

The posterior over the answer correctness zkj naturally in-
tegrates two sources of information: (i) the likelihood that
the student who generated the answer was correct, and
(ii) the likelihood that the students answering the multiple
choice version of the question “picked” this answer as cor-
rect (note that si′ ∈ Sopen and si ∈ Smcq). Each likeli-
hood is parametrized by the model’s current estimate of the
students’ abilities and question difficulties, and as a con-
sequence gives more weight to the signal coming from the
more able students.

M-step: The expectation of the log-likelihood with re-
spect to z yields the following expression:

Ez[logP (y, z | s, q)] = f(s, q) =

=
∑
Dmcq

P
(
zkj = +1 | ŝ, q̂j

)
logP

(
yki,j | si, qj , zkj = +1

)︸ ︷︷ ︸
R1

+
∑
Dmcq

P
(
zkj = −1 | ŝ, q̂j

)
logP

(
yki,j | si, qj , zkj = −1

)︸ ︷︷ ︸
R1

+
∑
Dopen

P
(
zkj = +1 | ŝ, q̂j

)
logP

(
zki′,j = +1 | si′ , qj

)︸ ︷︷ ︸
R2

+
∑
Dopen

P
(
zkj = −1 | ŝ, q̂j

)
logP

(
zki′,j = −1 | si′ , qj

)︸ ︷︷ ︸
R2

where we introduce the short-hand Dopen and Dmcq to refer
to the sets of students, questions and responses that were
involved in (i) generating open-response submissions and
(ii) multiple-choice responses respectively. The above ex-
pression is a weighted linear combination of (log-) Rasch-
likelihoods (R1 and R2 are given in (3) and (1) respec-
tively), and can be easily maximized with a small modi-
fication to an existing Rasch solver to account for the con-
stants. We use the L-BFGS algorithm (Zhu et al., 1997) to
perform this optimization step.

Initialization: Note that while the M-step is convex, the
joint optimization problem in z, s, and q is not convex,
and in general the EM algorithm will only yield an approx-
imate solution and may get trapped in local optima. The
problem becomes more pronounced in datasets with few
interactions, e.g., small classrooms. As such, initialization
plays an important role in determining the quality of the
obtained solution. A natural heuristic for initializing the
posteriors over z is with the fraction of “votes” given to the
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answer (i.e., fraction of students that identified the answer
as correct). Observe that in computing the posterior over
the answer correctness during the E-step (Equation 5), the
posterior becomes exactly the fraction of “votes” given to
the answer if we assume equal difficulty and ability param-
eters for all students, suggesting that initializing the pos-
terior in this way provides a reasonable starting point for
the algorithm. This heuristic is also suggested in (Dawid
& Skene, 1979). We demonstrate the effectiveness of this
heuristic in Section 6.

5. Experiments with Synthetic Data
In order to understand the behavior of our framework in
a hypothetical classroom, we evaluate the model on a se-
ries of synthetically generated datasets. As our model at-
tempts to infer the correctness of each answer entirely from
the choices made by students in answering multiple choice
questions, an important concern is the limitation of infer-
ence on difficult questions. Difficult questions are ques-
tions where we can expect the majority of students to be
unable to identify the correct answers, and present a chal-
lenge to any model that relies on aggregating judgements.
The model’s ability to recover the correct answer despite
the majority being incorrect, fundamentally requires the
model to leverage its estimates of students’ abilities so as
to weigh the judgements of better students proportionally
higher. Also note that we are concerned with questions of
great relative difficulty (with respect to the ability of the
students in the class), not absolute difficulty.

We can simulate an entire spectrum of regimes that present
a varying degree of difficulty to inference, and evaluate the
model’s performance in correctly inferring the correct an-
swers in each regime. We accomplish this by generating a
synthetic population of students and questions with a fixed
expected relative competency (i.e., E[s − q] = k, where
s ∼ p(s) and q ∼ p(q)), performing inference with our
model on the generated observations, and computing the
fraction of correctly inferred correct answers (accuracy) for
different E[s − q]. See Figure 2 for an illustration. Note
that E[s − q] is a quantity that conveniently summarizes
the classroom in terms of its “competency” relative to the
testing material. Large values of E[s − q] indicate that the
students are well-prepared, and most will answer the ques-
tions correctly.

5.1. Simulation procedure

We let p(s) = N (µs, σ = 2) and p(q) = N (µq, σ = 2).
We generate a synthetic classroom with the following pa-
rameters |Sopen| = 10, |Smcq| = 10, |Q| = 15, where
every student in Sopen submits a open-response to every
question in Q, every student in Smcq responds to every
question (which entails providing a respond to every op-

E[s − q]

p(s)p(q)

Figure 2. Distributions used in generating synthetic data, where
p(q) and p(s) are the distributions of question difficulty and stu-
dent ability respectively. The quantity E[s − q] represents the
average relative competency of the classroom: a large value of
E[s − q] indicates that the majority of students will answer most
of the test items correctly, and vice-versa. See Figure 3 for the
effect of the class distribution on performance.

tion) and |Smcq ∩ Sopen| = ∅. We then sample hidden
(z) and observed (y) variables from Bernoulli distributions
parametrized by (2) and (3) respectively.

Figure 3 illustrates the performance of the model as a func-
tion of the expected relative competency of the students
(E[s − q]). We compare the performance of our model to
a simple majority baseline (i.e., label the answer as cor-
rect if the majority of the students select it). As expected,
the majority baseline works best when the relative compe-
tency of the class is high (since most students will correctly
identify the correct answers). The performance degrades
significantly in the regime where the relative competency
is negative (i.e., most students are expected to answer the
questions incorrectly). Observe that the model is able to
maintain a significant performance margin (>10%) over
the baseline even in the regime of low relative competency.

6. Real-World Experiments
We emulate a classroom setting on the Amazon Mechan-
ical Turk platform by soliciting Mechanical Turk workers
to participate in a reading comprehension task. The study
was conducted in two separate phases with a different set
of workers in each: (i) the open-response task and (ii)
the multiple choice task. In each task, a worker was pre-
sented with an article1, followed by a set of 15 questions.
In the open-response task, the questions were displayed in
an open-response format, and the workers were asked to
type in their response. In the multiple choice task, the same
15 questions were presented in a multiple-choice format,

1Unit 7.2 (Language) from the OpenStax Psychology textbook
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Figure 3. Accuracy in predicting the correct answers on synthetic
data, as a function of the average relative competency in the class-
room (measured in the multiples of standard deviations of the dis-
tributions). The simple majority-vote baseline performs compara-
bly with our model for class distributions with large relative com-
petency (since the majority of the students answer most questions
correctly). The model significantly outperforms the baseline in
the regime of lower relative competency (i.e., when most ques-
tions are too difficulty for the majority of the students).

with the choices aggregated from the open-response sub-
missions obtained in the open response task. The answers
collected in the open response task were clustered semi-
automatically before being displayed as choices in the mul-
tiple choice task. The clustering step aggregated identi-
cal answers or answers within a few characters in differ-
ence (for example due to spelling errors), and semantically
identical answers were then grouped manually (e.g., para-
phrases). Clustering answers is a critical pre-processing
step as it ensures that a reasonable number of choices is
shown as part of the multiple choice question, as well as
that the conditional independence assumption discussed in
Section 3 holds. In Section 7, we will outline our ongo-
ing work in extending the model to automatically cluster
open-response submissions based on the multiple choice
response signal alone.

In total, 15 workers participated in the open-response task
and 82 workers participated in the multiple choice task. A
total of 225 open-response submissions were generated in
response to the total of 15 comprehension questions, result-
ing in 101 distinct choices after clustering.

6.1. Results

We evaluate the effectiveness of our algorithm on the data
collected via Amazon’s Mechanical Turk using two perfor-
mance metrics: (i) accuracy in predicting the correctness of
each answer and (ii) quality of the predicted ranking of the

students. We evaluate our algorithm in a semi-supervised
setting where we provide a set of partially labeled items,
i.e., we label correctness for a subset of the answers. This
represents a practical use-case of our framework—instead
of being entirely hands-off, an instructor may choose to
manually grade a subset of the students’ answers to im-
prove the performance of automatic inference. We evaluate
two versions of our model: EM +open and EM -open in
addition to the majority baseline described in Section 5:

• EM +open: The full model as described in Section 3
and Section 4.

• EM -open: A subset of the EM +open model lack-
ing the open-response component described in Sec-
tion 3.2. In other words, during inference the model
does not leverage any information about the ability of
the answer generator, and relies entirely on the mul-
tiple choice responses to infer the correctness of the
answers.

6.1.1. PREDICTING ANSWER CORRECTNESS

Figure 5 depicts accuracy as function of the amount of la-
beled data (accuracy was computed with respect to a gold-
standard annotation of correctness for each answer, per-
formed by one of the authors of the paper). From it we
conclude that (i) the full model (EM +open) significantly
outperforms both the majority baseline and EM -open, (ii)
the EM +open performs very well without any labeled data
(≈ 86% accuracy), (iii) adding labeled data improves per-
formance, and (iv) the open-response component of the
model (one that is lacking in the EM -open model) is crit-
ical in significantly boosting performance, i.e., incorporat-
ing information about the answer creator is valuable in in-
ferring the correctness of each answer.

Initialization: We also note that the initialization heuristic
suggested in Section 4 is critical to achieving competitive
performance in the regime of little to no labeled data (Fig-
ure 6). The performance of the model drops significantly
below the majority baseline when a random initialization is
used in place of the suggested heuristic.

6.1.2. PREDICTING STUDENT RANKING

Although predicting the correctness of each answer is it-
self a valuable intermediate output, a motivating use-case
of our framework is to assess the students’ competency. A
ranking of the students by their expertise is one example
of summative assessment, and may be valuable in identi-
fying students that excel or are in need of additional help.
We evaluate the quality of the rankings produced by our
model in the following way: (i) use the gold-standard an-
notation for the correctness of each answer to fit a standard
Rasch model, identifying the abilities sgold of each student
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(a) open response task (b) multiple choice task

Figure 4. Screenshot of a segment from each of the two Mechanical Turk tasks. Workers are required to provide an open response
answer to each question in the open response task, and select (click) all answers that apply in the multiple choice task. The choices in
the multiple choice task are aggregated from the open-response submission of other workers as part of the open-response task.

(both in Sopen and Smcq), (ii) obtain the ability parameters
using our model (EM +open and EM -open) (trained with
a varying amount of labeled data) and (iii) rank the students
according to each set of parameters and compute rank cor-
relation. We use Kendall-Tau as a metric of rank correla-
tion. Kendall Tau returns a quantity in the range [−1,+1],
where +1 indicates perfect correlation (every pair of stu-
dents in both rankings are in a consistent order), −1 when
the rankings are inverted, and 0 when the rankings are not
correlated.

Figure 7 and Figure 8 depict rank correlation as a func-
tion of the amount of labeled answers for the students in
sets Sopen (workers in the open response task) and Smcq
(workers in the multiple choice task) respectively. We ob-
serve that (i) incorporating partially labeled set of answers
improves rank correlation, (ii) the EM +open model per-
forms superior to or on par with the majority baseline (note
that EM -open is not relevant when ranking the students in
the Sopen set).

6.1.3. EFFECT OF CLASSROOM SIZE

In a practical setting, it is important to consider the effect of
classroom size on the quality of the inferred parameters. In-
tuitively, we expect that increasing the number of students
answering multiple choice questions |Smcq| will improve
performance (accuracy and rank correlation). Figure 9 de-
picts accuracy as a function of |Smcq| (number of students
that answer multiple choice questions), for two conditions
based on the amount of partially-labeled answers available.
As expected, we observe that the performance of the model
(EM +open) increases when more students participate in
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Figure 5. Accuracy in predicting the correct answers in the dataset
collected on Mechanical Turk. The model that incorporates both
the open-response and multiple choice components (EM +open)
significantly outperforms the model that only incorporates the
multiple choice component (EM -open) and a simple majority-
vote baseline.

answering MCQs, and the gain becomes more pronounced
with a greater number of labeled answers.

7. Ongoing work: automatic answer
clustering

As we noted in Section 3, in a realistic setting students are
likely to submit redundant open-response answers, a signif-
icant consequence of which is the violation of conditional
independence that is assumed in the existing model. A
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Figure 6. Accuracy in predicting the correct answers in the dataset
collected on Mechanical Turk for the model initialized with the
heuristic described in Section 4 (EM +open) and the model ini-
tialized randomly (EM +open (rand init)). Good initialization
significantly improves performance, especially in the regime of
little to no partially labeled data.
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Figure 7. Rank correlation (kendall-tau) for students submitting
open-response answers (Sopen) between the model-inferred rank-
ing (EM +open) and the ranking obtained using the gold-standard
correctness labels for each answer (via the Rasch model). The
model generates high quality rankings with little to no labeled
data, significantly outperforming the majority baseline where stu-
dents are ranked using the parameters obtained from the Rasch
model, but where the correctness of each answer is obtained via a
majority vote).
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Figure 8. Rank correlation (kendall-tau) for students submitting
multiple choice answers (Smcq) between the model-inferred rank-
ing (EM +open and EM -open) and the ranking obtained us-
ing the gold-standard correctness labels for each answer (via the
Rasch model). In contrast to the rank correlation for students sub-
mitting open-response answers (Figure 7), the rank correlation for
multiple choice students is lower.

principled way of identifying related answers and grouping
those answers under into a single choice, as a byproduct,
would make grading more efficient.

In practice, we expect that the number of truly original an-
swers to a question to be significantly smaller than the num-
ber of individual students who answer the question. An-
swers between students, however, might vary in their phras-
ing or surface-realization (e.g., simplified vs. unsimplified
math expression, short-answer paraphrases, equivalent dia-
grams drawn in different ways, etc). It is, therefore, natural
to think of answer creation from the perspective of a con-
ditional mixture distribution over a smaller set of “latent
answers,” where for every answer, the student with a cer-
tain probability either contributes a variant of an existing
answer or an original answer. The Chinese restaurant pro-
cess (CRP) is one such conditional distribution over “latent
answers,” with a property that the number of latent answers
(clusters) grows logarithmically with the number of obser-
vations. This is appealing in our setting where as the num-
ber of submitted answers increases, the number of original
answers is also expected to grow, but at a diminishing rate
(i.e., after many contributions, most submissions will be a
variant of an existing answer, rather than an original an-
swer).

We are developing a model that is able to identify the latent
clusters of answers based entirely on the pattern of mul-
tiple choice responses (“clickthrough”), i.e., without con-
sidering the content of the answers (as done in (Basu et al.,
2013; Brooks et al., 2014; Lan et al., 2015). This makes the
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Figure 9. Accuracy in predicting the correct answers in the dataset collected on Mechanical Turk as a function of the number of students
answering multiple choice questions (|Smcq|). More students answering multiple choice questions improves the performance of the
model (EM +open) in relation to the majority baseline.

approach versatile in its application to any domain, e.g.,
clustering images, math or language. The model is able
to identify answer clusters by relying on the observation
of choices that tend to get selected together. We leave a
detailed description and analysis of this model for future
work. In Figure 10, we illustrate an example set of answers
clustered using this model (experiments performed on Me-
chanical Turk).

8. Conclusion
In this work, we have developed a novel framework
for joint grading and assessment (JAG), which—as we
believe—offers a powerful alternative to classical peer-
grading. The advantage of the proposed JAG framework
over traditional peer-grading is that it naturally fuses test-
taking and grading into a unified, streamlined process.
More importantly, JAG opens the door to a natural way
to automatically cluster open-response submissions—a key
challenge towards the long-standing goal of scaling assess-
ment to large-scale classrooms.
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