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Abstract

We develop ForecastICU: a prognostic decision
support system that monitors hospitalized pa-
tients and prompts alarms for intensive care unit
(ICU) admissions. ForecastICU is first trained in
an offline stage by constructing a Bayesian be-
lief system that corresponds to its belief about
how trajectories of physiological data streams of
the patient map to a clinical status. After that,
ForecastICU monitors a new patient in real-time
by observing her physiological data stream, up-
dating its belief about her status over time, and
prompting an alarm whenever its belief process
hits a predefined threshold (confidence). Using a
real-world dataset obtained from UCLA Ronald
Reagan Medical Center, we show that Forecas-
tICU can predict ICU admissions 9 hours be-
fore a physician’s decision (for a sensitivity of
40% and a precision of 50%). Also, ForecastICU
performs consistently better than other state-of-
the-art machine learning algorithms in terms of
sensitivity, precision, and timeliness: it can pre-
dict ICU admissions 3 hours earlier, and offers a
7.8% gain in sensitivity and a 5.1% gain in pre-
cision compared to the best state-of-the-art algo-
rithm. Moreover, ForecastICU offers an area un-
der curve (AUC) gain of 22.3% compared to the
Rothman index, which is the currently deployed
technology in most hospital wards.
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1. Introduction
Intensive Care Unit (ICU) admission for hospitalized pa-
tients is a vital and delay-critical decision. The timing of
transfer to the ICU is an important determinant of a pa-
tient’s outcomes. Various medical studies have demon-
strated that delayed identification of clinical deterioration,
leading to delayed admission to the ICU and delayed thera-
peutic intervention, results in increased morbidity and mor-
tality (Liu et al., 2012) (Young et al., 2003). This illustrates
the urgency to develop automated prognostic decision sup-
port systems that alert the medical staff of impending clini-
cal deterioration, enabling clinicians to intervene at an ear-
lier time, thereby preventing an arrest or reducing the need
for ICU transfer.

An automated system for ICU admission prediction is en-
visioned to operate in the following manner. The system is
fed with high-dimensional physiological data streams that
belong to a monitored patient and tries to infer whether the
patient is clinically deteriorating or not in a timely man-
ner, i.e. earlier than the time at which a physician would
normally decide to impend an ICU transfer for that patient.
The system can take advantage of the available electronic
health record (EHR) data to learn the trends in the phys-
iological data streams associated with patients who previ-
ously got discharged or admitted to the ICU (Churpek et al.,
2014).

Designing a system that carries out the steps described
above is associated with many practical and technical chal-
lenges. First, while data streams for previously hospitalized
patients are recorded in the EHR, the clinical status of such
patients upon their hospitalization differs from one patient
to another; thus, learning from the labeled patient exam-
ples is not straightforward as the examples themselves en-
tail some ambiguity. Second, not all the data streams are
relevant to the ICU admission decision, and not all of the
different streams are sampled at the same rate, i.e. some
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of the data samples are missing from some streams. Fi-
nally, the patients are monitored only for a finite amount
of time, and the time-series observed by the system would
eventually stop; thus the system should issue the prediction
within a reasonable amount of time ahead of an unknown
deadline, i.e. the actual time when physicians decide to
admit the patient to ICU or discharge the patient.

In this paper, we develop ForecastICU, a prognostic de-
cision support system that carries out timely predictions
of ICU admissions for hospitalized patients. ForecastICU
adopts a Bayesian approach for issuing predictions; by ap-
plying density estimation using the data streams of previ-
ously hospitalized patients, ForecastICU constructs a belief
system that corresponds to its belief about the patient’s clin-
ical status as a function of time. ForecastICU approaches
a new patient by observing her physiological data stream,
updates its belief about the patient over time as it observes
more samples from her physiological stream, and prompts
an ICU admission alarm whenever the system’s belief pro-
cess hits a predefined threshold that quantifies the system’s
confidence in the issued alarms.

Our approach hinges on the idea that predicting ICU admis-
sions from temporal physiological streams can be viewed
as an optimal stopping problem; or in other words, it
is equivalent to learning an unknown stopping rule of a
stochastic process, i.e. learning how physicians make
ICU admission decisions from the recorded temporal data
streams (realizations of a stochastic process) of previously
hospitalized patients, and hence promptly issuing ICU ad-
mission predictions (alarms) before the stopping times of
these processes (i.e. before the ICU admission decision
that physicians would actually make without ForecastICU).
Technically, ForecastICU approaches the ICU prognosis
problem as an optimal stopping problem with uncertainty
in the initial clinical status and the distribution of the phys-
iological data streams.

We have applied ForecastICU to a real-world dataset ob-
tained from UCLA Ronald Reagan Medical Center. Exper-
iments show that, for a sensitivity of 40% and a precision
of 50%, ForecastICU can predict ICU admissions as early
as 9 hours (on average) before the actual physician’s deci-
sion. Moreover, we show that ForecastICU performs con-
sistently better than other state-of-the-art algorithms for all
ranges of the system’s parameters in terms of sensitivity,
precision, and timeliness: it can predict ICU admissions
3 hours earlier, and offers a 7.8% gain for sensitivity and
5.1% gain for precision with an 8.15% gain for the area
under curve (AUC) compared to the best benchmark algo-
rithm. Such gains can map to significant reductions in ICU
mortality rates and better resource utilization in hospitals.
Most remarkably, ForecastICU offers significant gains with
respect to state-of-the-art risk assessment technologies: if

achieves a 22.3% AUC gain compared to the Rothman in-
dex, the currently deployed technology in most hospital
wards. This gain translates to 3 times less false alarms is-
sued by ForecastICU as compared to those issued by the
Rothman index at a sensitivity of 50%; hence, ForecastICU
promises significant improvements in alarm credibility and
clinical resource management if deployed in hospital wards
in replacement of current technologies.

2. Related works
2.1. ICU prognosis

Methods for supporting prognostic clinical decisions have
been investigated both in the medical literature and in the
data mining literature. Several clinical studies have investi-
gated the effectiveness of the usage of early warning scores
(EWS) for the detection of patient deterioration (Bruijns
et al., 2013). Such methods identify hospitalized patients
who reach a certain “trigger” threshold (Churpek et al.,
2014) (Prytherch et al., 2010), and consequently alarms
the clinicians to impend an ICU transfer for those patients.
However, since EWS-based methods respond to triggering
events that may not signal a truly deteriorating patient, they
suffer from high rates of false alarms (70-95%) (Tsien &
Fackler, 1997), which results in alarm fatigue and inap-
propriate resource utilization. Recent systematic reviews
have demonstrated that EWS-based alarms only marginally
improve outcomes while substantially increasing physician
and nursing workloads (Alam et al., 2014).

Prognostic decision support has been investigated in the
data mining literature as well. In (Steyerberg et al., 2001),
(Seker et al., 2003), and (Steyerberg et al., 2000), simple
regression models were developed to carry out risk assess-
ment for developing diseases like breast and prostate can-
cer based on the patients’ features. However, such pre-
dictive models deal with scenarios where predictions span
years rather than hours, i.e. the delay-sensitivity of such
models is much coarser and less critical. Prognostic deci-
sion support for delay-critical settings has been addressed
in the context of ICU environments in (Sun et al., 2010).
(Neti et al., 2010) and (Zhang et al., 2012). However, the
objective in these models was to predict the trajectory of
physiological data streams using previously hospitalized
patients’ synchronized data streams. Unlike ForecastICU,
the models therein have developed simple auto-regressive
models to extrapolate incoming data streams, but have not
addressed the problem of timely classification of incoming
patients whose monitored data streams entail an unknown
stopping time, and are not synchronized with the training
data.
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2.2. Time-series Analysis

Predicting ICU admissions based on physiological data
streams is essentially a time-series analysis problem. In this
subsection, we position our work with respect to two dif-
ferent strands of the time-series analysis literature that are
relevant to the ICU prediction problem; namely, time-series
classification and temporal physiological stream modeling.

Time-series classification: Most of the state-of-the-art
time-series classification algorithms rely on clustering the
time-series in the training data using a distance metric and
then associating the new incoming series with one of the
learned clusters (Xing et al., 2012; Wei & Keogh, 2006;
Buza et al., 2010; Hüsken & Stagge, 2003; Van Heeswijk
et al., 2009). Our work departs from this literature
in the following aspects. First, unlike the conventional
time-series classification problem, the physiological data
streams in our problem stop at some (random) point of time
(when the patient is discharged or admitted to ICU). This
requires both introducing new design objectives, i.e. time-
liness, and accounting for the stochastic deadline for the
classification task (i.e. clinical deterioration and the clini-
cians’ ICU admission decisions). Second, our training data
comprises data streams for patients who were hospitalized
with different clinical statuses; this requires learning how
to “align” the training data to construct a functioning time-
series model. Both issues were not addressed by the previ-
ous time-series classification algorithms, which operate on
synchronized and fixed-length streams.

Temporal physiological stream modeling: Previous at-
tempts have been made to model physiological data
streams, mainly using Gaussian Processes (GP) in (Clifton
et al., 2012), (Ghassemi et al., 2015)(Durichen et al., 2015),
and (Pimentel et al., 2013). In all these works, the focus is
to predict the values of the physiological data via GP re-
gression (e.g. estimating cerebrovascular pressure reactiv-
ity in (Ghassemi et al., 2015)), but not to make timely deci-
sions. Moreover, such models have been limited to the us-
age of the squared-exponential covariance kernel (e.g. see
eq. (2) in (Ghassemi et al., 2015)), which can only cap-
tures stationary physiological; for modeling the streams of
clinically deteriorating patients, i.e. patients who need ICU
admission, we need to consider non-stationary models as
well.

3. Theoretical foundations for ForecastICU
In this section, we provide a formal model for an abstract
forecaster that aims at learning to predict ICU admissions.
The theoretical analysis of such a forecaster will serve as
the foundation for the practical forecaster implementation,
the ForecastICU algorithm, which we will present in the
next section.

3.1. Mathematical model

Given a probability space (Ω,F ,P), and a measurable
space (S,Ψ), a stochastic process XT comprises a col-
lection of S-valued random variables on Ω indexed by a
totally ordered set T . That is, XT = {Xt}t∈T , where ev-
ery Xt is an S-valued random variable on Ω. Given the
probability space (Ω,F ,P), a filtration {Ft, t ∈ T } is a
(weakly) increasing collection of σ-algebras on Ω. The fil-
tration Ft is always bounded above by F , i.e. Ft ⊆ F .
The stopping time τs of the process XT is a random vari-
able τs : Ω → I, where I is an ordered index set, e.g.
I = [0,∞). A stopping time τs satisfies that {ω ∈ Ω :
τs(ω) ≤ t} ∈ Ft,∀t ∈ I. The stopping time of a process
is decided by some arbitrary stopping rule. The hitting time
τh of a process XT is the first time it hits a certain value,
i.e. τh(η) = inf{t ∈ R |Xt ≥ η }.

We consider every patient’s physiological data stream as a
stochastic process with respect to the space (Ω,F ,P). For
instance, the blood pressure measurements stream can be
viewed as a stochastic process XT that is observed starting
from the time the patient was hospitalized. The stopping
time τs of such a process is the time at which the physician
takes a decision regarding the patient: the decision can be
either discharging the patient or admitting her to the ICU;
in both cases the patient is not monitored further. The stop-
ping rule that determines such a stopping time is simply
the physician’s criteria for ICU admission or discharging
of hospitalized patients, which depends on how physicians
interpret the physiological data stream.

Patients belong to two categories: stable patients who
should be discharged, and clinically deteriorating patients
who should be admitted to the ICU. We assume that the
null hypothesis H0 is the hypothesis that the patient is sta-
ble, whereas the alternative hypothesis H1 is the hypoth-
esis that the patient is clinically deteriorating. Depending
on whether the true hypothesis is H0 or H1, a physiologi-
cal data stream XT will have a different joint distribution
for its data samples with respect to the probability space
(Ω,F ,P). We denote the families of finite-dimensional
distributions of the physiological streams under the null
and alternative hypotheses as P0 and P1 respectively, i.e.
{Xτ}tτ=0 |Hm ∼ Pt

m,m ∈ {0, 1}, and Pm is the family of
distributions Pt

m for all admissible values of t (e.g. maxi-
mum time a patient can stay hospitalized).

3.2. The Forecaster

3.2.1. FORMAL DEFINITION

We formally define the forecaster as a belief system that
carries out the mapping Bt : (Ft,Q0,Q1) → [0, 1], i.e.
a map from a filtration to a belief about the monitored pa-
tient being clinically deteriorating, where Q0 and Q1 are



ForecastICU: A Prognostic Decision Support System for Timely Prediction of Intensive Care Unit Admission

estimates of the families of finite-dimensional distributions
P0 and P1. We say that the belief system is truthful if
Qm = Pm,m ∈ {0, 1}, and we say that it is non-truthful
otherwise, i.e. the estimated densities Qm of a non-truthful
belief system have a non-zero distance from Pm with re-
spect to any probability metric. The function Bt (which
we will also write as Bt (H1 |Ft )) is denoted as the belief
function, whereas the sequence {Bt}t∈T is called the belief
process. Informally, the forecaster is endowed with some
information about the physiological stream generative pro-
cess, encoded in the distributions Q0 and Q1, and it accu-
mulates information over time as it observes the monitored
patient’s physiological streams, and builds a belief about
her clinical status. Intuitively, the accuracy and timeliness
of the forecaster depend on the quality of the estimates Q0

and Q1, and the way the mapping Bt is implemented given
the filtration Ft.

3.2.2. STRUCTURE OF THE FORECASTER

The implementation of the forecaster’s belief system de-
mands two basic modules: a density estimation algorithm
AD, which finds “good” estimates Q0 and Q1 in an of-
fline manner, and a belief function Bt, which updates the
forecaster posterior belief in real-time in response to the in-
formation extracted from the monitored data streams. For-
mally, given that the forecaster has access to a dataset Xref

comprising recorded data streams of N reference patients
in the EHR who are labeled as being admitted to ICU or
discharged, the density estimation algorithms is a mapping
AD : Xref → (Q0,Q1) , and the belief function is a real-
time mapping Bt : (Ft,AD

(
Xref

)
) → [0, 1].

EHR data

X
ref
0 ∼ P0

(N reference patients)

AD
(

X
ref

)

Density estimation algorithm

Bt Bt > η

ICU
alarm

X
ref
1 ∼ P1

Offline stage

Forecaster

Monitored patient
data stream

Belief update
algorithm

Real-time stage

(Qo, Q1)

{Xτ}
t
τ=0

Figure 1. Schematic for a forecaster that learns to issue ICU ad-
mission alarms from the EHR data.

3.2.3. ALARM STRATEGY AND PERFORMANCE

The problem of (timely) predicting ICU admissions can be
thought of as being equivalent to an optimal stopping prob-
lem, or a problem of learning an unknown stopping rule
of a stochastic process. Thus, not only does the forecaster
face uncertainty in the true hypothesis, but also it is uncer-
tain about when will the process stop; the forecaster needs
to figure out the true hypothesis before the process stops
with a reasonable amount of time.

ForecastICU adopts a “threshold type” alarm strategy: it
prompts an alarm for an ICU admission whenever its be-
lief process first crosses a predefined threshold η. Thus,
the optimal stopping time problem boils down to finding
the optimal threshold that the belief process should hit be-
fore an ICU alarm is issued. Selection of the threshold η is
aimed to maximize a clinical value function that comprises
a set of accuracy and timeliness measures.

Three measures of performance are clinically relevant to
the ICU prognostic setting: timeliness, sensitivity and pre-
cision (Mokart et al., 2013) (Prytherch et al., 2010) (Alam
et al., 2014). Let τs be the stopping time of the patient’s
physiological data stream, and let τh(η) be the hitting time
of the belief process {Bt}t∈N given a threshold η. The sen-
sitivity of the forecaster, which is also known as the true
positive rate (TPR), is given by

TPR =
P (τh(η) < τs |H1 )

P (τh(η) < τs |H1 ) + P (τh(η) > τs |H1 )
, (1)

whereas the precision, which is also known as the positive
predictive value (PPV), is given by

PPV =
P (τh(η) < τs |H1 )

P (τh(η) < τs |H1 ) + P (τh(η) < τs |H0 )
. (2)

Finally, the timeliness of the forecaster Tp(η) is the average
time interval between the hitting time of the belief process
and the stopping time of the physiological data stream for
clinically deteriorating patients, which is formally given by

Tp(η) = E [τs − τh(η) |τh(η) < τs,H1 ] . (3)

The selection of the threshold value η should balance the
trade-off between accuracy (in terms of TPR and PPV) and
timeliness; intuitively, one expects that low threshold val-
ues would lead to more timely but less accurate decisions,
and vice versa. Formally, we define a general clinical re-
ward function g

(
{Xτ}τh(η)τ=0

)
that quantifies the overall

performance in terms of PPV, TPR and Tp as a function of
the alarm strategy η. The ICU prognostic optimal stopping
problem is equivalent to finding an optimal alarm strategy
(a threshold η∗) that maximizes a clinical value function
V (η) as follows

V ∗ = sup
η∈[0,1]

EP

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
, (4)
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where the optimal clinical value function is V ∗ = V (η∗).
Problem (4) is challenging for that P is unknown to the
forecaster, and τs is random. The optimal solution to (4)
would balance the value of information in the physiologi-
cal stream {Xτ}τh(η)τ=0 and the TPR, PPV and Tp which are
reflected in the reward function g. Fig. 1 illustrates the
structure of the forecaster: its offline and real-time compo-
nents, and its alarm strategy.

3.3. Bayesian Learning

The forecaster’s alarm strategy is a threshold strategy on
its belief process. The forecaster builds the belief process
given observed information using a Bayesian learning ap-
proach: it updates its posterior belief in response to new
observations of the physiological data streams as follows

Bt (H1 |Ft ) =
Q1 ({Xτ}tτ=0 |H1 )Q1 (H1)∑

i∈{0,1} Qi ({Xτ}tτ=0 |Hi )Qi (Hi)
,

where {Q(Hm)}m∈{0,1} are the forecaster’s estimates of
the discrete priors. The forecaster cannot compute the op-
timal threshold in (4) since the belief system is generally
non-truthful. Thus, the accuracy and timeliness of the fore-
caster (the value function V (η)) will be affected by the
truthfulness of its belief system. In the following Theorem,
we link the truthfulness of the forecaster’s belief system to
the timeliness and accuracy of the alarm strategy in terms
of the sample complexity. The proof of this Theorem is
given in the Appendix.

Theorem 1 (Probably approximately correct and timely
ICU alarm strategies) For every (ϵ, δ) ∈ [0, 1]2, there
exists a polynomial function N∗(ϵ, δ) = poly( 1δ ,

1
ϵ ) and

a density estimation algorithm AD, such that for every
dataset with N > N∗(ϵ, δ) reference patients, we have that
P (|V (η)− V ∗| < ϵ) ≥ 1−δ, where V ∗ is optimal clinical
value function of a truthful belief system that has access to
the optimal threshold η∗.

Theorem 1 says that one can compute a sample complex-
ity (the number of reference patients) that achieves an ϵ-
optimal clinical value function (compared to an “oracle”
belief system that has access to the true data streams’ distri-
butions), with an arbitrary level of confidence 1−δ. That is,
the ICU prognosis problem using the proposed forecaster
structure is learnable in the “probably approximately cor-
rect and timely” sense. This motivates the construction of
a practical forecaster algorithm in the next section.

4. The ForecastICU Algorithm
Practical implementation of the forecaster is confronted
with several challenges. First, not all the monitored physio-
logical streams are relevant to the ICU prognostic decision.

Second, the data streams are not sampled at the same rate.
Finally, a crucial aspect of the temporal physiological data
is that the data streams of the reference patients are nei-
ther synchronized with each other nor synchronized with
the incoming patients since each patient is hospitalized in a
different clinical status.

As shown in Fig. 1, designing a forecaster entails design-
ing a density estimation algorithm AD(Xref ) and a be-
lief updating procedure. In the following two subsections,
we propose a design for both modules as the two building
blocks of ForecastICU.

4.1. The offline density estimation algorithm AD(Xref )

The algorithm AD(Xref ) takes as an input a dataset Xref

with N reference patient entries, associated with each
patient a set of L recorded physiological data streams,
and retrieves the estimated finite-dimensional distributions
(Q0,Q1). We denote the ith reference patient by Xref

(i) ,

where Xref
(i) is an L×Ki matrix, with Ki being the length

of the longest data stream associated with reference patient
i. We denote the overall hospitalization period of patient i
as TH

(i). The algorithm implements the following four steps:
a- Non-causal alignment of reference patients’ data
streams : Since the reference patients are hospitalized
with different states, ForecastICU needs to align their data
streams prior to applying density estimation. The stopping
time of the data streams usually follows a rational, consis-
tent stopping rule decided by the physicians, and such a rule
serves as a marker for the clinical status of the patient at the
ICU admission time or discharge time. Therefore, Forecas-
tICU aligns the patients’ data streams in a non-causal fash-
ion: it views the stopping times of all streams in the dataset
Xref as the reference time (t = 0) of the corresponding
stochastic processes. We use the notation Xref

(i) (m,n) to
refer to the data sample of the mth data stream at n time
steps ahead of the stopping time (t = 0).
b- Interpolating under-sampled data streams : The
different data streams for the same patient can be sam-
pled with different sampling rates. Thus, the algorithm
AD(Xref ) would encounter missing values at some points
in time when carrying out the joint density estimation
across the features. To reconstruct the missing samples
in under-sampled data streams, we use an interpolation

function h

({
Xref

(i) (m,n)
}K−1

n=0
, Ts

)
: RK×1 × R →

R⌊KTs
TH
(i)

⌋×1, i.e. a function that interpolates samples of a

data stream and retrieves a stream with a sampling period

of Ts instead of
TH
(i)

K . ForecastICU uses cubic spline inter-
polation function that we denote by hspline. We denoted
the interpolated dataset as X̃ref = hspline

(
Xref

)
, where

all the data streams in X̃ref are up-sampled with the sam-
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pling rate of the most frequently sampled data stream.
c- Selecting relevant data streams : ForecastICU ap-
plies correlation feature selection (CFS) algorithm on
the interpolated dataset X̃ref (with minimum-redundancy-
maximum relevance (mRMR) (Yu & Liu, 2003)) to dis-
cover the relevant temporal data streams for forecasting
ICU patients. We denote the data stream selection oper-
ation as Ỹref = CFS

(
X̃ref

)
, where Ỹref is a dataset

with N reference patients, associated with each a set of
R ≤ L data streams, where R is the number of discovered
relevant data streams.
d- Parametric density estimation : We estimate the finite-
dimensional distributions (Q0,Q1) based on the processed
dataset Ỹref as follows. Since the dataset is labeled, we
separate the reference patients into clinically deteriorating
patients with processed data streams Ỹref

1 , and clinically
stable patients with data streams Ỹref

0 . Let N0 and N1 be
the number of entries in Ỹref

0 and Ỹref
1 respectively, and

K0 and K1 be the average lengths of the data streams in
Ỹref

0 and Ỹref
1 respectively. Let (Qt

0,Qt
1) be the joint den-

sity functions of all the data samples for the R data streams
selected by CFS between the (average) hospitalization time
K0 (or K1) and the time instance that is t steps away from
the stopping time. We approximate the finite-dimensional
distributions (Qt

0,Qt
1) as Multi-variate Gaussian distribu-

tions, and fit their mean and covariance parameters, i.e.
Qt

m ∼ N
(
µ̂t
m, Σ̂t

m

)
,m ∈ {0, 1} where

[
µ̂t
m(j)

]R
j=1

=
1

Nm

Nm∑
i=1

Ỹref
(i),m(j, t), (5)

[
Σ̂t

m

]
k,l

=
1

Nm − 1

Nm∑
i=1

Ȳref
(i),m(k, t)Ȳref

(i),m(l, t), (6)

where k, l = 1, . . ., R, and Ȳref
(i),m(k, t) = Ỹref

(i),m(k, t) −
1

Nm

∑Nm

w=1 Ỹ
ref
(w),m(k, t). Thus, the output of AD(Xref )

is a family of estimated finite-dimensional distributions
(Q0,Q1), i.e. a set of Multi-variate Gaussian densities for
different values of the elapsed hospitalization period which
is able to capture temporal correlation. The density esti-
mation algorithm passes the density estimates to the be-
lief function which runs in real-time and applies Bayesian
learning using (Q0,Q1) as priors with which it updates its
posterior beliefs.

4.2. The real-time belief updating algorithm

The belief function of ForecastICU is updated at time t
given a the data stream {Xτ}tτ=to

(or generally, the infor-
mation Ft available at time t) of the incoming patient as
follows Bt (H1 |Ft ) = Q1

(
H1

∣∣∣{Xτ}tτ=to

)
. However,

since ForecastICU faces uncertainty about the current clin-
ical status (unknown the stopping time), the reference time

to of the stream {Xτ}tτ=to
with respect to the estimated

densities (Q0,Q1) is unknown. Therefore, ForecastICU
estimates the belief function as

N1Q1

(
{Xτ}tτ=t1o

|H1, T
∗
1 (t)

)
N0Q0

(
{Xτ}tτ=t0o

|H0, T ∗
0 (t)

)
+N1Q1

(
{Xτ}tτ=t1o

|H1, T ∗
1 (t)

)
where tmo = t−T ∗

m(t)+ 1, and T ∗
m(t) is the ”most likely”

estimate for the time remaining until the stopping time of
the process, which is simply given by

T ∗
m(t) = arg max

τ
Qm

(
{Xk}τk=τ−t+1 |Hm

)
. (7)

The estimates are refined subsequently as additional mea-
surements are observed.
In order to rule out drastic fluctuations and spikes in the
belief function, which may result from a belief system
constructed from a small data set, we apply a smoothing
phase for the belief process via a simple moving average
filter of length W . The smoothed belief function is given
by B̃t = 1

W

∑t
τ=t−W Bτ . ForecastICU prompts an ICU

alarm whenever B̃t exceeds a threshold η. In the following
subsection, we show how the threshold η is set.

4.3. The alarm strategy

ForecastICU follows a threshold-type alarm strategy: it
prompts an ICU alarm whenever the smoothed belief pro-
cess B̃t hits a threshold η. The fundamental trade-off that
ForecastICU balances is the one between the timeliness of a
prediction and its accuracy. We control such a trade-off via
two parameters: the threshold η and the size of the smooth-
ing filter W . In this case, the alarm strategy is defined by a
richer set of parameters (η,W ) rather than being solely de-
termined by η. The threshold η controls to the confidence
in the issued alarms, and W controls the stability of the
belief function’s fluctuations, and hence the system’s sen-
sitivity. In order to select desirable values for η and W , we
define a clinical value function V (η,W ) as follows

V (η,W ) = αTPR(η,W ) + (1− α)Tp(η,W ) (8)

where α ∈ [0, 1] is a parameter that balances the prefer-
ences over timeliness and sensitivity. By setting a con-
straint γ on the system’s precision (which can be deter-
mined by physicians), ForecastICU computes the alarm
strategy by solving the following optimization problem:

max
η,W

V (η,W )

subject to PPV (η,W ) ≥ γ. (9)

In the off-line stage, in which the complexity is less crucial,
the computational complexity is O(N2D3W 3), where N
is the number of patients, D is the number of features, and
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W is the window size. In the real-time stage, the computa-
tional complexity is O(ND2W 2). Therefore, the entire al-
gorithm has cubic polynomial computation complexity re-
garding the number of patients.

5. Experiments
5.1. Data Description

ForecastICU was applied to a population of patients ad-
mitted to UCLA Ronald Reagan Medical Center. The
population considered is fairly homogeneous: most pa-
tients were diagnosed with leukemia, lymphoma, multi-
ple myelomas and other hematologic malignancies. The
majority of the patients were receiving chemotherapy, al-
logeneic stem cell transplantation or autologous stem cell
transplantation. We have chosen this particular popula-
tion of patients for our experiments because these patients
were receiving treatments (according to their diagnosis)
that cause severe immunosuppression during their hospi-
talization, placing them at an extreme risk of developing a
clinical deterioration, which requires ICU admission. This
is extremely important as delays in ICU admission in these
patients are associated with increased mortality and mor-
bidity. (Liu et al., 2012) (Louay Mardini, 2012) (Young
et al., 2003) (Mokart et al., 2013).
The patients’ clinical features comprise 18 temporal physi-
ological data streams which are described in the Appendix.
Modeling these data streams as Gaussian model was vali-
dated by a Kolmogorov-Smirnov goodness-of-fit test (refer
to the supplementary material). Each patient’s data stream
is associated with a binary label: either discharge (DIS)
or ICU Admission (ICU). The total number of patients is
1065, and the number of patients admitted to ICU is 101
(9.48%). The hospitalization period ranges from 4 to 2062
hours (85 days and 22 hours).

5.2. Experiments Setup

We compare the performance of ForecastICU in terms of
timeliness, PPV and TPR with respect to four state-of-the-
art machine learning techniques: logistic regression (LR),
support vector machines with radial based kernel (SVMs),
regularized logistic regression with Lasso (LASSO) and
random forest. The benchmarks operate by sequentially
classifying the ICU patients as additional measurements
are observed over time. Feature values are normalized
by the maximum value of each physiological stream, and
feature selection was applied to the benchmarks as well.
The hyper-parameters of every benchmark was empirically
optimized based on equation (9).

Performance measures were computed via 10-fold strat-
ified cross-validation: we run 10 independent cross-

validations and report the average as the final performance.
Clinicians responsible of ICU admissions in the UCLA
Ronald Regan medical Center from which we extracted the
data indicated that ICU alarms would be most helpful if
they are at least 4 hours earlier than the standard time an
ICU admission decision would be taken by the clinician,
in order to provide sufficient time to safely enact the trans-
fer and to potentially correct the cause of the underlying
clinical deterioration.

5.3. Experiment Results

5.3.1. PERFORMANCE COMPARISONS

ForecastICU consistently outperforms the other bench-
mark algorithms with respect to the PPV for every given
value of the TPR as shown in Fig. 2 and Table 1. For
instance, for a TPR of 50%, ForecastICU achieves a PPV
of 54.7%, which is 5.1% better than the best benchmark
algorithm (random forest). Moreover, given for a PPV
of 40%, Forecast ICU achieves a TPR of 68.1%, which
is 7.8% better than the best benchmark algorithm, with
8.15% gain in terms of the area under curve (AUC) as
well. Note that while for different ranges of TPR and PPV,
the best benchmark algorithm changes, ForecastICU is
consistently outperforming that best benchmark.

Our algorithm offers a consistent improvement in terms of
the rate of “false alarms” and “true alarms” as compared to
the benchmarks; this is crucial in a practical ICU setting as
studies suggest that the clinicans’ response to an alarm is
related to their confidence in the signal, which is directly
related to how often the alarm correctly warns the clinician
of impending danger (Cvach, 2012) (James P Bliss, 2010)
(James P Bliss, 2007). For instance, at a TPR of 50%, Fore-
casetICU is the only algorithm among those being com-
pared that could correctly alarm for an ICU admission with
an accuracy above 50% whereas other benchmarks perform
worse than what a physician could do with a simple coin
flip. The p-value of the hypothesis test that compares Fore-
castICU and the best algorithm is less than 0.01. Moreover,
our algorithm can display the belief threshold for the com-
puted alarm strategy, which itself is a natural measure for
the ”likelihood” of the alarm being truthful, and is thus a
measure of confidence in the issued alarms.

5.3.2. TRADE-OFF BETWEEN TIMELINESS AND
ACCURACY

Fig. 3 illustrate the trade-off between prediction time and
its accuracy. While the performance of all algorithms nat-
urally degrades as the ICU alarms are prompted at earlier
times, we see that ForecastICU consistently outperforms
all the other benchmark algorithms regarding both TPR and
PPV for all alarm times (every level of timeliness). For in-



ForecastICU: A Prognostic Decision Support System for Timely Prediction of Intensive Care Unit Admission

Table 1. Accuracy of ICU alarms for ForecastICU and the bench-
mark algorithms.

Algorithms TPR(%) PPV(%)
ForecastICU 50.2± 1.45% 54.7± 1.73%

Logistic Regression 50.8± 1.77% 39.7± 1.95%
Lasso Regularization 50.7± 2.01% 42.5± 1.98%

Random Forest 51.1± 2.03% 49.6± 1.55%
SVMs 50.5± 2.12% 29.8± 1.55%

PPV(%)
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Figure 2. Trade-off between TPR and PPV

stance, the TPR of ForecastICU is 59.2% with a PPV of
30.3% for a 12-hour early prediction with respect to the ac-
tual physician-determined ICU admission event. This rep-
resents a gain of 3.4% with respect to the best benchmark
algorithm, which in this case is the LASSO regularization.
Fig. 3 also shows that ForecastICU can consistently predict
the ICU admission earlier than the best benchmark algo-
rithm, raising the alarm around 2 to 3 hours earlier. It can
also predict ICU admissions 9 hours before a physician’s
decision for a PPV of 40% and a TPR of 50%.

6. Clinical significance of ForecastICU
The clinical significance of ForecastICU is not only limited
to the performance gains, but it also extends to its ability to
handle a versatile clinical value function, which can assist
clinicians in managing the ICU admission procedure. For
instance, given a TPR determined by the clinician, Fore-
castICU is able to warn the clinician earlier and provide a
more confident signal than other existing machine learning
algorithms, thus providing the busy clinician with a safety
net for patient care by giving them sufficient time to inter-
vene at an earlier time in order to prevent clinical deteri-
oration. Moreover, given that the value of PPV is related
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Figure 3. Trade-off between PPV and the prediction time (TPR is
fixed at 50%).
(*: Timeliness of ForecastICU alarms compared to the best
benchmark algorithm)

to the confidence that the clinician has the alarm, the clin-
ician’s confidence with ForecastICU would be higher than
other off-the-shelf benchmark algorithms regardless of the
sensitivity (TPR) that the clinician decides to set. The PPV
gains achieved by ForecastICU also imply a decrease in
the number of patients that are falsely identified as needing
ICU admission, which would reduce the reverse medical
effects and unnecessary costs (Dasta Joseph F, 2005).

Table 2. Number of false alarm per one true alarm for different
values of the TPR.

TPR = 0.6 TPR = 0.55 TPR = 0.5
ForecastICU 1.14 0.96 0.84
Rothman index 3.11 2.67 2.34

Potential gains achievable by ForecastICU upon its actual
deployment in a hospital ward is evaluated by construct-
ing a comparison with the Rothman index, the currently
deployed risk assessment technology in most wards (Roth-
man et al., 2013). We report a 22.3% gain in the AUC
achieved by ForecastICU compared to that achieved by
Rothman index. Moreover, in Table 2 we demonstrate the
number of false alarms per one true alarm for both Fore-
castICU and the Rothman index at different settings of the
TPR. At a TPR of 50%, ForecastICU leads to only 0.84
false alarms for every 1 true alarm, whereas the Rothman
index lead to 2.34 false alarms per true alarm, i.e. the rate
of the false alarms is higher than that of the true ones. Thus,
ForecastICU can ensure more confidence in its issued ICU
alarms, which would mitigate alarm fatigue and enhance a
hospital’s resource utilization (Cvach, 2012)(James P Bliss,
2010).
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Intensive Care Unit Admission

1. Proof of Theorem 1
In order to prove the Theorem, we first hold the follow-
ing assumptions on the physiological stream stopping time
and the patients’ hospitalization time (time of admission
to hospital), and hospitalization period (time between ad-
mission to hospital and transfer to ICU or discharge). We
assume that the maximum hospitalization period for any
patient is T̄H , the hospitalization time tH is random, and
the stopping time τs is random where the distributions of
hospitalization and stopping times are given by ftH (tH),
fτs(τs |H0 ) and fτs(τs |H1 ), where supp (ftH (tH)) =
[0, T̄H ], supp (fτs (τs |tH )) = [tH , T̄H ].

Let B∗
t and Bt be the belief processes of a truthful and a

non-truthful belief systems respectively. A truthful belief
system has access to the joint distributions of the physio-
logical data stream (P0,P1) and knows the stopping time
τs, whereas the non-truthful belief system maintains es-
timates of the joint distribution of the physiological data
stream (Q0,Q1), where d (Pm,Qm) > 0 for a probability
metric d. In the following, we show that both B∗

t and Bt

are martingales with respect to the filtration Ft. Note that

B∗
t (H1 |Ft ) =

P
(
{Xτ}tτ=tH |H1

)
P (H1)∑

i∈{0,1} P
(
{Xτ}tτ=tH |Hi

)
P (Hi)

=
B∗

t−1 (H1 |Ft−1 )P (Xt |H1 )∑
i∈{0,1} B

∗
t−1 (Hi |Ft−1 )P (Xt |Hi )

.

(1)

Thus, we have that

E
[
B∗

t+1 |Ft+1

]
= E

[
B∗

t (H1 |Ft )P (Xt |H1 )∑
i∈{0,1} B

∗
t (Hi |Ft )P (Xt |Hi )

]

=
∑

Xt∈Xt

B∗
t (H1 |Ft )P (Xt |H1 )P(Xt)∑
i∈{0,1} B

∗
t (Hi |Ft )P (Xt |Hi )

=
∑

Xt∈Xt

B∗
t (H1 |Ft )P (Xt |H1 )

= B∗
t (H1 |Ft )

∑
Xt∈Xt

P (Xt |H1 )

= B∗
t (H1 |Ft ) . (2)

Since E
[
B∗

t+1 |Ft+1

]
= B∗

t (H1 |Ft ) , then the truthful
belief process is martingale. Now we focus on the non-
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Figure 1. Depiction for the belief process as computed by a truth-
ful and a non-truthful belief systems.

truthful belief process Bt, which we can write as

Bt (H1 |Ft ) =
Bt−1 (H1 |Ft−1 )Q (Xt |H1 )∑

i∈{0,1} Bt−1 (Hi |Ft−1 )Q (Xt |Hi )
.

(3)

Thus, we have that

E [Bt+1 |Ft+1 ] = E

[
Bt (H1 |Ft )Q (Xt |H1 )∑

i∈{0,1} Bt (Hi |Ft )Q (Xt |Hi )

]

=
∑

Xt∈Xt

Bt (H1 |Ft )Q (Xt |H1 )P(Xt)∑
i∈{0,1} Bt (Hi |Ft )Q (Xt |Hi )

= Bt (H1 |Ft ) . (4)

Now define the threshold type strategies η∗ (a threshold on
B∗

t ) and η̄ (a threshold on Bt) as follows:

η∗ = arg sup
η∈[0,1]

EP

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
, (5)

and

η̄ = arg sup
η∈[0,1]

EQ

[
g
(
{Xτ}τh(η)τ=0

)
1{τh(η)<τs}

]
. (6)

As shown in Fig. 1, the non-truthfulness of the belief sys-
tem may lead for instance to a delay in the ICU alarm.
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Now we focus on a certain realization of the stopping
time τs. Since supt Bt = supt B

∗
t = 1, and inft Bt =

inft B
∗
t = 0, then E [Bt] < ∞ and E [B∗

t ] < ∞, i.e. Bt

and B∗
t are bounded martingales. Thus, by Doob’s mar-

tingale convergence theorem, we know that Bt → B∞
and B∗

t → B∗
∞ almost surely, where E [B∗

∞] < ∞, and
E [B∞] < ∞. It is easy to show that the sequence B∗

t −Bt

is also a martingale with respect to the filtration Ft, i.e.
E [B∗

t + 1−Bt + 1 |Ft ] = B∗
t − Bt. Now recall that we

want to show that P (|V ∗ − V (η̄)| < ϵ) > 1 − δ. To prove
this, it suffices to show that there exists ϵ

′ ∈ [0, 1], such that
P
(
|η∗ − η̄| < ϵ

′
)
> 1− δ. This is equivalent to show that

the martingale sequence B∗
t −Bt converges to a value less

than ϵ
′′ ∈ [0, 1] with a probability 1 − δ. This is satisfied

if for N∗(ϵ, δ), there exists an algorithm AD that if used
to estimate Q, it will prompt a distribution that is within
a Kolmogorov-Smirnov distance of ∆(ϵ) from the true dis-
tribution P. By Dvoretzky-Kiefer-Wolfowitz inequality, we
know that if the algorithm AD just computes Q as the em-
pirical distribution, then we have that

Pr

(
sup

t∈[tH ,tH+τs]

∣∣Qt
m − Pt

m

∣∣ > ∆(ϵ)

)
≤ 2exp

(
−2N∆2(ϵ)

)
.

Thus, we can find N∗(ϵ, δ) by equating 1−δ with the RHS
in the equation above, and for any N > N∗(ϵ, δ), we have
that P (|V ∗ − V (η̄)| < ϵ) > 1− δ.

2. Pseudo-code of ForecastICU

Offline Stage:
Input: Xref

0 ,Xref
1 , Ts

1) Data Reconstruction
for i = 1 to N do
X̃ref

(i) = hspline({Xref
(i) (m,n)}K−1

n=0 , Ts)

end for
2) Relevant Feature Selection
Ỹref = CFS(X̃ref ),
3) Parametric density estimation
[µ̂t

m(j)]Rj=1 = 1
Nm

∑Nm

i=1 Ỹ
ref
(i),m(j, t)

[Σ̂t
m]k,l =

1
Nm−1

∑Nm

i=1 Ȳ
ref
(i),m(k, t)Ȳref

(i),m(l, t)

Real-time Stage:
Input: {Xτ}T

H

τ=0, γ, η,W
for t = 1 to TH do
1) Current State Estimation

for m = 0 to 1 do
T ∗
m(t) = arg maxτ Qm({Xk}τk=τ−t+1|Hm)

end for
2) Belief Update Algorithm
Bt(H1|Ft) = Q1(H1|{Xτ}tτ=to)

=
N1Q1({Xτ}t

τ=t1o
|H1,T

∗
1 (t))

N0Q0({Xτ}t
τ=t0o

|H0,T∗
0 (t))+N1Q1({Xτ}t

τ=t1o
|H1,T∗

1 (t))

B̃t(H1|Ft) =
1
W

∑t
τ=t−W Bτ (H1|Fτ )

3) Sequential Decision Making

Decision(t) =

{
H1 if B̂t(H1|Ft) ≥ η

H0 otherwise
end for

Figure 2. Pseudo-code of ForecastICU
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3. Features of the Dataset
3.1. Entire feature information

Table 1. Entire feature information

NO FEATURE NAME

Time Dependent Continuous Features

1 SYSTOLIC BLOOD PRESSURE
2 DIASTOLIC BLOOD PRESSURE
3 HEART RATE
4 RESPIRATORY RATE
5 TEMPERATURE
6 O2 SATURATION
7 WHITE BLOOD CELL
8 HEMOGLOBIN
9 PLATELET COUNT
10 SODIUM
11 POTASSIUM
12 CHLORINE
13 CO2 SATURATION
14 BLOOD UREA NITROGEN
15 CREATINE
16 GLUCOSE

Time Dependent Discrete Features

17 O2 DEVICE (BINARY)
18 BREATH ASSIST DEVICE (49 CATEGORIES)

3.2. Relevant Features for ICU Admission Prediction

Table 2. Relevant features for ICU admission prediction
Rank Acronym Relevant Features

1 RR Respiratory Rate
2 HR Heart Rate
3 BUN Blood Urea Nitrogen
4 GLU Glucose
5 Breath Oxygen Supply Device (Binary)
6 DBP Diastolic Blood Pressure
7 SPO2 O2 Saturation

Based on the correlation feature selection (CFS) algo-
rithm with minimum redundancy and maximum relevance
(mRMR) criterion, we discover 7 relevant temporal fea-
tures among the entire 18 temporal features which are
highly correlated with ICU admission but poorly correlated
with each other. Table 2 explicitly lists 7 relevant fea-
tures and these can be justified by the medical references
(Andrew Egol, 1999) (Bruijns, 2013) (Alexander Olaussen,
2014). Note that all of the relevant features are time depen-
dent features.
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4. Model Justifications
In this paper, we also assume that the joint distribution of
the physiological data streams can be modeled as a Multi-
variate Gaussian process. This assumption is validated by
a Kolmogorov-Smirnov goodness-of-fit test. Fig. 3 illus-
trates the histogram of the systolic blood pressure and heart
rate extracted by the reconstructed dataset of ICU and DIS
patients, respectively. As it can be seen, these can be in-
deed modeled as Gaussian distributions - the fitting error
is less than 10%. Fig. 4 shows that the joint distributions
between the physiological features can indeed be modeled
using a Multivariate Gaussian distribution.
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Figure 3. Histograms of diastolic blood pressures and heart rates
at 10 hours before ICU/DIS events.

Figure 4. Joint distribution of diastolic blood pressure and heart
rates

5. Extension of ForecastICU: Patient Risks
Tracking Systems (PRTS)

ForecastICU can be extended to patients risks tracking sys-
tems (PRTS) which keeps tracking the ICU belief (risks
of ICU admission) until the actual ICU admission or dis-
charge event. This system is useful in real clinical setting
because PRTS helps doctors to focus on the real-time high
risk patients based on the ICU belief provided by the algo-
rithm. In this subsection, we illustrate the performance of
ForecastICU in PRTS setting.
ForcastICU has a consistently higher PPV in comparison to
other benchmarks which is represented in Table 3 and Fig.
5. For instance, given 70% TPR, ForecastICU achieves
80.1% PPV which is 5.2% better than the second best al-
gorithm (Lasso Regularization). Moreover, with 70% PPV,
Forecast ICU achieves 78.0% TPR which is 4.7% better
than the second best algorithm. AUC values are also 1.5%
higher than the second best algorithm and the p-value of
the hypothesis test comparing ForecastICU and the second
best algorithm is ≤ 0.01.

Table 3. Performance comparison of ICU prediction in PRTS set-
ting

Algorithms TPR(%) PPV(%)
ForecastICU 70.3± 1.75% 80.1± 1.23%

Logistic Regression 70.5± 1.13% 73.5± 2.09%
Lasso Regularization 70.1± 1.49% 74.9± 1.98%

Random Forest 70.7± 1.34% 56.1± 1.24%
SVMs 70.0± 1.28% 44.9± 1.74%
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Figure 5. Trade-off between TPR and PPV in PRTS setting
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6. Additional Experiment Results
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Figure 6. Trade-off between TPR and the prediction time (fix PPV
30%)
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