
Personalized Course Sequence Recommendation

Jie Xu JIEXU@MIAMI.EDU

University of Miami, Coral Gables, FL 33146 USA

Tianwei Xing TWXING@UCLA.EDU

University of California, Los Angeles, CA 90095 USA

Mihaela van der Schaar MIHAELA@EE.UCLA.EDU

University of California, Los Angeles, CA 90095 USA

Abstract

Given the variability in student learning it is be-

coming increasingly important to tailor courses

as well as course sequences to student needs.

This paper presents a systematic methodology

for offering personalized course sequence recom-

mendations to students. First, a forward-search

backward-induction algorithm is developed that

can optimally select course sequences to de-

crease the time required for a student to graduate.

Second, using the tools of multi-armed bandits,

an algorithm is developed that can optimally rec-

ommend a course sequence that both reduces the

time to graduate while also increasing the over-

all GPA of the student. The algorithm dynami-

cally learns how students with different contex-

tual backgrounds perform for given course se-

quences and then recommends an optimal course

sequence for new students. Using real-world stu-

dent data, we illustrate how the proposed algo-

rithms outperform other methods that do not in-

clude student contextual information when mak-

ing course sequence recommendations.

1. Introduction

Recent studies (cca, 2014)(Astin & Oseguera, 2005) find

that the vast majority of college students in the United

States do not complete college in four years and that fewer

college students are today graduating on time than a decade

ago. While many factors contribute to students taking

longer to graduate, such as credits lost in transfer, unin-

formed choices due to the low advisor-student ratios and

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

poor preparation for college, the inability of students to

take required courses when needed is among the leading

causes (cca, 2014). If courses are elected and taken my-

opically, without a clear plan, a student may end up in an

awkward situation in which required subsequent courses

are offered (much) later, thereby (significantly) prolong-

ing graduation time. To reduce the time-to-graduation, it

is therefore of paramount importance for the student to

elect courses in a foresighted way by taking into account

the possible subsequent course sequences (including which

courses are mandatory and which ones are not, and the

course prerequisites) and when the various courses are of-

fered. More importantly, because the number and variety

(in backgrounds, in knowledge, in goals) of students is ex-

panding rapidly, it is more and more important to tailor

course sequences to students since the same learning path

is unlikely to best serve all students. Therefore, it is neces-

sary to develop an automated course sequence recommen-

dation system that learns from the performance of previ-

ous students in various courses/sequences and uses what it

has learned to adaptively recommend course sequences that

are personalized for the current student, depending on the

student’s background and his/her completion status of the

program in order to maximize any of a variety of objec-

tives including time to graduation, grades and the trade-off

between the two.

In this paper, we develop an automated course sequence

recommendation system that is able to achieve this goal. In

order to reduce complexity and enable tractable solutions,

we solve this problem in two steps. The first step (Sec-

tion 3) involves offline learning, in which a set of candidate

recommendation policies are determined to minimize the

expected time to graduation or maximize the on-time grad-

uation probability using an existing dataset of anonymized

student records. A dynamic programming based approach

is adopted to solve the adaptive sequence recommendation

which recommends subsequent course sequences to stu-

Personalized Course Sequence Recommendation

�������

�	
��

�����

���������
����

�������

����������

�������

���������

��������

�
�

��

�������

������������

�������

�
�

��

��������� �����������
��
����������

	��
���������

�
��������

�������

�	
���	

����������	�
��������
�� �����������	�
��������

�

Figure 1. System Diagram for Course Sequence Recommenda-

tion

dents depending on their completion status of the academic

program by taking into account the prerequisite relation-

ship among courses and the course availability across aca-

demic terms (quarters/semesters). The second step (Sec-

tion 4) involves online learning, in which for each new stu-

dent, a suitable course sequence recommendation policy

is selected depending on this student’s background using

the learned knowledge from the previous students. Online

contextual multi-armed bandit techniques are used to de-

velop policy selection algorithms to maximize the students’

grades given the time-to-completion constraints. To enable

fast learning, the algorithm exploits the similarity among

students and adaptively clusters students and refines the

clustering as more students enter and finish the program.

Figure 1 depicts the envisioned computer-aided course se-

quence recommendation system. The advisor is an integral

component of the proposed system. The proposed system is

designed to assist advisors to devise better learning strate-

gies and school curricula and not replace them. In the pa-

per, we have to assume that all recommendations are taken

by the advisor and the students in order to evaluate the stan-

dalone performance of the proposed system. However, in

the actual deployment, the advisor will play a key role in

interacting with students, interpreting the recommendation

results and adjusting the results based on students’ specific

needs.

2. Related Work

Machine learning for education has recently gained much

attention (Baraniuk, 2015)(Cen et al., 2015). Previous re-

search focuses on grade prediction (Meier et al., 2015),

drop-out prediction (KDD, 2015), personalized teaching

styles and materials (Tekin et al., 2015), estimating learn-

ers’ knowledge of concepts underlying a domain (Lan

et al., 2014) etc. This paper studies the important, yet

much less investigated problem of (personalized) course se-

quence recommendation. Solving this problem has the po-

tentially significant impact of shortening the time that stu-

dents need to graduate. Methods solving this problem can

then be combined with other methods to provide a compre-

hensive set of tools for personalizing education.

There is much work on recommending relevant

courses/learning materials to students according to

students’ types (e.g. interests, knowledge levels, learning

styles and feedback) (Klasnja-Milicevic et al., 2011) (Chen

et al., 2005) (Wen-Shung Tai et al., 2008) (Farzan &

Brusilovsky, 2006) (Bendakir & Aimeur, 2006) (Ghauth &

Abdullah, 2010) (Shishehchi et al., 2011). Besides course

recommendation, there is extensive work on recommender

systems for assisting users with finding desirable products

or services (Resnick & Varian, 1997) (Balabanović &

Shoham, 1997) (Ricci et al., 2011). However, several

unique features of course sequence recommendation make

these approaches unsuitable for the considered problem.

First, while traditional recommendation systems deal with

the problem of recommending items or sets of items,

most of them do not take into account prerequisites while

recommending an item. Secondly, there are complex

constraints on the recommendation: the courses taken by a

student must satisfy requirements (e.g. take 10 mandatory

courses and 5 out of 12 elective courses) in order for the

student to graduate. Thirdly, courses are not available in all

quarters due to teaching resource constraints. If the next

available quarter of a required course is far away from the

current quarter, then it might be wiser to take this course

earlier rather than later.

Recommendation with prerequisites was studied in

(Parameswaran et al., 2010), in which the goal is to rec-

ommend the best set of k items when there is an inher-

ent ordering between items. Various prerequisite struc-

tures were studied and the complexity of determining the

best set is proven to be NP-Hard. Several heuristic ap-

proximation algorithms were developed to solve the recom-

mendation problem. However, the problem is formulated

as a set recommendation problem rather than a sequential

recommendation problem, which ignores the course pre-

requites, the evolving knowledge of students (and grades so

far) as well as the course availability in different quarters.

Recommendation with complex constraints was studied in

(Parameswaran et al., 2011) where increasingly expressive

models were developed to check if the requirements are sat-

isfied and course recommendations were made by taking

into account these requirements. However, the course pre-

requisites and the course availability are not considered. A

Markov Decision Process based recommender system was

developed in (Shani et al., 2002) to take into the long-term

effects of each recommendation. However, this approach

is not able to handle the course prerequisites or the course

requirement constraints.

Personalized Course Sequence Recommendation

Our algorithm for online personalized recommendation

policy selection builds on the contextual multi-armed ban-

dits methods (Slivkins, 2014) (Dudik et al., 2011) (Lang-

ford & Zhang, 2008) (Chu et al., 2011). Most of the prior

work on contextual bandits is focused on an agent mak-

ing single-stage decisions based on the provided context

information. In contrast, in this paper, arms are the course

sequence recommendation policies which are selected de-

pending on the student’s background but the policy itself

also induces a sequence of decision making depending on

the evolving performance of the student.

3. Course Sequence Recommendation: Policy

Construction

We consider a curriculum consisting of a set of courses

N = {1, 2, ..., N}. Among these courses, there are M
mandatory courses and E = N − M elective courses.

We consider a discrete time system where a student takes

courses quarter by quarter 1 and can stay in the program for

at most T quarters. Quarters are indexed by t = 1, 2, ..., T .

Let s(t) be a course state vector of size N which is used

to indicate the courses that a student has already taken and

passed by the end of quarter t. The first M elements are

with respect to the mandatory courses and the remaining

E elements are with respect to the elective courses. Each

element of s(t) takes a binary value where sn(t) = 1
means that the student has taken and passed course n and

sn(t) = 0 otherwise. Initially each student passes zero

course so that each element of s(0) satisfies sn(0) = 0, ∀n.

In each quarter, the maximum number of courses a student

can take is C. Let A(t) denote the elected courses in quar-

ter t. However, even though the student is free to elect

courses, A(t) must come from a set of feasible courses

F(t, s(t − 1)) depending on the index t of the quarter as

well as the course state s(t − 1) of the student. Firstly,

courses that have already been taken and passed cannot be

retaken. Secondly, the student can only take courses that

are available in that quarter since a course is usually not

offered in every quarter. Let Γ(t) ⊆ N denote the set of

available courses offered in quarter t. Thirdly, the student

can only take a course when he/she has finished all its pre-

requisite courses. We formalize course prerequisite in more

detail as follows.

Course Prerequisite Courses have prerequisite dependen-

cies, namely courses can be elected only when certain pre-

requisite courses have been taken and passed. In general,

the prerequisite dependency can be described as a directed

acyclic graph (DAG), denoted by G = 〈N , E〉 where N
is the set of courses and E is the set of directed edges.

1We use the quarter system for illustration but our approach
also works for the semester system.

����

���

����

���

����

���

����

���

����

���

����

���

	�

��

	�

��

���

���

���

���

���

���

	�

�

���

����

��

���

	�

���

	�

���

�

��

���

��

���

���

��

��

Figure 2. The prerequisite graph for the undergraduate program

in the Mechanical and Aerospace Engineering department at

UCLA.

A directed edge m → n between two courses m and n
means that course m is a prerequisite of course n. Let

P (n) = {m : m → n ∈ E} be the set of prerequisite

courses of n. Only when all courses in P (n) have been

taken can coursen be elected. Note that ifP (n) is an empty

set, then course n has no prerequisite courses and hence

can be elected at any time (whenever available). Moreover,

any elective course cannot be the prerequisite course of a

mandatory course. Otherwise, the elective course effec-

tively becomes mandatory. Nevertheless, an elective course

can be the prerequisite of another elective course. Figure 2

illustrates part of the prerequisite graph for the undergradu-

ate program in the Mechanical and Aerospace Engineering

department at UCLA.

Given these constraints, the feasible set of courses that a

student can take in quarter t given his/her course state s(t−
1) can be computed as follows:

F(t, s(t− 1)) = {n :sn(t− 1) = 0;n ∈ Γ(t);

∀m ∈ P (n), sm(t− 1) = 1} (1)

Since a student cannot take more than C courses per quar-

ter, the possible combinations of courses that can be elected

by a student is

A(t, s(t− 1)) = {A : A ⊆ F(t, s(t− 1)); |A| ≤ C} (2)

At the end of each quarter t, the student either passes or

fails the course that he/she takes in this quarter. The proba-

bility that a student fails a course depends on the difficulty

of the course as well as how many courses that he/she is

taking simultaneously in the same quarter, which can be es-

timated from the student academic record dataset. Denote

the probability that the student fails a course n by ǫn(k)
where k is the number of simultaneous courses. Typically,

ǫn(k) is a non-decreasing function in k to capture the fact

that the student’s effort has to be distributed into multiple

courses. Depending on the course performance outcome

in this quarter, the course state will evolve from s(t − 1)
to s(t). If the student passes a course n ∈ A(t), then

sn(t) = 1; otherwise, sn(t) remains 0.

Personalized Course Sequence Recommendation

A student graduates when he/she has taken and passed all

mandatory courses and at least E0 ≤ E elective courses

before the end of T quarters where E0 is a predefined num-

ber by the program. The course states in which the student

can graduate are called terminal states, which must satisfy

∀n = 1, ...,M, sn = 1 and
∑N

n=M+1 sn ≥ E0. Let Ŝ
be the set of all terminal course states. There is a reward

function U : Ŝ × {1, ..., T } → R for each terminal state

indicating the reward of reaching the terminal state by a

specific quarter. For example, U(ŝ, t) = 1, ∀ŝ ∈ Ŝ, ∀t as-

signs equal value to all terminal states if the system only

cares about whether the student can graduate on time. For

another example, U(ŝ, t) = T − t + 1, ∀ŝ ∈ Ŝ allows the

system to take into account the exact time of graduation.

A course sequence recommendation policy specifies for

each course state in any quarter, the next courses that

should be taken. Let π(s, t) denote the courses that are

recommended to take in quarter t given the course state

s. Given a course sequence recommendation policy π,

starting with any state s in any quarter t, the course state

s evolves stochastically (since a student may pass or fail

the course with probabilities), thereby inducing a probabil-

ity distribution over the terminal state that can be reached.

Let V (s, t) =
∑

ŝ,τ≥t p
π
ŝ,τ (s, t)U(ŝ, τ) denote the value

of state s in quarter t when policy π is adopted where

pπŝ,τ (s, t) is the probability of reaching a terminal state ŝ
in quarter τ ≥ t starting with state s in quarter t. The

objective of the system is to determine the optimal pol-

icy that maximizes the value of the initial state s(0), i.e.

π∗ = argmaxπ V (s(0), 1).

Our solution to find the optimal policy π∗ consists of two

phases. In the first phase, we perform a forward search

starting from quarter 1 through quarter T to determine all

possible course states that can emerge on the learning path.

The purpose of this phase is to reduce the course state

space in each quarter that the system should look at. In

the second phase, we perform a backward induction start-

ing from quarter T through quarter 1 to compute the op-

timal set of courses that should be taken in each possible

course state. The purpose of this phase is to determine the

course sequence recommendation that minimizes the grad-

uation time (or ensure that students graduate before a de-

sired time).

3.1. Forward Search Phase

Since the number of possible course states grows exponen-

tially with the number of courses in the curriculum, the

course state space can be huge for even a moderate num-

ber of courses. However, thanks to the course prerequisite

constraint and the course availability constraint, the num-

ber of course states that can emerge in a particular quarter

can be significantly limited. The purpose of the forward

��������� ��������	

���

���

�
���

���

���

�

���

�

���

���

���

���

�

���

�

���

�

(0)L (1)L (2)L(1)H (2)H

�������

��	
��
�����

��������	
��
���

�������
����
��	
���
��

���

�
��� ������
���

���

�

�

Figure 3. Illustration for Forward Search. Each course state (cir-

cle) represents the completion status of the three courses. For

instance, 100 means that only the first course is taken and passed.

Each state-course pair (rectangle) represents the next courses

elected in a given state. For instance, 100/2 means that course

2 is elected as the next course to take in a state 100.

search is to determine the possible course states, thereby

reducing the problem complexity.

Let L(t) denote the set of possible course states by the

end of quarter t and H(t) denote the set of state-course

pairs in quarter t. Initially L(0) = {s(0)}. In each quar-

ter t, the algorithm examines each non-terminal course

state s(t − 1) ∈ L(t − 1) and determines the feasible

course set F(t, s(t − 1)) for this course state hence the

possible combinations of course A(t, s(t− 1)) that can be

elected in this quarter. For each combination of courses

A ∈ A(t, s(t − 1)), the state-course pair (s(t − 1), A) is

inserted intoH(t). Then all possible new course states s(t)
with respect to (s(t−1), A) is included in L(t). Moreover,

the probability that s(t− 1) transits to s(t) is computed by

p(s(t)|s(t− 1), A)

=
∏

n:n∈A,sn(t)=1

(1 − ǫn(|A|))
∏

n:n∈A,sn(t)=0

ǫn(|A|) (3)

This algorithm is summarized in Algorithm 1 and is illus-

trated in Figure 2.

3.2. Backward Induction Phase

The outcome of the Forward Search phase is actually an

AND/OR graph where each course subsequence is a sub-

graph of the AND/OR graph. In this graph, each OR node

represents a course state s ∈ L(t) in which different pos-

sible combinations of subsequence courses can be elected.

Each AND node (s, A) corresponds to electing courses A
in course state s. The AND node also stores a probabil-

ity distribution over the possible next states by taking these

courses, which is computed by (3). The value of the op-

Personalized Course Sequence Recommendation

Algorithm 1 Forward Search

1: Initialization: L(t) = ∅,H(t) = ∅, ∀t.
2: Initial possible course states L(0) = s(0) = {sn =

0, ∀n}
3: for quarter t = 1 to quarter T do

4: for each course state s ∈ L(t− 1) do

5: Determine feasible course set F(t, s) and feasible

courses-to-take set A(t, s)
6: for each feasible combinations of courses A ∈

A(t, s) do

7: Update the current listH(t)← H(t) ∪ (s, A)
8: Update L(t) by adding all possible states

9: end for

10: end for

11: end for

timal course sequence recommendation for this AND/OR

graph can be computed by a bottom-up sweep through the

graph. This computation can be viewed as a backward

induction. First, the value of all OR nodes that are non-

terminal states and all AND nodes are initialized to 0, and

the value of all OR nodes that are terminal states are ini-

tialized to the reward of the corresponding terminal states.

Next, starting from quarter T , for each quarter t, we update

the value of the AND nodes in H(t) using the value of the

OR nodes in L(t), i.e. ∀(s, A) ∈ H(t),

Q(s, t, A) =
∑

s′∈L(t)

p(s′|s, A)V (s′, t) (4)

We then update the value of the OR nodes in L(t−1) using

the value of the AND nodes inH(t), i.e. ∀s ∈ L(t− 1),

V (s, t− 1) = max
A

Q(s, t, A) (5)

and we record the combinations of courses in the course

recommendation policy

π∗(s, t− 1) = argmax
A

Q(s, t, A) (6)

As mentioned, depending on the choice of the reward func-

tion for the terminal course states, different system objec-

tives can be achieved by solving the above problem. The

algorithm is summarized in Algorithm 2 and illustrated in

Figure 4.

3.3. Joint Optimization of Time-to-Graduation and

GPA Performance

So far, we focused on constructing course sequence recom-

mendation policies that minimize the time-to-graduation.

However, the exact learning performance upon graduation

(e.g. GPA) is neglected. Nevertheless, the above dynamic

programming based framework can be easily extended to

��������� ��������	

���

���

�
���

���

���

�

���

�

���

���

���

���

�

���

�

���

�

(0)L (1)L (2)L(1)H (2)H

�������

��	
��
�����

��������	
��
���

�������
����
��	
���
��

���

�
��� ������
���

���

�

�

�����

�����

���

�����	

�����

����
�

���

�����	

����
�

�������

����
�
�������

Figure 4. Illustration for Backward Induction. The red thick ar-

row represents the next course elected for each course state.

Algorithm 2 Backward Induction

1: Initialization: ∀s 6∈ ŝ, V (s, t) = 0, Q(s, t, A) = 0;

∀s ∈ ŝ, V (s, t) = U(s, t).
2: for quarter t = T to quarter 1 do

3: for each state and courses-to-take pair s, A ∈ H(t)
do

4: Update Q(s, t, A) =
∑

s′∈L(t)

p(s′|s, A)V (s′, t)

5: end for

6: for each course state s ∈ L(t− 1) do

7: Update value function V (s, t − 1) =
maxA Q(s, t, A)

8: Update policy π(s, t− 1) = argmaxA Q(s, t, A)
9: end for

10: end for

the case of joint optimization of time-to-graduation and

GPA performance, provided that a sufficiently large dataset

is available to estimate the various model parameters. We

elaborate on this point below.

The grade that a student can receive in a course often de-

pends on the grades that the student received in the pre-

requisite courses and perhaps how long ago the prerequi-

site courses were taken. Thus, the course sequence that

the student is taking may have a significant impact on the

GPA that he/she can obtain. To account for this effect,

we modify the problem formulation: instead of keeping

a course completion state, which records the courses that

have been taken and passed, we keep a course performance

state, which records the grades that the student has received

in the passed courses and when these courses were taken.

Then for each performance state, the policy tries to find the

set of next courses to take in order to maximize an objec-

tive function that jointly considers the time of graduation

and the obtained final GPA. However, solving this prob-

lem requires addressing several key challenges. First, the

Personalized Course Sequence Recommendation

course performance state space is significantly larger than

the course completion state space and grows exponentially

with the number of possible grades. In particular, suppose

the number of grade levels is K , then the number of all

possible states is KN . Second, a huge dataset of student

records is needed to estimate the conditional probabilities

of grades of each course depending on all possible course

performance states. Therefore, solving the optimal course

recommendation policy is extremely difficult.

To derive efficient solutions without a large initial dataset,

we construct course sequence recommendation policies

that jointly consider the GPA and time to graduation in

two steps. Firstly, we determine a set of course se-

quence recommendation policies that satisfy desired time-

to-graduation constraints using our method developed in

this section. Since there is a lack of dataset to estimate

the course failure probabilities, the course sequence recom-

mendation policy can even be constructed by ignoring the

course failure probabilities (i.e. treating ǫn → 0, ∀n). In

the second step, we maximize the student GPA by consider-

ing only the policies derived in the first step. In particular,

we aim to select for each student a personalized policy that

most suits this student and results in the highest GPA. We

formalize the personalized policy selection problem in the

next section.

Remark: Readers may wonder why there are multiple so-

lutions of course sequence recommendation policies from

the first step so that personalization is possible in the sec-

ond step. A couple of reasons can lead to multiple solu-

tions. First, multiple solutions may occur due to ties, which

are more likely to happen when the randomness disappears

as ǫn → 0. Second, instead of keeping only the course

sequence recommendation policy that yields the shortest

time-to-graduation, the first step of our approach can also

generate a set of course sequence recommendation policies

that result in on-time graduation.

4. Online Recommendation Policy

Personalization

4.1. Problem Formulation

We consider an online setting where students enter the

program in sequence. The students are indexed by

{1, 2, ..., i, ...}. Students come with different background

(e.g. schools from which the students graduated, SAT

scores). We use a context vector θi ∈ Θ to denote the stu-

dent background whereΘ = [0, 1]W is the normalized con-

text space with dimension W . We have a set of Z course

sequence recommendation policies constructed, denoted by

Z , using our method proposed in Section III. These recom-

mendation policies ensure that students will graduate early

with high probability. However, the impact of these rec-

ommendation policies on the students’ GPA performance

is unknown a priori and may be different for students with

different backgrounds.

For each student i, the system selects one of the Z policies

to recommended course sequence to this student. When

the student completes the program by following the recom-

mended course sequence, the GPA that he/she obtains is re-

vealed as ri. Let µz(θ) = E{r|θ} be the expected GPA for

the student with background θ if a recommendation policy

z is adopted. If µz(θ) were known for each policy z, then

the policy selection problem would have been simple - se-

lecting z∗(θ) = argmaxz µz(θ) maximizes the expected

GPA for this student. However, since the effectiveness of

the recommendation policies is unknown a priori, the best

policies must be learned for each student.

Let σ be an online learning algorithm for policy selection

and σ(i) ∈ Z denote the policy that is used on student

i. We use learning regret as the performance metric for a

learning algorithm. The learning regret up to student I is

defined as the aggregate GPA difference between our learn-

ing algorithm and the oracle solution that selects the best

policy z∗(θi), ∀i, i.e.

Reg(I) := E[

I∑

i=1

µz∗(θi)(θi)−
I∑

i=1

ri(σ(i))] (7)

where the expectation is taken with respect to the random-

ness in grade realization and the selected policies. The

regret characterizes the loss incurred due to the unknown

system dynamics and gives convergence rate of the total

expected GPA of the learning algorithm to the value of the

oracle solution. The regret is non-decreasing in the total

number of incoming students, but we want it to increase as

slow as possible. Any algorithm whose regret is sublinear

in I , i.e. Reg(I) = O(Iα) such that α < 1, will converge

to the optimal solution in terms of the average reward, i.e.

lim
I→∞

Reg(I)
I

= 0. The regret of learning also gives a mea-

sure for the rate of learning. A smaller α will result in a

faster convergence to the optimal average reward and thus,

learning the optimal course sequence recommendation is

faster if α is smaller.

4.2. Context-Aware Adaptive Policy Selection

A natural way to learn a course sequence recommendation

policy’s effectiveness is to record and update the sample

mean GPA obtained as students arrive and complete the

program by adopting this policy. Using such a sample

mean-based approach for policy selection is the basic idea

of our learning algorithm. However, major challenges still

remain. Without using the context information, we have

only learned the average performance of each recommen-

dation policy and thus, a single policy will always be se-

Personalized Course Sequence Recommendation

lected. On the other hand, personalizing the policy for each

student according to his/her background can be very diffi-

cult since the students can have diverse background and

hence the context space Θ can be huge. The sample mean

reward approach can fail to work since there will be very

limited number of students who have the same background.

Our method to overcome this difficulty is by exploiting the

similarity of students based on the assumption that students

with similar background will achieve similar expected GPA

by following the same course sequence recommendation

policy. Our learning algorithm starts with a larger con-

text space to learn the best recommendation policy for this

space and then gradually refines the learning by partition-

ing the context space into smaller spaces.

Before we describe the details of our algorithm, we intro-

duce several useful concepts.

Student Cluster. A student cluster is represented by

the range of context information that is associated with

students in the cluster. In this paper, we consider student

clusters that are created by uniformly partitioning the

context space on each dimension, which are enough to

guarantee sublinear learning regrets. Thus, each student

cluster is a W -dimensional hypercube with side length

being 2−l for some l. This hypercube represents a

level-l student cluster. At any moment in time when

a recommendation policy is applied to a student i, the

algorithm keeps a set of mutually exclusive student clusters

that cover the entire student population. We call these

student clusters the active student clusters, and denote this

set by Ω. Since the active student clusters evolve (i.e.

become more refined) as more students are enrolled and

graduate, the active set Ωi uses a superscript i, which is

the student index, to represent its dynamic nature. For

instance, in the one-dimensional case, {[0, 1/2), [1/2, 1]}
is a feasible set of active student clusters and

{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 7/8), [7/8, 1]}
is another feasible set of active student clusters. Figure 5

illustrates a 2-dimensional student clustering.

Counters. For each active student cluster C, the algorithm

maintains Z counters: for each recommendation policy z ∈
Z , MC(z) records the number of students so far in which z
is applied to.

GPA Estimates. For each active student cluster, the algo-

rithm also maintains the sample mean GPA estimates r̄C(z)
for each policy z ∈ Z using the realized GPA of students

that belong to C so far.

The algorithm (see Algorithm 3) works as follows. For

each student i, the algorithm works in two steps.

Policy Selection Step. When an student arrives, the al-

gorithm first checks which active student cluster C ∈ Ωi

it belongs to. Then it investigates counter MC(z) for all

���������

�	
���	�
�
�	�����

��������
�
�	���

��������
�
�	���

Figure 5. Illustration of 2-D Student Clusters.

z ∈ Z to see if there exists any under-explored policy such

that MC(z) ≤ γ(i, l) where γ(i, l) is a deterministic con-

trol function depending on the index of the student i and

the level of the student cluster l. If there exists such an

under-explored policy z, then the algorithm uses this pol-

icy to recommend course sequence for this student i. If

there does not exist any under-explored policy, then the al-

gorithm selects the policy with the highest GPA estimate

for the cluster C, i.e. argmaxz r̄C(z).

Variable Update Step. After the student completes the

program and the GPA is realized, the GPA estimate of the

selected policy is updated. Moreover, if the number of stu-

dents in the student cluster C satisfies
∑

z MC(z) ≥ ζ(l)
where ζ(l) is a deterministic control function depending on

the level of student cluster, the current student cluster C is

partitioned into 2W level-(l + 1) smaller student clusters.

For the next student on, C is deactivated and the new level-

(l + 1) student clusters are activated.

Remark: In the policy selection step, the algorithm may

select an under-explored policy for a student. The purpose

of this exploration is to learn the effectiveness of every pol-

icy with high confidence. However, this exploration does

raise fairness issues for some students. There are a couple

of solutions that can be used to address this “unfair” policy

selection issue. First, the policy selection is merely a rec-

ommendation, students can still freely choose whichever

course sequence they want to follow. Second, rewards

mechanisms can be designed to incentivize students to fol-

low the recommended policy. For example, students who

follow an under-explored policy can enjoy a lower tuition

or receive some form of compensation through some spe-

cial fellowship.

4.3. Control Function Determination

In this subsection, we determine the control function γ(i, l)
and ζ(l) and evaluate the performance of the policy selec-

tion algorithm. The following assumption on student simi-

larity is needed for the regret analysis but not needed in the

algorithm.

Personalized Course Sequence Recommendation

Algorithm 3 Policy Selection and Adaptive Clustering

1: Initialize Ω = Θ, r̄Θ(z) = 0,MΘ(π) = 0, ∀z ∈ Z .

2: for each student i do

3: Determine active cluster C ∈ Ωi such that θi ∈ C
4: Case 1: ∃z ∈ Z such that MC(z) ≤ γ(i, l)
5: Randomly select among such policies σi = z
6: Case 2: ∀z ∈ Z , MC(z) > γ(i, l)
7: Select σt = argmin

z∈Z
r̄C(z).

8: Set MC(σ
i)←MC(σ

i) + 1
9: (The student GPA ri is realized.)

10: Update r̄C(σ
t)

11: if
∑

z MC(z) ≥ ζ(l) then

12: Uniformly partition C into 2W level-(l + 1) stu-

dent clusters.

13: Update the set of active clusters Ωi.

14: Update the counters and GPA estimates for all

new student clusters

15: end if

16: end for

Assumption 1. (Student Similarity). For each policy z ∈
Z , there exists α > 0 such that for all θ, θ′ ∈ Θ, we have

|µθ(z)− µθ′(z)| ≤ ‖θ, θ′‖α.

The above assumption states that if the student background

(i.e. context) is similar, then the expected GPA by using

the same course sequence recommendation policy is also

similar.

Proposition 1. By setting γ(i, l) = 22αl ln i and ζ(l) =
A2pl, if the student context arrivals by student I is uni-

formly distributed, the learning regret for students up to I

is Reg(I) = Õ(I
2α+W

3α+W).

As we can see, the regret bound is sublinear in the num-

ber of students I and hence, if I is sufficiently large, then

the average regret will be close to 0, which means that the

optimal average GPA is achieved.

5. Experiments

5.1. Dataset

Our experiments are based on a dataset from the under-

graduate curriculum of the Mechanical and Aerospace En-

gineering (MAE) department at UCLA. The dataset con-

tains the course sequences and the course grades of 1444

anonymized students who graduated between the academic

years 2013 and 2015. The course availability varies across

years; typically, a course is offered either once or twice ev-

ery academic year. UCLA adopts the quarter system and in

each academic year and courses are mostly offered in Fall,

Winter, Spring quarters but not Summer quarters. There-

fore, we will consider that one academic year consists of

���

���

��

���

���

��

���

���

��

�	
��
�����

��
��
�����

��
��
�����

���
�������� ��������
�����
���
�
��� ��������
�����
���
�
���

Figure 6. Graduation Time Distribution and the Impact of Math

SAT score.

three quarters (hence, four academic years equal 12 quar-

ters).

The dataset also includes context information of the stu-

dents, including their SAT scores and their high school

GPAs. We observe that many students in the dataset take

courses outside of the curriculum (such as the art courses).

Our model can be extended to capture this possibility with

added model complexity but our experiment in this paper

does not consider the recommendation of such courses.

Some of the students in the dataset are transfer students,

and they do not need to take the same number of courses as

the regular students, since they may have fulfilled several

requirements before coming to UCLA. Since the course

information before the transferring is not included in this

dataset, we exclude such transfer students from our analy-

sis. Figure 6 shows the graduation time distribution of the

students in the dataset. As we can see, even though the

majority of students graduate on time within the desired

four years (12 quarters), many students do not graduate

on time and stay in the college for one or even two more

years. There is also a noticeable difference in the gradu-

ation time distributions for students with different context

information: students with higher math SAT scores have a

higher probability to graduate on time. This suggests that

personalization based on the students’ context information

has indeed the potential to provide better learning experi-

ence and lead to better learning outcomes.

5.2. Impact of constraints

In this subsection we illustrate how course prerequisite

and availability reduce the number of possible course se-

quence recommendations for students in MAE department

at UCLA. Figure 2 in Sec. 3 depicts the prerequisite DAG

of the 19 courses used for analysis. Most of these courses

are math, physics, and core MAE major courses. Generally

speaking, math courses are prerequisites of physics courses

which are further prerequisites of MAE major courses. We

consider two cases of course availability constraints. In the

first case, most courses are offered twice every academic

year and in the second case, most courses are offered once

every academic year. This allows us to investigate the im-

pact of course availability on course sequence recommen-

Personalized Course Sequence Recommendation

1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

of

 e
m

er
ge

d
st

at
es

 /

of
 a

ll
po

ss
ib

le
 s

ta
te

s

Quarter

Case 1 Course Availability
Case 2 Course Availability

Figure 7. Number of Course Completion States.

dation. We focus on how to recommend course sequences

to complete these 19 courses as soon as possible.

First, we investigate the possible course completion states

that can emerge. Although there are totally 219 = 524288
possible states, the course prerequisites and availability

significantly limit the number of possible states that can

emerge. Figure 7 illustrates the number of possible states

(i.e. the size of the state set L(t) defined in Section III-

A). Interestingly, the course prerequisite constraint limits

lim
t→∞

L(t) as the quarters go by. In our experiment, there

are totally 4880 possible completion states depending on

whether the student has taken, passed or failed the course,

which are significantly fewer than the possible states with-

out any prerequisite constraints. Moreover, the maximal

number of possible states are reached within a finite num-

ber of quarters. On the other hand, the course availability

constraint affects how fast the set L(t) expands and reaches

its maximal size. When courses are offered less frequently,

L(t) expands more slowly but will eventually reach the

maximal size.

5.3. Course sequences

In this subsection, we apply the forward-search backward-

induction algorithm presented in Sec. 3 to compute candi-

date course sequence recommendation policies to students

to complete the 19 courses. Although the course difficulty

varies across courses, for illustrative purposes, we set the

course failure ratio to be the same ǫ = 0.1 for all courses.

Table 1 and 2 show the best sequences that can be obtained

for the two course availability cases when the student does

not fail any course. In Case 1, each course is offered at

least once a year. In Case 2, each course is offered at least

twice a year. It is worth noting that while some courses are

taken after some others in the first case, the order can be

reversed in the second case due to different course avail-

ability constraints. The generated course sequence is also

useful for the students to decide when is good time to take

extracurricular courses (e.g. the art courses). For instance,

Table 1. Best Recommended Course Sequence (Case 1 Course

Availability)

QUARTER RECOMMENDED COURSES

1 MATH 31A, CS 31, MAE 94, CHE 20
2 MATH 31B, MSE 104
3 PHY 1A, MATH 32A, MATH 33B
4 PHY 1B, PHY 4AL, MATH 32B
5 PHY 1C, PHY 4BL, MATH 33A, MAE 101
6 MAE 105A, MAE 102, MAE 103

Table 2. Best Recommended Course Sequence (Case 2 Course

Availability)

QUARTER RECOMMENDED COURSES

1 MATH 31A, MAE 94, CHE 20
2 MATH 31B, MSE 104
3 CS 31, MATH 32A, PHY 1B
4 MATH 32B
5 PHY 1A, MATH 33A, MAE 105A
6 PHY 1B, PHY 4AL
7 PHY 1C, PHY 4BL
8 MAE 101
9 MAE 102, MAE 103

a student should focus on the curriculum courses in quar-

ter 1, 3 and 5 since three courses need to be taken in each

of these quarters while quarters 4 and 8 are good time for

the student to take extracurricular courses that fall in the

student’s interest.

5.4. Personalized policy selection

As mentioned in Sec. 4, depending on the context informa-

tion of the students, different course sequence recommen-

dation policies may result in different learning experience.

The first step of our framework constructs course sequence

recommendation policies to minimize time-to-graduation.

The second step then personalizes the recommendation ac-

cording to the students’ context to achieve a high GPA.

Due to the limited number of student records that we have,

we focus on the subsequence recommendation for a subset

of 3 MAE major courses (i.e. MAE 101, MAE 103, MAE

105A). From our dataset, we observe that there are six se-

quences that student use to take these 3 courses. We will

use these six typical sequences to validate the proposed per-

sonalized policy selection algorithm. Note that we are not

using the policies generated in the first step to make course

sequence recommendations because the results on the stu-

dents in the dataset cannot be known if they are not aligned

with the actual sequences that the students take. Thus, in-

stead of evaluating the joint efficacy of the policy construc-

tion and policy selection, we only evaluate the efficacy of

the policy selection algorithm in this subsection.

Personalized Course Sequence Recommendation

Table 3. GPA statistics for the six course sequences

SEQUENCE 1 2 3 4 5 6

NUMBER OF STUDENTS 89 75 72 51 31 18

SAT≤700
MEAN 3.36 3.02 3.08 3.05 3.31 3.09

COUNT 28 20 28 13 21 4

700<SAT≤760
MEAN 3.28 3.37 3.29 3.17 3.26 3.39

COUNT 38 22 22 16 5 5

760<SAT≤780
MEAN 3.61 3.13 3.22 3.25 NA 3.50

COUNT 14 19 14 10 0 8

SAT>780
MEAN 3.39 3.45 3.16 3.33 3.04 3.9

COUNT 9 14 8 12 5 1

Table 3 shows the statistics regarding these 6 subsequences.

As we can see, depending on the context information (i.e.

math SAT score) of the students, different course sequences

yield different GPA performance. The average GPA of

these students is 3.26. The evaluation of the proposed per-

sonalized policy selection will use the statistics given in

Table 3. We compare the proposed algorithm with several

benchmarks: Oracle: the oracle algorithm knows the GPA

statistics a priori and hence always recommends the best

course sequence to each student. Learning without Per-

sonalization: this algorithm does not know the GPA statis-

tics. However, when recommending course sequences, it

ignores the context information of the students. Random:

this algorithm simply recommends course sequence to stu-

dents randomly.

Figure 8 shows the average GPA that the students can

obtain as the proposed algorithm recommends course se-

quences to more students. Initially, the achievable GPA is

low since the algorithm does not have sufficient training

samples. As more training samples are provided, the per-

formance of the algorithm improves, causing an increase in

the simulated GPA for the selected course sequence. More-

over, the algorithm adaptively clusters the students accord-

ing to their context information and significantly outper-

forms sequence recommendation that ignores the person-

alized context information. It is noteworthy that the Ran-

dom scheme achieves a similar GPA as the actual average

GPA in the dataset (i.e. 3.26). This suggests that the cur-

rent practice of course sequence selection does not recog-

nize the difference in individual students and hence, there is

much room to improve the students’ learning outcomes by

personalizing the course sequences recommended to stu-

dents.

6. Conclusion

In this paper, we studied the problem of personalized

course sequence recommendation. The problem is solved

in two steps. In the first step, we determine candi-

date course sequence recommendation policies that re-

sult in short time-to-graduation using a Forward-Search

0 500 1000 1500 2000
3

3.1

3.2

3.3

3.4

3.5

3.6

Number of Students
A

ve
ra

ge
 G

P
A

Personalized (Proposed)
Oracle
Random
Learning without Personalization

Figure 8. GPA performance v.s. the number of students

Backward-Induction algorithm. In the second step, we

develop an online regret minimization learning algorithm

to select personalized course sequence recommendation

policies among the candidate policies for students aimed

at maximizing students’ GPA performance. Our analysis

and simulation results show that the proposed personalized

course sequence recommendation method is able to shorten

the students’ graduation time and improve students’ GPAs.

Our framework also has important implications on how the

curriculum planner should design the curriculum and allo-

cate teaching resources.

References

Four-year myth. http://completecollege.org/wp-

content/uploads/2014/11/4-Year-Myth.pdf, 2014.

Kdd cup 2015: Predicting dropouts in mooc.

https://kddcup2015.com, 2015.

Astin, Alexander W and Oseguera, Leticia. Degree attain-

ment rates at american colleges and universities: Revised

edition. Higher Education Research Institution, Univer-

sity of California Los Angeles, 2005.

Balabanović, Marko and Shoham, Yoav. Fab: content-

based, collaborative recommendation. Communications

of the ACM, 40(3):66–72, 1997.

Personalized Course Sequence Recommendation

Baraniuk, R. Open education: New opportunities for sig-

nal processing. In Acoustics, Speech and Signal Process-

ing (ICASSP), 2015 IEEE International Conference on,

2015.

Bendakir, Narimel and Aimeur, Esma. Using association

rules for course recommendation. In Proceedings of the

AAAI Workshop on Educational Data Mining, volume 3,

2006.

Cen, Ling, Ruta, D., and Ng, J. Big education: Oppor-

tunities for big data analytics. In Digital Signal Pro-

cessing (DSP), 2015 IEEE International Conference on,

pp. 502–506, July 2015. doi: 10.1109/ICDSP.2015.

7251923.

Chen, Chih-Ming, Lee, Hahn-Ming, and Chen, Ya-Hui.

Personalized e-learning system using item response the-

ory. Computers & Education, 44(3):237–255, 2005.

Chu, Wei, Li, Lihong, Reyzin, Lev, and Schapire, Robert E.

Contextual bandits with linear payoff functions. In Inter-

national Conference on Artificial Intelligence and Statis-

tics, pp. 208–214, 2011.

Dudik, Miroslav, Hsu, Daniel, Kale, Satyen, Karampatzi-

akis, Nikos, Langford, John, Reyzin, Lev, and Zhang,

Tong. Efficient optimal learning for contextual bandits.

arXiv preprint arXiv:1106.2369, 2011.

Farzan, Rosta and Brusilovsky, Peter. Social navigation

support in a course recommendation system. In Adap-

tive hypermedia and adaptive web-based systems, pp.

91–100. Springer, 2006.

Ghauth, Khairil Imran and Abdullah, Nor Aniza. Learn-

ing materials recommendation using good learners rat-

ings and content-based filtering. Educational Technol-

ogy Research and Development, 58(6):711–727, 2010.

Klasnja-Milicevic, Aleksandra, Vesin, Boban, Ivanovic,

Mirjana, and Budimac, Zoran. E-learning personaliza-

tion based on hybrid recommendation strategy and learn-

ing style identification. Computers & Education, 56(3):

885–899, 2011.

Lan, Andrew S, Waters, Andrew E, Studer, Christoph, and

Baraniuk, Richard G. Sparse factor analysis for learning

and content analytics. The Journal of Machine Learning

Research, 15(1):1959–2008, 2014.

Langford, John and Zhang, Tong. The epoch-greedy algo-

rithm for multi-armed bandits with side information. In

Advances in neural information processing systems, pp.

817–824, 2008.

Meier, Y., Xu, J., Atan, O., and van der Schaar, M. Predict-

ing grades. Signal Processing, IEEE Transactions on,

PP(99):1–1, 2015. ISSN 1053-587X. doi: 10.1109/TSP.

2015.2496278.

Parameswaran, Aditya, Venetis, Petros, and Garcia-

Molina, Hector. Recommendation systems with com-

plex constraints: A course recommendation perspective.

ACM Transactions on Information Systems (TOIS), 29

(4):20, 2011.

Parameswaran, Aditya G, Garcia-Molina, Hector, and Ull-

man, Jeffrey D. Evaluating, combining and generalizing

recommendations with prerequisites. In Proceedings of

the 19th ACM international conference on Information

and knowledge management, pp. 919–928. ACM, 2010.

Resnick, Paul and Varian, Hal R. Recommender systems.

Communications of the ACM, 40(3):56–58, 1997.

Ricci, Francesco, Rokach, Lior, and Shapira, Bracha. In-

troduction to recommender systems handbook. Springer,

2011.

Shani, Guy, Brafman, Ronen I, and Heckerman, David.

An mdp-based recommender system. In Proceedings of

the Eighteenth conference on Uncertainty in artificial in-

telligence, pp. 453–460. Morgan Kaufmann Publishers

Inc., 2002.

Shishehchi, Saman, Banihashem, Seyed Yashar, Zin, Nor

Azan Mat, and Noah, Shahrul Azman Mohd. Review

of personalized recommendation techniques for learners

in e-learning systems. In Semantic Technology and In-

formation Retrieval (STAIR), 2011 International Confer-

ence on, pp. 277–281. IEEE, 2011.

Slivkins, Aleksandrs. Contextual bandits with similarity in-

formation. The Journal of Machine Learning Research,

15(1):2533–2568, 2014.

Tekin, C., Braun, J., and van der Schaar, M. etutor: On-

line learning for personalized education. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE In-

ternational Conference on, pp. 5545–5549, April 2015.

doi: 10.1109/ICASSP.2015.7179032.

Wen-Shung Tai, David, Wu, Hui-Ju, and Li, Pi-Hsiang. Ef-

fective e-learning recommendation system based on self-

organizing maps and association mining. The Electronic

Library, 26(3):329–344, 2008.

