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Abstract
We propose a novel approach for inferring the
individualized causal effects of a treatment (in-
tervention) from observational data. Our ap-
proach conceptualizes causal inference as a mul-
titask learning problem; we model a subject’s
potential outcomes using a deep multitask net-
work with a set of shared layers among the fac-
tual and counterfactual outcomes, and a set of
outcome-specific layers. The impact of selec-
tion bias in the observational data is alleviated
via a propensity-dropout regularization scheme,
in which the network is thinned for every train-
ing example via a dropout probability that de-
pends on the associated propensity score. The
network is trained in alternating phases, where
in each phase we use the training examples of
one of the two potential outcomes (treated and
control populations) to update the weights of the
shared layers and the respective outcome-specific
layers. Experiments conducted on data based on
a real-world observational study show that our al-
gorithm outperforms the state-of-the-art.

1. Introduction
The problem of inferring individualized treatment effects
from observational datasets is a fundamental problem in
many domains such as precision medicine (Shalit et al.,
2017), econometrics (Abadie & Imbens, 2016), social sci-
ences (Athey & Imbens, 2016), and computational adver-
tising (Bottou et al., 2013). A lot of attention has been re-
cently devoted to this problem due to the recent availability
of electronic health record (EHR) data in most of the hos-
pitals in the US (Charles et al., 2015), which paved the way
for using machine learning to estimate the individual-level
causal effects of treatments from observational EHR data
as an alternative to the expensive clinical trials.
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A typical observational dataset comprises a subject’s fea-
tures, a treatment assignment indicator (i.e. whether the
subject received the treatment), and a “factual outcome”
corresponding to the subject’s response. Estimating the
effect of a treatment for any given subject requires infer-
ring her “counterfactual outcome”, i.e. her response had
she experienced a different treatment assignment. Classi-
cal works have focused on estimating “average” treatment
effects through variants of propensity score matching (Ru-
bin, 2011; Austin, 2011; Abadie & Imbens, 2016; Rosen-
baum & Rubin, 1983; Rubin, 1973). More recent works
tackled the problem of estimating “individualized” treat-
ment effects using representation learning (Johansson et al.,
2016; Shalit et al., 2017), Bayesian inference (Hill, 2012),
and standard supervised learning (Wager & Athey, 2015).

In this paper, we propose a novel approach for individual-
level causal inference that casts the problem in a multitask
learning framework. In particular, we model a subject’s po-
tential (factual and counterfactual) outcomes using a deep
multitask network with a set of layers that are shared across
the two outcomes, and a set of idiosyncratic layers for each
outcome (see Fig. 1). We handle selection bias in the ob-
servational data via a novel propensity-dropout regulariza-
tion scheme, in which the network is thinned for every sub-
ject via a dropout probability that depends on the subject’s
propensity score. Our model can provide individualized
measures of uncertainty in the estimated treatment effect
by applying Monte Carlo propensity-dropout at inference
time (Gal & Ghahramani, 2016).

Learning is carried out through an alternate training ap-
proach in which we divided the observational data into
a “treated batch” and a “control batch”, and then update
the weights of the shared and idiosyncratic layers for each
batch separately in an alternating fashion. We conclude the
paper by conducting a set of experiments on data based on a
real-world observational study showing that our algorithm
outperforms the state-of-the-art.

2. Problem Formulation
Throughout this paper, we adopt Rubin’s potential out-
comes model (Rubin, 2011; 1973; Rosenbaum & Rubin,
1983). That is, we consider a population of subjects where
each subject i is associated with a d-dimensional feature
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Figure 1. Depiction of the network architecture for our model with Lp = Ls = Li,0 = Li,1 = 2.

Xi ∈ X , and two potential outcomes Y
(1)
i , Y

(0)
i ∈ R

that are drawn from a distribution (Y
(1)
i , Y

(0)
i )|Xi = x ∼

P(.|Xi = x). The individualized treatment effect for a sub-
ject i with a feature Xi = x is defined as

T (x) = E[Y (1)
i − Y

(0)
i |Xi = x]. (1)

Our main goal is to estimate the function T (x) from an ob-
servational datasetD comprising n independent samples of
the tuple {Xi,Wi, Y

(Wi)
i }, where Y

(Wi)
i and Y

(1−Wi)
i are

the factual and the counterfactual outcomes, respectively,
and Wi ∈ {0, 1} is a treatment assignment indicator that
indicates whether or not subject i has received the treat-
ment. Treatment assignments are random variables that de-
pend on the subjects’ features, i.e. Wi ⊥̸⊥ Xi. The quan-
tity p(x) = P(Wi = 1|Xi = x) is known as the propen-
sity score of subject i (Rosenbaum & Rubin, 1983; Rubin,
1973), and it reflects the underlying policy for assigning the
treatment to subjects.

3. Model Description
Most previous works adopted a direct modeling approach
for estimating T (x) in which a single-output regression
model f(., .) : X × {0, 1} → R that treats the treatment
assignment Wi ∈ {0, 1} as an input feature is used to es-
timate the two potential outcomes, i.e. T̃ (x) = f(x, 1) −
f(x, 0) (Shalit et al., 2017; Wager & Athey, 2015; Xu et al.,
2016; Hill, 2012; Johansson et al., 2016). Such a modeling
approach clearly limits the interaction between the treat-
ment assignment and the subjects’ features, especially in
high dimensional feature spaces, which can lead to seri-
ous consequences in settings where the response surfaces
E[Y (1)

i |Xi = x] and E[Y (0)
i |Xi = x] have drastically dif-

ferent properties (i.e. different relevant features and differ-
ent nature for the interactions among the covariates). An-
other less popular modeling approach is the “virtual twin”

approach, which simply fits a separate regression model
for each of the treated and control populations (Lu et al.,
2017). Such an approach sacrifices statistical efficiency for
the sake of the modeling flexibility ensured by fitting sepa-
rate models for the two potential outcomes. In the follow-
ing Subsections, we propose a novel approach that ensures
both modeling flexibility and statistical efficiency, and in
addition, is capable of dealing with selection bias.

3.1. Multitask Networks

We propose a neural network model for estimating the indi-
vidualized treatment effect T (x) by learning a shared rep-
resentation for the two potential outcomes. Our model, de-
picted in Fig. 1, comprises a propensity network (right)
and a potential outcomes network (left). The propensity
network is a standard feed-forward network with Lp layers
and h

(l)
p hidden units in the lth layer, and is trained sepa-

rately to estimate the propensity score p(x) via the samples
(Xi,Wi) in D. The potential outcomes network is a mul-
titask network (Collobert & Weston, 2008) that comprises
Ls shared layers (with h

(l)
s hidden units in the lth shared

layer), and Li,j idiosyncratic layers (with h
(l)
i,j hidden units

in the lth layer) for potential outcome j ∈ {0, 1}.

The potential outcomes network approaches the problem
of learning the two response surfaces E[Y (1)

i |Xi = x] and
E[Y (0)

i |Xi = x] via a multitask learning framework. That
is, we view the potential outcomes as two separate, but re-
lated, learning tasks. The observational dataset D is thus
viewed as comprising two batches of task-specific data: a
treated batch D(1) = {i ∈ D : Wi = 1} comprising all
treated subjects, and a control batch D(0) = {i ∈ D :
Wi = 0} comprising all untreated subjects. The treatment
assignment Wi is viewed as equivalent to the task index in
conventional multitask learning. The shared layers in the
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potential outcomes network ensure statistical efficiency as
they use the data in bothD(0) andD(1) to capture the “com-
monality” between the two learning tasks. The idiosyn-
cratic layers for task (outcome) j ensure modeling flexibil-
ity as they only use the data in D(j) to capture the pecu-
liarities of the response surface E[Y (j)

i |Xi = x]. Since
the feature distributions in D(0) and D(1) are different (due
to the selection bias), we use the outputs of the propensity
network to regularize the potential outcomes network.

3.2. Propensity-Dropout

In order to ameliorate the impact of selection bias, we use
the outputs of the propensity network to regularize the po-
tential outcomes network. We do so through a dropout
scheme that we call propensity-dropout. In propensity-
dropout, the dropout procedure is applied in such a way
that it assigns “simple models” to subjects with very high
or very low propensity scores (p(x) close to 0 or 1), and
more “complex models” to subjects with balanced propen-
sity scores (p(x) close to 0.5). That is, we use a different
dropout probability for each training example depending
on the associated score: the dropout probability is higher
for subjects with features that belong in a region of poor
treatment assignment overlap in the feature space. We im-
plement the propensity-dropout by using the following for-
mula for the dropout probability:

Dropout Probability(x) = 1− γ

2
− 1

2
H(p̃(x)), (2)

where 0 ≤ γ ≤ 1 is an offset hyper-parameter (which we
typically set to 1), H(p) = −p log(p)−(1−p) log(1−p) is
the Shannon entropy, and p̃ is the output of the propensity
network for an input x. Thus, when the propensity score is
0 or 1, the dropout probability is equal to 1 − γ

2 , whereas
when the propensity score is 0.5, the dropout probability
is equal to 1

2 −
γ
2 . Propensity-dropout is simply a feature-

dependent dropout scheme that imposes larger penalties on
training examples with “bad” propensity scores, and hence
prevents hidden units from co-adapting with “unreliable”
training examples, which allows the learned potential out-
comes network to generalize well to the actual feature dis-
tribution. The idea of propensity-dropout can be thought of
as the conceptual analog of propensity-weighting (Abadie
& Imbens, 2016) applied for conventional dropout net-
works (Srivastava et al., 2014). We dub our potential out-
comes model a deep counterfactual network (DCN), and
we use the acronym DCN-PD to refer to a DCN with
propensity-dropout regularization. Since our model cap-
tures both the propensity scores and the outcomes, then it
is a doubly-robust model (Dudı́k et al., 2014; 2011).

An important feature of a DCN-PD is its ability to asso-
ciate its estimate T̃ (x) with a pointwise measure of con-
fidence, which is a crucially important quantity in applica-

tions related to precision medicine (Athey & Imbens, 2016;
Wager & Athey, 2015). This is achieved at inference time
via a Monte Carlo propensity-dropout scheme in which we
draw samples of T̃ (x) from our model (Gal & Ghahramani,
2016). Given a subject’s feature x, a sample of T̃ (x) can
be drawn from a DCN-PD as follows:

p̃(x) = f(. . .f((w(1)
p )T x). . .),

r(l)s , r
(l)
i,0, r

(l)
i,1 ∼ Bernoulli(1− γ/2−H(p̃(x))/2),

s̃(x) = f(. . . f(r(1)s ⊙ (w(1)
s )T x) . . .),

Ỹ (1) = f(. . . f(r
(1)
i,1 ⊙ (w

(1)
i,1 )

T s̃(x)). . .),

Ỹ (0) = f(. . . f(r
(1)
i,0 ⊙ (w

(1)
i,0 )

T s̃(x)). . .),

T̃ = Ỹ (1) − Ỹ (0),

where w(l)
p ,w

(l)
s ,w

(l)
i,0 and w

(l)
i,1 are the weight matrices for

the lth layer of the propensity, shared and idiosyncratic
layers, respectively, r(l)s , r

(l)
i,0 and r

(l)
i,1 are dropout masking

vectors, and f(.) is any activation function.

3.3. Training the Model

We train the network in alternating phases, where in each
phase, we either use the treated batch D(1) or the control
batchD(0) to update the weights of the shared and idiosyn-
cratic layers. As shown in Algorithm 1, we run this pro-
cess over a course of K epochs; the shared layers are up-
dated in all epochs, wheres only one set of idiosyncratic
layers is updated in any given epoch. Dropout is applied
as explained in the previous Subsection with γ = 1. As
visualized in Fig. 2, we can think of alternate training as
deterministically dropping all units of one of the idiosyn-
cratic layers in every epoch. We update the weights of all

Algorithm 1 Training a DCN-PD
Input: Dataset D, number of epochs K
Output: DCN-PD parameters (w(l)

s ,w
(l)
i,1,w

(l)
i,0)

for k = 1, k ← k + 1, k ≤ K do
if k is even then
(w

(l)
s ,w

(l)
i,1)← Adam(D(1),w

(l)
s ,w

(l)
i,1)

else
(w

(l)
s ,w

(l)
i,0)← Adam(D(0),w

(l)
s ,w

(l)
i,0)

end if
end for

layers in each epoch using the Adam optimizer with default
settings and Xavier initialization (Kingma & Ba, 2014).

4. Experiments
The ground truth counterfactual outcomes are never avail-
able in an observational dataset, which hinders the eval-
uation of causal inference algorithms on real-world data.
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Figure 2. Visualization of the training algorithm.
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Figure 3. Performance gain achieved by propensity-dropout.

Following (Hill, 2012; Johansson et al., 2016), we adopt a
semi-synthetic experimental setup in which the covariates
and treatment assignments are real but outcomes are simu-
lated. We conduct our experiments using the Infant Health
and Development Program (IHDP) dataset introduced in
(Hill, 2012). (The IHDP is a social program applied to
premature infants aiming at enhancing their IQ scores at
the age of three.) The dataset comprises 747 subjects (139
treated and 608 control), with 25 covariates associated with
each subject. Outcomes are simulated based on the data
generation process designated as the “Response Surface B”
setting in (Hill, 2012).

We evaluate the performance of a DCN-PD model with
Ls = 2, Li,1 = Li,2 = 1 (a total of 4 layers), and with 200
hidden units in all layers (ReLU activation), in terms of the
mean squared error (MSE) of the estimated treatment ef-
fect. We divide the IHDP data into a training set (80%) and
an out-of-sample testing set (20%), and then evaluate the
MSE on the testing sample in 100 different experiments,
were in each experiment a new realization for the outcomes
is drawn from the data generation model in (Hill, 2012).
(We implemented the DCN-PD model in a Tensorflow
environment.) The propensity network is implemented as a
standard 2-layer feed-forward network with 25 hidden lay-
ers, and is trained using the Adam optimizer.

The marginal benefits conferred by the propensity-dropout
regularization scheme are illustrated in Fig. 3, which de-
picts box plots for the MSEs achieved by the DCN-PD
model, and two DCN models with conventional dropout
(dropout probabilities of 0.2 and 0.5 for all layers and all
training examples). As we can see in Fig. 3, the DCN-
PD model offers a significant improvement over the two
DCN models for which the dropout probabilities are uni-
form over all the training examples. This result implies
that the DCN-PD model generalizes better to the true fea-
ture distribution when trained with a biased dataset as com-
pared to DCN with regular dropout, which suggests that
propensity-dropout is a good regularizer for causal infer-
ence.

Table 1. Performance on the IHDP dataset.
Algorithm MSE

k-NN 5.30 ±0.30
Causal Forest 3.86 ±0.20

BART 3.50 ±0.20
BNN 2.45 ±0.10
NN-4 2.88 ±0.10
DCN 2.58 ±0.06

DCN-PD 2.05 ±0.03

In order to assess the marginal performance gain achieved
by the proposed multitask model when combined with
the propensity-dropout scheme, we compare the perfor-
mance of DCN-PD with other state-of-the-art models in
Table 1. In particular, we compare the MSE (averaged
over 100 experiments) achieved by the DCN-PD with those
achieved by k nearest neighbor matching (k-NN), Causal
Forests with double-sample trees (Wager & Athey, 2015),
Bayesian Additive Regression Trees (BART) (Chipman
et al., 2010; Hill, 2012), and Balancing neural networks
(BNN) (Johansson et al., 2016). (For BNNs, we use 4 lay-
ers with 200 hidden units per layer to ensure a fair compar-
ison.) We also provide a direct comparison with a standard
single-output feed-forward neural network (with 4-layers
and 200 hidden units per layer) that treats the treatment
assignment as an input feature (NN-4), and a DCN with
a standard dropout with a probability of 0.2. As we can
see in Table 1, DCN-PD outperforms all the other models,
with the BNN model being the most competitive. (BNN is
a strong benchmark as it handles the selection by learning a
“balanced representation” for the input features (Johansson
et al., 2016).) DCN-PDs significantly outperforms the NN-
4 benchmark, which suggests that the multitask modeling
framework is a more appropriate conception of causal in-
ference compared to direct modeling by assuming that the
treatment assignment is an input feature.
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