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A Micro-foundation of Social Capital in Evolving
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Abstract—A social network confers benefits and advantages on individuals (and on groups); the literature refers to these benefits and
advantages as social capital. An individual’s social capital depends on its position in the network and on the shape of the network – but
positions in the network and the shape of the network are determined endogenously and change as the network forms and evolves.
This paper presents a micro-founded mathematical model of the evolution of a social network and of the social capital of individuals
within the network. The evolution of the network and of social capital are driven by exogenous and endogenous processes – entry,
meeting, linking – that have both random and deterministic components. These processes are influenced by the extent to which
individuals are homophilic (prefer others of their own type), structurally opportunistic (prefer neighbors of neighbors to strangers),
socially gregarious (desire more or fewer connections) and by the distribution of types in the society. In the analysis, we identify
different kinds of social capital: bonding capital refers to links to others; popularity capital refers to links from others; bridging capital
refers to connections between others. We show that each form of capital plays a different role and is affected differently by the
characteristics of the society. Bonding capital is created by forming a circle of connections; homophily increases bonding capital
because it makes this circle of connections more homogeneous. Popularity capital leads to preferential attachment : individuals who
become popular tend to become more and more popular because others are more likely to link to them. Homophily creates inequality
in the popularity capital attained by different social categories; more gregarious types of agents are more likely to become popular.
However, in homophilic societies, individuals who belong to less gregarious, less opportunistic, or major types are likely to be more
central in the network and thus acquire a bridging capital. And, while extreme homophily maximizes an individual’s bonding capital, it
also creates structural holes in the network, which hinder the exchange of ideas and information across social categories. Such
structural holes represent a potential source of bridging capital: non-homophilic (tolerant or open-minded) individuals can fill these
holes and broker interactions at the interface between different social categories.

Index Terms—Centrality, homophily, network formation, popularity, preferential attachment, social capital, social networks.
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1 INTRODUCTION

SOCIAL networks bestow benefits – tangible benefits
such as physical and monetary resources and intangible

benefits such as social support, solidarity, influence,
information, expertise, popularity, companionship and
shared activity – on the individuals and groups who
belong to the network. Such resources allow individuals
to do better in the network; they help individuals
accomplish tasks, produce and spread information, broker
interactions across social categories, display influence on
other individuals, gain more knowledge, or enjoy more
emotional and social support. The concept of social capital
has come to embody a set of different incarnations of the
benefits attained by social categories via networked societal
interactions [1]- [6].

Contemporary sociologists have established different
definitions and conceptualizations for social capital. For
instance, Coleman has defined the social capital as “a
function of social structure producing advantage” [1], and
he advanced social capital as a conceptual tool that puts
economic rationality into a social context [1] [2]. Social
capital for Bourdieu is related to the size of network and
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the volume of past accumulated social capital commanded
by an individual [3]. Bourdieu considers that clear profit
is the main reason for an individual to engage in and
maintain links in a network, and the individuals’ potential
for accruing social profit and control of capital are non-
uniformly distributed. Both conceptualizations of Coleman
and Bourdieu are related; they view social capital as
existing in relationships and ties, and they postulate that
density and closure are distinctive advantages of capital.
While such vision assumes that strong ties (the links
between homogeneous and like-minded individuals) are
the prominent sources of social capital, other sociologists
such as Granovetter, Putnam, and Burt have argued that
weak ties (the links between diverse and weakly connected
network components) are also a source of capital [6]- [9].
That is, individuals who can broker connections between
otherwise disconnected social categories are more likely
to connect non-redundant sources of information, thus
promoting for innovation and new ideas [8]. In [8], Burt
provided a generalized framework for social capital,
viewing bonding capital in connected communities as a
source for bridging capital for individuals who connect
these communities.

As it is for other forms of capital, inequality is displayed
in the creation of social capital [10]; that is to say, social
capital accrues over time as networks emerge and evolve,
and since individuals gain different social positions in the
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emergent network, capital is not created uniformly across
agents; “better connected” agents possess more capital.
While there are a number of somewhat different definitions
of social capital in the literature, these definitions share the
following set of features. First, social capital is a metaphor
about advantage, and it can be thought of as the contextual
complement of human capital; it is not depleted by use,
but rather depleted by non-use. Second, social capital is
a function of the collective social structure, and the social
positions of individuals; well connected individuals possess
more capital, and well connected networks possess a larger
shared value. Finally, the creation of social capital exhibits
inequality due to the heterogeneity of norms and behaviors
of the different social categories, which reflects on their
positions in the network.

Motivated by this discussion, this paper aims at
establishing the micro-foundations of emerging social
capital in an evolving network. In particular, we present a
comprehensive mathematical model for dynamic network
formation, where agents belonging to heterogeneous social
categories take link formation decisions (e.g. “follow” a
user on Twitter or ResearchGate [17] [18], “cite” a paper
that is indexed by Google Scholar, etc) which on one hand
gives rise to an endogenously formed network, and on
the other hand creates social capital for individual agents
and groups. We view social capital as: “any advantage or
asset that is accrued by an individual or a social category in an
evolving network due to the social position that they hold in the
underlying network structure. An advantage can correspond to
the extent of popularity, prestige, or centrality of an individual;
or the density and quality of an individual’s ego network.”
In our model, we consider that homophily, which is an
individual’s tendency to connect to similar individuals [11],
contextualizes economic rationality, i.e. homophily is what
creates the incentives for individuals to connect to each
other. However, the way individuals meet, the number of
links they form, and the way trust propagates among them
is governed by norms and behaviors, which generally vary
from one social category to another. We view the different
forms of social capital as being emergent by virtue of an
evolving network, where the evolution of the network is
highly influenced by both the actions of individuals, as well
as the norms and behaviors of social categories. Due to
the heterogeneity of the norms and behaviors of different
social categories, social capital inequality is exhibited, and
some social categories would collectively acquire more
prominent positions in the network than others. In the
following subsection, we briefly describe the basic elements
of our model.

1.1 A Micro-foundational Perspective of Network Evo-
lution and Social Capital Emergence

The central goal of the paper is to study the micro-
foundations of different forms of emerging social capital
via a mathematical model for network evolution. In our
model, networks are formed over time by the actions of
boundedly rational agents that join the network and meet
other agents via a random process that is highly influenced
by the dynamic network structure and the characteristics
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Fig. 1: Framework for the analysis of emerging social capital.

of the agents themselves. Thus, networks evolve over time
as a stochastic process driven by the individual agents,
where the formation of social ties among agents are in
part endogenously determined, as a function of the current
network structure itself, and in part exogenously, as a func-
tion of the individual characteristics of the agents. Agents
have bounded rationality, i.e. they only have information
about other agents they meet over time, they are not able
to observe the global network structure or reason about
links formed by others, and they are myopic in the sense
that they take linking decisions without taking possible
future meetings into account. We focus on the impact of
various exogenous parameters that describe the norms and
behaviors of heterogeneous social categories, on the endoge-
nously evolving network structure, and consequently on the
emerging social capital. Fig. 1 depicts all such exogenous
and endogenous parameters. In the following, we provide
definitions for the exogenous parameters under study.

Type Distribution

Agents are heterogeneous as they possess type attributes
that designate the social categories to which they belong.
A social category is a group of individuals who follow
the same norms and behavior; these norms and behaviors
are mapped from a high-dimensional latent social space
(See Blau’s classical book on consolidated and unconsoli-
dated trait dimensions [69]). The experiences of the different
interacting social categories in the network are generally
not symmetric; thus, social capital is created non-uniformly
across them. The type distribution corresponds to the rel-
ative population share of different social categories, and
represents the fraction of agents of each type in the network.
We say that an agent belongs to a type minority to qualita-
tively describe a scenario where the fraction of agents of the
corresponding type in the population is small, and we say
that an agent belongs to a type majority otherwise.

Homophily

Homophily refers to the tendency of agents to connect to
other similar-type agents, and it is widely regarded as a
pervasive feature of social networks [25], [26], [27]. Various
recent empirical studies have shown that homophily stands
as an attraction mechanism in forming marriage and cohab-
itation networks (See Skvoretz work in [70]). We capture
the extent to which an agent is homophilic by an exogenous
homophily index, which we formally define in Section 3.
The homophily index can be thought of as the amount of
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“intolerance” that a certain type of agents have towards
making contacts with other types. It can also represent the
“closed-mindedness” of a social category; low homophilic
tendency means that agents are eager to connect and accept
views of other social categories, whereas high homophilic
tendency means that agents restrict their social ties to only
like-minded individuals.

Social Gregariousness
Some types of agents can be more sociable than others, and
thus are willing to form more links. Social gregariousness is
simply measured by the minimum number of links an agent
is willing to make.

Structural Opportunism
Agents in the network are said to be opportunistic if they
exploit their contacts to find new contacts; thus, agents are
more likely to link with the neighbors of their neighbors
if they are opportunistic. Structural opportunism can also
be interpreted as the flow of trust among individuals; each
agent trusts the connections of his neighbors more than he
trusts others. Opportunism induces closure in the network,
i.e. connections of an individual are well connected, which
on one hand may be thought of as a source of increasing
social support for an individual, and on the other hand it
can lead to information redundancy, i.e. all connections of
an individual possess similar information since they are
well connected among each other. Structural opportunism
can also correspond to a property of a behavior-dependent
meeting mechanism; for instance, users in Twitter are
expected to retweet the tweets posted by users they follow,
which leads to the followers of followers of a certain user to
follow him. Similarly, researchers find new papers through
the references of papers that they have already cited.

We focus on three different incarnations of social capital
that agents gain as the network evolves. These forms of
capital differ in terms of the type of advantage they offer
to agents, the way they are created and distributed among
agents and social categories, and their dependence on the
underlying norms and behaviors of social groups, which
are abstracted by the exogenous parameters. We focus on
directed networks, i.e. networks in which ties are formed uni-
laterally such as Twitter and citation networks. In particular,
we focus on the following forms of social capital that emerge
in such networks.

Bonding capital
We define the bonding capital as the aggregate informa-
tional and social benefits that an individual draws from
its direct neighbors in the network. The bonding capital
depends only on an individual’s ego network (direct con-
nections), and is invariant to the global network structure
as long as the local ego network is preserved. The bonding
capital increases if the ego network is more homogeneous;
individuals are better off when connecting to other simi-
lar individuals. This is because more similar individuals
are more likely to provide more social support and more
relevant information. Since in our model agents form links
driven by homophilic incentives, we measure the bonding

capital by the agents’ utility functions. This form of capital
is close to the definitions of Coleman and Bourdieu [1]- [3].

Popularity capital
In our model, we consider a directed social network, thus
links are formed by an individual and others also form links
towards that individual. Individuals gain bonding capital
by forming links to others, and they also gain popularity
capital by having other individuals form links to them.
The popularity capital represents an individual’s ability to
influence others. That is, an individual’s popularity capital
allows it to better spread information and ideas in the
network, and also to gain support and agreement on the
individual’s views and opinions. We measure the popularity
capital of an individual by simply counting the number of
individuals forming links with that individual.

Bridging capital
Individuals who connect different social categories are
able to control the flow of information across those groups
and obtain non-redundant information from diverse
segregated communities, which allows them to come up
with innovations and new ideas [9]. Thus, individuals can
acquire a bridging capital because of their centrality in the
network rather than their popularity or the quality of their
ego networks. We measure the bridging capital using a
graph theoretic centrality measure, namely, the betweenness
centrality.

Examples of bonding capital include the knowledge
acquired by citing research papers, information and news
obtained from following users on Twitter, etc. Popularity
capital includes the number of citations associated with a
published paper, the impact factor of a journal, the number
of followers of a user on Twitter [16], etc. Examples of
bridging capital include conducting interdisciplinary re-
search, creating cross-cultural memes on Twitter, etc. Bond-
ing capital helps individuals acquire knowledge, informa-
tion and support, which allows them to accomplish tasks
[15], whereas popularity capital can give financial returns
(such as research funds for popular scholars), or intellectual
influence (such as in the case of citation networks) [18]. Fi-
nally, bridging capital leads to innovation [9], i.e. innovative
interdisciplinary research [63]; cross-cultural creative con-
tent generated by internet users [66]; or acquisition of non-
redundant information about job opportunities in informal
organizational networks [8]. Fig. 1 depicts the framework of
the paper; we focus on four different exogenous parameters,
which abstract the norms and behaviors of social categories,
and study their impact on the emergence of the three forms
of social capital discussed above.

1.2 Contributions
The central question addressed in this paper is: how do
bonding, popularity, and bridging forms of capital emerge
simultaneously in an evolving network? We classify our
results based on the different forms of capital as follows.

Bonding capital: In Section 4, we study the emergence
of bonding capital by characterizing the ego networks of
individual agents in terms of the time needed for an agent
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to form its ego network, and the types of agents in that
network. We show that majority and opportunistic types are
more likely to establish their ego networks in a short time
period. Moreover, we show that extreme homophilic ten-
dencies for all social categories is a necessary and sufficient
condition for maximizing the aggregate bonding capital of
the society – so we show that polarization in a society
maximizes bonding capital.

Popularity capital: In Section 5, we show that the
acquisition of popularity capital displays the rich-get-richer
effect due to the individuals’ structural opportunism. In
other words, the popular individuals get more popular as
structural opportunism promotes the propagation of trust
and reputation across the network, which endows popular
agents with “reputational advantages” over time. Further-
more, we show that in tolerant (non-homophilic) societies,
an individual’s age and the collective gregariousness of
social categories are the forces that determine an agent’s
popularity capital, whereas homophily can create asymme-
tries in the levels of popularity attained by different social
groups.

Bridging capital: In Section 6, we demonstrate (via
simulations) the strength of weak ties by showing that
when a social category has a different attitude towards
homophily compared to all other categories, it ends up
being the most central in the network. In particular, we show
that the structural holes created in extremely homophilic
networks represent a potential source of bridging capital
for “open-minded” social categories; non-homophilic indi-
viduals can fill these holes and broker interactions at the
interface between different categories, which allows them
to be the most central agents, even if they are neither the
most popular nor represent a majority type in the network.
Furthermore, we show that in extremely non-homophilic
societies, homophilic social categories are the most central;
that is, despite the absence of cross-category structural
holes, homophilic agents reside in the center of the network,
acting as an information hub or a dominant coalition, through
which information diffusion is controlled.

2 RELATED WORKS

To the best of the authors’ knowledge, none of the network
formation models in literature have studied the emerging
social capital associated with endogenously formed net-
works. Qualitative studies on social capital by contempo-
rary sociologists such as Coleman, Bourdieu, Lin, Putnam,
Portes and Granovetter can be found in [1]- [10], [13]-
[16]. These studies give qualitative definitions for the so-
cial capital in general (not necessarily networked) societies
along with some hypotheses about its emergence in different
societies, and they support their hypotheses on the basis of
historical and experimental evidence. In addition to the clas-
sical work of Coleman, other notable quantitative sociolog-
ical studies that hinge on graph-theoretic tools to quantify
and analyze social capital were conducted by Inkpen and
Tsang [71], Burt [72], and Nahapiet and Ghoshal [73]. All
those works have developed graph-theoretic notions of so-
cial capital (inspired by Freeman’s notions of centrality [12]);
however, unlike our work, these frameworks are restricted
to quantifying the social capital in static networks rather

than understanding the evolution and emergence of these
quantitative forms of capital.

Empirical studies on the social capital in Online Social
Networks (OSN) were carried out in [16], [66] and [68].
These works have given qualitative insights into the emer-
gence of social capital in OSNs mainly based on data, e.g.
the number of followers and followees of a user on Twitter,
the frequency of interaction and message exchange among
users in Facebook, etc. All these works do not come up
with mathematical models for the emerging social capital in
evolving social networks, thus they neither offer a concrete
understanding and explanation for the micro-foundations of
social capital, nor offer a counterfactual analysis for different
scenarios of network evolution.

While no mathematical model has studied emergent so-
cial capital in networks, there exists a voluminous literature
focusing on network formation models. Previous works on
network formation can be divided into three categories:
networks formed based on random events [22], [23], [24],
[28]- [37], [54], networks formed based on strategic decisions
[40]- [46], [55], [75], [76] and empirical models distilled
by mining networks’ data [17]- [19], [21], [47]- [52], [59].
While a fairly large literature has been devoted to devel-
oping mathematical models for network formation, a much
smaller literature attempts to interpret and understand how
networks evolve over time, how individual agents affect
the characteristics of such networks, and the “value” of
social networking conceptualized in terms of social capital.
Probabilistic models based on random events are generative
models that are concerned with constructing networks that
mimic real-world social networks. In [28]- [39], agents get
connected in a pure probabilistic manner in order to realize
some degree distribution [28], or according to a preferential
attachment rule [29] [30]. While such models can capture the
basic structural properties of social networks, they fail to
explain why and how such properties emerge over time.

In contrast, strategic network formation models such as
those in [40]- [44], and our previous works in [45] [46], can
offer an explanation for why certain network topologies
emerge as an equilibrium of a network formation game.
However, these results are limited to studying network
stability and efficiency, and provide only very limited insight
into the dynamics and evolution of networks. Moreover,
although mining empirical data can help in building al-
gorithms for detecting communities [49]- [52], predicting
agents’ popularity [48], or identifying agents in a network
[47], it is of limited use in understanding how networks
form and evolve.

3 MODEL

3.1 Network model
We construct a model for a growing and evolving social
network. Time is discrete. One agent (or social actor in the
framework of Snijders [54]) enters the network at each mo-
ment of time (which is the usual assumption in the graph-
theoretic network science literature [29]- [35]); that is, one
paper is published in every time slot in a citation network
[57], or one user is creating a Twitter account in every
time slot [22]. Agents make link formation decisions that
lead to ”social graph”, based on which we can analyze the
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”emerging” social capital using the frameworks of Coleman,
Bourdieu, Lin, Putnam, Portes and Granovetter [1]- [10].

We index agents by their entry dates i ∈ {1, 2, . . ., t, . . .}.
Agents who have already joined the network by a given date
t have the opportunity to form (directed) links; we write Gt

for the network that has been formed (by entry and linking)
at time t. As we will see, this is a random process {Gt}∞t=0.
We write Gt for the space of all possible networks that might
emerge at time t and ΩG for the space of all possible real-
izations of the network process. At date t ∈ N, a snapshot
of the network is captured by a step graph Gt = (Vt, Et),
where Vt is the set of nodes, Et = {et1, et2, . . ., et|Et|} is the set
of edges between different nodes, with each edge etk being
an ordered pair of nodes etk = (i, j) (i ̸= j, and i, j ∈ Vt),
and |Et| is the number of distinct edges in the graph. We
emphasize that Gt is a directed graph. Nodes correspond
to agents and edges correspond to directed links (or social
ties in the terminology of Coleman and Burt [1]- [10])
between the agents. The adjacency matrix of Gt is denoted
by At

G = [At(i, j)], At(i, j) ∈ {0, 1}, At(i, i) = 0, ∀i, j ∈ Vt.
An entry of the adjacency matrix At(i, j) = 1 if (i, j) ∈ Et

k,
and At(i, j) = 0 otherwise. If At(i, j) = 1, then agent i has
formed a link with agent j, and we say that j is a “followee”
of i, and i is a “follower” of j. The directed nature of
a link indicates the agent forming the link, and only this
agent obtains the social benefit of linking and pays the link
cost. The indegree of agent i is the number of links that are
initiated towards i, denoted by deg−

i (t), while the outdegree,
denoted by deg+

i (t), is the number of links initiated by
agent i. Agents i and j are connected if there is a path of
edges from i to j (ignoring directions); a component is a
maximal connected set of agents. A singleton component is
a component comprising one agent. The number of non-
singleton components of a step graph Gt is denoted by
ω (Gt), where 1 ≤ ω (Gt) ≤ |Vt|.

Each agent i is described by a type attribute θi, which
belongs to a finite set of types θi ∈ Θ,Θ = {1, 2, 3, . . ., |Θ|},
where |Θ| is the number of types. The type of an agent
abstracts the social category to which it belongs; and all
agents belonging to the same social category follow the
same behavior which are mapped from a high-dimensional
latent social space [69]. The set of type-k agents at time t
is denoted by Vt

k, where Vt =
∪|Θ|

k=1 Vt
k, and Vt

k

∩
Vt
m =

∅, ∀k,m ∈ Θ, k ̸= m. We define the length-L ego network of
agent i at time t, Gt

i,L, as the subgraph of Gt induced by
node i, and any node j that can be reached via a directed
path of length less than or equal to L starting from node i. In
this paper, an “ego network” generally refers to the length-1
ego network of an agent.

There are three aspects of network formation: agents
enter; agents meet; agents form links. Entry is governed by
a stationary random process; meeting is governed by a non-
stationary random process; linking is governed by active
choices. We describe each of these processes in the following
subsections.

3.2 The Entry Process

At time 0 the network is empty (G0 = ∅). Agents enter one
at a time at each date t according to a stationary stochastic
process λ(t) = {θt}t∈N, with a sample space Λ = ΘN,

i.e. Λ = {(θ1, θ2, . . .) : θt ∈ Θ, ∀t ∈ N}. We assume that the
types of agents are independent and identically distributed
(θi and θj are independent for all i ̸= j), and that the agents’
type distribution is P(θi = k) = pk, where

∑
k∈Θ pk = 1, so,

λ(t) is a Bernoulli scheme. At date t, the expected number
of type-k agents in the network is pkt, the total number of
agents is t, i.e. |Vt| = t, and limt→∞

|Vt
k|

|Vt| = pk. Using Borel’s
law of large numbers, we know that

P
(
lim
t→∞

1

t

∣∣Vt
k

∣∣ = pk

)
= 1.

In other words, for a sufficiently large network size (and age
t), the actual fraction of agents of each type in the network
converges almost surely to the prior type distribution of the
Bernoulli scheme.

3.3 The Meeting Process
At each moment in time t, every agent i who is alive at
time t (i.e. i ≤ t) meets one other agent mi(t) (identified by
its entry date). The meeting process is random (described
in detail below); we write Mi(t) = {mi(t)}i+Ti−1

t=i for the
meeting process of agent i. The meeting process may stop
at some finite time Ti (the stopping time) or continue
indefinitely (in which case Ti = ∞). The sample space of the
meeting process is given by M. Agents meet other agents
who belong to one of two choice sets (this terminology was
first introduced by Bruch and Mare in [53]), namely the
set of followees of followees and the set of strangers. Unlike
the entry process, which is stationary, the meeting process
depends on the current network, which in turn depends on
the past history: the probability that agent i meets agent j at
time t depends on their relative positions in the network at
time t, which in turns depend on the sequence of meetings
for both agents up to time t − 1. Moreover, the probability
that a certain sample path of the meeting process occurs
depends on all the exogenous parameters shown in Fig. 1.

Given a time t, an agent i alive at time t, and the
existing network Gt, write N+

i,t for the set of followees of

i and Ki,t =
(∪

j∈N+
i,t−1

N+
j,t−1/ {i}

)
/N+

i,t−1 for the set of
followees of followees of agent i. Everyone who is neither a
followee nor a followee of a followee is a stranger. (Note that
the newly entering agent t is always a stranger.) At time t
agent i meets either a followee of a followee or a stranger;
the probability of meeting a followee of a followee (if one
exists) is an exogenous parameter γk ∈ [0, 1] (where k is
the type of i), which we think of as structural opportunism
(taking advantage of opportunities 1), where γk = 1 for fully
opportunistic agents, and γk = 0 for fully non-opportunistic
agents.

Denote the set of type-k followees of agent i ∈ Vt by
N+,k

i,t , and the set of all followees of i as N+
i,t =

∪|Θ|
k=1 N

+,k
i,t ,

where |N+
i,t| = deg+

i (t). Similarly, we denote the follow-
ers of agent i by N−

i,t, where |N−
i,t| = deg−

i (t). Define

the set Ki,t =
(∪

j∈N+
i,t−1

N+
j,t−1/ {i}

)
/N+

i,t−1 as the set
of followees of followees of agent i at time t, and the set

1. The parameter γk can also be thought of as a realization of the
triadic closure; the flow of “trust” among connected individuals [54], or
as an exploration-exploitation behavior; an agent either explores the
network or exploits his current connections with different probabilities.
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K̄i,t = Vt/
{
Ki,t

∪
N+

i,t−1

∪
i
}

as the set of strangers to agent
i at time t. The set of same type followees of followees is de-
noted as Kθi

i,t. LetNs
i (t) = |N+,θi

i,t |, Nd
i (t) = deg+

i (t)−Ns
i (t),

Ki(t) = |Ki,t|, Ks
i (t) = |Kθi

i,t|, and Kd
i (t) = Ki(t)−Ks

i (t).
For t ≥ i, if there are no followees of followees, then

i meets a stranger with uniform probability. If there are
followees of followees, then i meets a followee of a followee
with probability γk (and uniform over this choice set) and
meets an agent picked uniformly at random from the net-
work with probability 1− γk, i.e.

P (mi(t) ∈ Ki,t |Ki,t ̸= ∅ ) = γθi + (1− γθi)
Ki(t)

t− 1
,

and

P
(
mi(t) ∈ K̄i,t |Ki,t ̸= ∅

)
= (1− γθi)

t− 1−Ki(t)

t− 1
,

whereas P
(
mi(t) ∈ K̄i,t |Ki,t = ∅

)
= 1. Note that since a

new agent enters at each time step, and such an agent is a
stranger to all other agents, then we have P

(
K̄i,t ̸= ∅

)
= 1

for any time step t. At each time t, i meets a new agent; i
may or may not form a link to this agent. In addition some
agents may meet agent i, but i does not form links to those
agents. The meeting process realizes the limited-observability
of agents over time, i.e. agent i reasons about forming social
ties with only the agent it meets at time t, and cannot
observe the global network structure or the types of all
agents it does not meet. This is different from the complete
information and complete observability network formation
games in [29], or the preferential attachment models in [40]
which assumes that the linking behavior of a newly entering
agent relies on its knowledge of all the degrees of other
agents.

3.4 The Linking Process
When agent i meets agent mi(t) at time t, it observes
the type of mi(t) and decides whether or not to form a
link with mi(t) (Thus true types of agents who meet are
revealed). Agents draw benefits by linking to others but link
formation is costly. Agents optimize so they form a new
link if the marginal benefit of that link exceeds marginal
cost. The marginal benefit depends on existing links and on
types; we assume that linking to agents of the same type is
(weakly) better than linking to agents of a different type –
this is homophily. For simplicity we assume marginal cost
of linking is a constant c.

We assume local externalities, i.e. linking benefits do not
flow to indirect contacts, so i derives benefits only from its
(direct) neighbors. For simplicity we assume that the utility
depends only on the number of followees of the same type
Ns

i (t) and the number of followees of different types Nd
i (t),

and has the form

uti
(
Gt

i,1

)
= vθi

(
αs
θiN

s
i (t) + αd

θiN
d
i (t)

)
− c

t−1∑
j=i

aji , (1)

where ati ∈ {0, 1} is the action of agent i at time t; ati = 1
means that i links to mi(t), and ati = 0 means that i decides
not to link to mi(t), and

∑t−1
j=i a

j
i =

(
Ns

i (t) +Nd
i (t)

)
,

αs
θi

≥ αd
θi
, ∀θi ∈ Θ are the (type-specific) linking benefits,

vθi(x) : x→ R+ is the (type-specific) social benefit aggregation

function. For convenience, we assume that vθi(x) is strictly
concave, twice continuously differentiable, monotonically
increasing in x, and vθi(0) = 0. That is, the marginal benefit
of forming links diminishes as the number of links increases.
This corresponds to the fact that agents do not form an
infinite number of links in the network, but rather form a
“satisfactory” number of links. As shown in (2), i decides to
link tomi(t) only if the marginal utility is positive. Note that
i’s link formation decisions depend not only on the types of
agents it meets, but also on the order with which it meets
these agents.

Agent i will form a link to mi(t) exactly when doing so
creates a network that yields higher utility for him. Agents
are myopic and form links without taking the future into
account. This seems to us to be a realistic description of
behavior in social networks.

3.5 Homophily and Social Gregariousness

We characterize the extent of homophily and gregariousness
of different types of agents using exogenous (ex-ante) quan-
tities. To quantify the gregariousness of type-θ agents, we
define the parameters L∗

θ(α) and L̄∗
θ(α) for α ∈ R+ ∪{0} as

L∗
θ(α) = argmax

x∈Z
vθ(xα

s
θ + α)− xc, (3)

and
L̄∗
θ(α) = argmax

x∈Z
vθ(xα

d
θ + α)− xc. (4)

That is, L∗
θ(α) is the number of similar-type links that a

type-θ agent with an aggregate social benefit of α needs to
form in order to saturate its utility function (i.e. reach a point
in which adding more links provides no marginal benefit),
and L̄∗

θ(α) is defined similarly but with respect to different-
type links. It follows from the concavity of vθ(.) that both
L∗
θ(α) and L̄∗

θ(α) are bounded from above for all α ∈ R. The
parameter L∗

θ(0) can be interpreted as the “minimum number
of links that a type-θ agent desires to create upon entering the
network”. Hence, we use the parameter L∗

θ(0) to capture the
social gregariousness of type-θ agents.

Our conception of homophily is based on the framework
proposed by Coleman [37]. In particular, we define the
exogenous homophily index of type-θ agents as the “minimum
fraction of similar-type links that a type-θ agent desires to create
in its followee set upon entering the network”. In the light
of this definition, the exogenous homophily index can be
quantified straightforwardly using the gregariousness pa-
rameters in (3) and (4). That is, since L̄∗

θ(α) is monotonically
decreasing in α ∈ R+ ∪ {0}, then the maximum number of
different-type links that a type-θ agent can form is L̄∗

θ(0).
An agent with L̄∗

θ(0) different-type links attains a social
benefit of αd

θL̄
∗
θ(0), and hence its utility function is saturated

by forming links with L∗
θ(α

d
θL̄

∗
θ(0)) similar-type agents.

Therefore, the exogenous homophily index is given by

hθ =
L∗
θ(α

d
θL̄

∗
θ(0))

L∗
θ(α

d
θL̄

∗
θ(0)) + L̄∗

θ(0)
, (5)

where 0 ≤ hθ ≤ 1. The exogenous homophily index hθ
reflects the minimum fraction of similar-type agents that
a type-θ agent can have in its followee set while having
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(a) h1 = h2 = 0. (b) h1 = 1, h2 = 2
3

. (c) h1 = h2 = 1.

Fig. 2: Snapshots for a social network generated via our model at t = 900 with L∗
1(0) = L∗

2(0) = 3, p1 = p2 = 1
2

and |Θ| = 2
for various values of the exogenous homophily indices. The types of agents are distinguished by colors. In (a) there is lots of
cross-linking, in (b) the network is very dispersed, in (c) the network is separated into two homogeneous subnetworks.

ati = 1{∆ut
i(m

t
i;N

s
i (t),N

d
i (t))>0},

∆uti(m
t
i;N

s
i (t), N

d
i (t)) = vθi

(
αs
θi

(
Ns

i (t) + 1{θmi(t)
=θi}

)
+ αd

θi

(
Nd

i (t) + 1{θmi(t)
̸=θi}

))
−vθi

(
αs
θiN

s
i (t) + αd

θiN
d
i (t)

)
−c.
(2)

its utility function saturated. When type-θ agents are in-
different to the types of agents they connect to, i.e. type-
θ agents are extremely non-homophilic, then we have that
L∗
θ(α) = L̄∗

θ(α), L
∗
θ(α

d
θL̄

∗
θ(0)) = 0, and hθ = 0, which means

that agent i can get satisfied by connecting to a set of fol-
lowees that does not contain any similar-type followee. On
the other hand, if type-θ agents restrict their links to similar-
type agents only (type-θ agents are extremely homophilic),
then we have L̄∗

θ(α) = 0, L∗
θ(α

d
θL̄

∗
θ(0)) = L∗

θ(0), and hθ = 1.
As shown in Fig. 2, the more homophilic the agents are,
the more segregated the network will be in the sense that
different types of agents will be weakly connected.

3.6 Summary: Exogenous Parameters
In summary, our model involves four exogenous parame-
ters:

• Homophily: the homophily of type-k agents is cap-
tured by the exogenous homophily index hk.

• Social gregariousness: the gregariousness of type-k
agents is captured by L∗

k(0).
• Structural opportunism: the parameter γk reflects the

extent of structural opportunism for type-k agents.
• Type distribution: the fraction of type-k agents in a

large network (relative population share) is given by
pk.

Throughout this paper, we will use the notion of first-order
stochastic dominance (FOSD). We say that a pdf (or pmf) f(x)
first-order stochastically dominates a pdf g(x) if and only if
G(x) ≥ F (x), ∀x,with strict inequality for some values of x,
where F (x) and G(x) are the cumulative density functions.
We write X ≽ Y for the two random variables X and Y
when X first-order stochastically dominates Y .

4 BONDING CAPITAL

In this section we focus on bonding capital; we discuss
popularity capital and bridging capital in following sections.

4.1 Ego network formation time
Unlike previous works where link formation is a one-shot
process (which is the case in [24], [30], [34]- [41], [43],
and [44]), links (and consequently the bonding capital) are
created over time in our model; individuals meet others and
decide to establish connections until they forms a “satis-
factory” ego network/network of followees. Hence, indi-
viduals build up their bonding capital gradually over time,
and the time needed to reach a steady-state utility (form an
ego network) is an essential component for characterizing
the emergence of the bonding capital, and would be a very
crucial if agent’s exit from the network is considered. In this
section, we characterize the bonding capital in terms of the
time needed for the emergence of an ego network, as well
as the utility resulting from bonding to that ego network.

Based on the definition of the utility function in (1) and
(2), we know that there exists a finite number of connections
after which an agent stops forming links. The time horizon
over which the agent forms its ego network is random and
depends on all the exogenous parameters. For an agent i, the
ego network formation time (EFT) Ti is a random function
of the exogenous parameters, defined as

Ti ,
inf
{
t ∈ N : uτi

(
Gt

i,1

)
≥ uτi

(
Gt

i,1 ∪ j
)
, ∀θj ∈ Θ, τ > t

}
−i+1.

(6)
We emphasize that Ti is random: it depends on the network
formation process. We characterize the time spent by an
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agent in the process of forming his ego network/network
of followees in terms of the probability mass function (pmf)
of Ti. 2 We denote the pmf of Ti as fTi(Ti) : N → [0, 1].
The expected ego network Formation Time (EEFT) T i con-
ditioned on agent i’s type is given by

T i = EΩG [Ti |θi ] , (7)

where EΩG [.] is the expectation operator, and the expec-
tation is taken over all realizations of the graph process
(we drop the subscript ΩG in the rest of our analysis).
We say that agent i is socially unsatisfied if Ti = ∞; a
socially unsatisfied agent is an agent that never satisfies
its gregariousness requirements, i.e. agent i is socially un-
satisfied if deg+

i (t) < L∗
θi
(0), ∀t ≥ i. Such an agent keeps

searching for followees forever. In the following Lemma,
we specify the necessary and sufficient conditions under
which a newly entering agent has a positive probability of
becoming socially unsatisfied. The proofs for all Theorems
in this paper can be found in the online appendix in [74].
Lemma 1. In order that agent i becomes socially unsatisfied

with positive probability, it is necessary and sufficient
that γθi = 1 and 0 < hθi < 1.

This Lemma says that an agent gets unsatisfied if and
only if it is not extremely homophilic and at the same time
does not explore the strangers’ choice set in its meeting
process. In such a scenario, an agent’s meeting process is
governed by the actions taken previously by his neighbor-
hood, which may not allow that agent to meet with other
agents of diverse types. Unless otherwise stated, we assume
that γk < 1, ∀k ∈ Θ, thus agents never get trapped and
all agents have a finite EFT. In the rest of this subsection,
we characterize the EFT. We start by characterizing the EFT
for extreme cases of agents’ homophily in the following
Theorem.
Theorem 1.

1) If hk = 0, ∀k ∈ Θ, then the EFT for agent i is equal to
Ti = L∗

θi
(0) almost surely.

2) If hk = 1, ∀k ∈ Θ, then the distribution of the EFT
for every agent i conditioned on its type converges to
a steady-state distribution, i.e. limi→∞ fTi (Ti |θi = k ) →
fkT (T ), and the EEFT for an agent i conditioned on its
type T i = E[Ti | θi = k] converges as follows

lim
i→∞

T i =
1

pk
+

L∗
k(α

s
k)

(1− γk) pk + γk
.

Thus, the EFT for agents joining a large network only
depends on their types. Theorem 1 says that when the
agents are not homophilic, there is no uncertainty in the
ego network formation process, then both the number of
links and the EFT are equal to L∗

θi
(0) almost surely. This

“deterministic” EFT is independent of the network, and
only depends on the agent’s gregariousness. That is, if
hk = 0, ∀k ∈ Θ, then an agent’s journey in the network
is determined by how it values linking, and not by the
network structure or the actions of others. If agents are more

2. Note that Ti can be thought of as the stopping time of the linking
process. This can be easily proven by showing that the event Ti = T
only depends on the history of meetings and link formation decisions
up to time T .

sociable, i.e. are more gregarious, then they will spend more
time searching for followees, yet this time is deterministic
and only depends on parameters that are determined by the
agent and not the network. On the other hand, if agents
are extremely homophilic, then the agent’s journey in the
network will depend randomly on meetings with other
agents with whom they do not form any links. It is clear
from Theorem 1 that the EEFT of extremely homophilic
agents depends on the type distribution and opportunism,
in addition to gregariousness. We emphasize these depen-
dencies in the following corollary.

Corollary 1. (Gregarious agents and minorities search for fol-
lowees longer, opportunistic agents search shorter) If hk =
1, ∀k ∈ Θ, L̃∗

θi
(0) ≥ L∗

θi
(0), p̃θi ≥ pθi , and γ̃θi ≥ γθi ,

then for an agent i entering an asymptotically large
network we have that

Ti
(
pθi , γθi , L

∗
θi(0)

)
≼ Ti

(
pθi , γθi , L̃

∗
θi(0)

)
,

Ti
(
pθi , γθi , L

∗
θi(0)

)
≽ Ti

(
p̃θi , γθi , L

∗
θi(0)

)
,

Ti
(
pθi , γθi , L

∗
θi(0)

)
≽ Ti

(
pθi , γ̃θi , L

∗
θi(0)

)
,

where Ti
(
pθi , γθi , L

∗
θi
(0)
)

is the EFT associated with the
exogenous parameter tuple

(
pθi , γθi , L

∗
θi
(0)
)
.

Note that stochastic dominance implies domination in
mean. That is, if Ti

(
pθi , γθi , L

∗
θi
(0)
)
≼ Ti

(
pθi , γθi , L̃

∗
θi
(0)
)
,

then T i

(
pθi , γθi , L

∗
θi
(0)
)
≤ T i

(
pθi , γθi , L̃

∗
θi
(0)
)
. Moreover,

stochastic dominance implies domination of the expectation
of any increasing function of the EFT; if the bonding capital
is a decreasing function of the EFT, then one can infer
the impact of the exogenous parameters on the expected
bonding capital directly from the results of Corollary 1.

Corollary 1 says that in homophilic societies, the EFT
of a social category increases (in the sense of FOSD) as the
gregariousness of that group increases. This is intuitive
since the more followees an agent is willing to follow, the
longer it takes to find those followees. Moreover, agents
belonging to minorities are expected to spend more time
in the link formation process. This is again intuitive since
when the fraction of similar-type agents in the population
is small, each agent would need to meet a longer sequence
of agents in order to find similar-type followees. Finally,
the EFT decreases in the sense of FOSD as structural
opportunism increases. This is because once the agent
becomes attached to a network component of similar-type
agents, it is then better to be opportunistic and keep
meeting the followees of followees who are guaranteed to
be similar-type agents, rather than meeting strangers with
uncertain types. In this context, structural opportunism
captures what Mayhew calls “structuralist” homophily
effects in [26], and what Kossinets and Watts refer to as
“induced homophily” in [27], which corresponds to the fact
that similar-type agents are more likely to “meet” when
agents are opportunistic.

In the following Corollary, we show that the meeting
process, encoded in the structural opportunism, plays a
more crucial role for “minor” types.
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Fig. 3: Stochastic ordering of the EFT with respect to the exogenous parameters.

Corollary 2. If hk = 1, ∀k ∈ Θ, then for an agent i
entering an asymptotically large network, the following
is satisfied:

1) If agent i belongs to a minor type (pθi → 0),
then we have that limγθi

→1 T i = 1
pθi

+ L∗
θi
(0), and

limγθi
→0 T i =

L∗
θi

(0)

pθi
.

2) If agent i belongs to a major type (pθi → 1), then for
every γθi we have that limγθi

→0 T i = L∗
θi
(0).

Thus, if minor types exploit their current connections to form
new links, their EEFT becomes inversely proportional to
their population size pθi with an additive gregariousness
parameter, whereas if the minor types explore the network
by meeting strangers, their EEFT becomes inversely pro-
portional to their population size pθi with a multiplicative
gregariousness parameter. Therefore, minor types need to be
more opportunistic for their EEFT to decrease. On the other
hand, agents belonging to a “major” type with pθi → 1
have an EEFT T i → L∗

θi
(0) regardless of their level of

opportunism. Thus, the EFT of major types is less affected
by the meeting process.

Fig. 3 reports simulations that illustrate the results of
Theorem 1 and Corollary 1. In Fig. 3(a), we can see that the
EEFT in an extremely homophilic society is greater than that
of a non-homophilic society, and as the network grows, the
EEFT for homophilic agents converges to the value specified
by Theorem 1. In Fig. 3(b), we plot the cdf of the EFT for
homophilic agents with different levels of opportunism, and
we can see that the EFT of non opportunistic agents stochas-
tically dominates that of opportunistic agents. Similarly, we
demonstrate the impact of the type distribution in Fig. 3(c).

4.2 Ego network characterization: homophily and
structural holes

In the previous subsection we have characterized the time
needed for individuals to form their local ego networks,
and thus realize a bonding capital. A common aspect in
the definitions of bonding capital by Putnam [6], Bourdieu
[3], Coleman [1], Fischer [13], and Cobb [14], is that it
corresponds to the social support that individuals obtain
through networking. Social support includes companion-
ship, information exchange, emotional and instrumental
support. In our model, agents derive social support from
their followees; and such support is larger when the agent
and its followees are of the same type, i.e. if an agent con-
nects with same-type agents, they will acquire more relevant
information [15]. Thus, the types of agents in an agent’s
ego network determine its bonding capital. Based on this,
we consider an agent’s utility function, which represents
the agent’s net aggregate linking benefit, as an operational
measure for the bonding capital accumulated by that agent.
The bonding capital accumulated by an agent i at time t
is simply measured by its utility uti, whereas the bonding
capital of type-k agent is measured by their average utility
U t
k = 1

|Vt
k|
∑

j∈Vt
k
utj , and the bonding capital of all agents

in the network is U t = 1
t

∑
i∈Vt uti.

We note that a larger ego network does not imply greater
social or informational support. In fact, an agent might
establish an ego network that comprises many different-
type agents and will then have to pay the cost (time, effort,
etc) to maintain the links with them while getting little
social/informational support. For instance, a Twitter user
who follows many accounts spreading information that is
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not relevant to the user’s interests leads to low bonding
capital: the user then spends time following such accounts
but gets low informational benefits. The utility of each agent
in a steady-state ego network is a measure for the support
that an individual can obtain from other individuals in his
local personal network. In the following Theorem, we show
that maximum bonding capital is only achieved in societies
with extreme homophily.
Theorem 2. (Homophily induces structural holes) Assume

hl > 0, ∀ℓ ∈ Θ. In order that the total average utility
U t converges to the optimal value U

∗
as the network

grows without bound it is necessary and sufficient that
hl = 1, ∀ℓ ∈ Θ. If this is the case then the network at any
time step will be disconnected almost surely and have at
least |Θ| non-singleton components.

If all agents are extremely homophilic, then a discon-
nected network that maximizes the achieved utility always
emerges, and such a network is always disconnected even
with the limited observability of the meeting process. A
disconnected network obviously entails structural holes as
defined by Burt [8] [9]: same-type agents form connected
components that do not communicate with other types of
agents, thus different types of agents do not exchange ideas
and information. As shown in Fig. 4, the optimal total
average utility is only achieved when agents are extremely
intolerant towards different-type agents. We can also see
that both the total average utility, and the ELFT (reflected
in the time needed to reach a steady-state average utility in
Fig. 4) of a social category exhibit a non-monotonic behavior
with respect to the homophily index.

Thus, maximizing the bonding capital in homophilic
societies implies the presence of structural holes. For any
network with non-extremely homophilic agents, the limited
observability of agents dictated by the meeting process
allows the agents to fill the network’s structural holes. In
other words, what makes the network connected is that not
all similar-type agents observe each other at each time step,
but they can potentially meet different-type agents with
which they decide to connect. If the meeting process allows
unlimited observability, i.e. mi(t) = Vt/{i}, then the agents
will always converge to a disconnected network with |Θ|
non-singleton components.

The major conclusion drawn from this section is that
homophily leads agents to reside in more homogeneous
ego networks, but also leads the agents to wait longer in
order to establish their ego networks, and induces structural
holes in the global network structure. Thus, on one hand
homophily unifies the local structure of the network by
gathering people with similar traits together, but on the
other hand it divides the global network structure since
dissimilar social categories become weakly connected. This
creates another potential source of capital, namely a bridging
capital, which we discuss in Section 6.

5 POPULARITY CAPITAL

Since in our model we consider directed networks, we
distinguish between conventional bonding capital, which is
realized by homogenous networks of like-minded people
that provides social support for the individual, and popular-
ity capital, which corresponds to the individual’s influence in

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Time

T
ot

al
av

er
ag

e
u
ti
li
ty

U
t

|Θ| = 2, γ1 = γ2 = 1

2
, v1(x) = v2(x) =

√
x, c = 1, αs

1
= αs

2
= 10

Optimal total average utility U
∗

h1 = h2 = 1

h1 = h2 = 1

3

h1 = h2 = 2

3
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evolving social network.

the network that is gained by supporting others. Popularity
is an important form of social capital that represents an
individual’s influence on a social category; an individual’s
ability to spread opinions, information, and ideas; and also
an individual’s acquisition for group support. For instance,
users of Twitter acquire popularity measured by the num-
ber of followers, which allows them to express opinions,
problems, and experiences, and acquire emotional support
provided by their online support groups (followers). Fol-
lowers retweet the tweets posted by users, which allows
those users to spread their ideas and opinions [16]. Similarly,
the popularity of researchers measured by the number of
citations or the h-index allows those researchers to promote
for new research ideas and directions. In this section we
study popularity capital and connect it to preferential at-
tachment, which is a central concept in network science.

The popularity of agent i at time t is simply given by
deg−

i (t). We say that the popularity growth rate of agent i is

O (g(t)) if limt→∞
E[deg−

i (t)]
g(t) = 1, where the expectation

is taken over all realizations of the graph process given
that agent i enters with a type θi. (Note that the growth
rate is only uniquely defined “near infinity”.) The popularity
distribution (sometimes called the degree distribution [24]
[33] [36]) is denoted by f td(d), and corresponds to the
fraction of agents with a popularity level of d at time t,
i.e. f td(d) = 1

t |{i |deg−
i (t) = d, i ∈ Vt }|. For a given type

k, f t,kd (d) denotes the popularity distribution of type-k
agents at time t: f t,kd (d) = 1

|Vt
k|

|{i |deg−
i (t) = d, i ∈ Vt

k }|.
Let ∆deg−

i (t) be the number of followers gained by agent i
at time t, i.e. ∆deg−

i (t) = deg−
i (t)− deg−

i (t− 1).
Preferential attachment has been used to explain the un-

derlying mechanism of networks growth [24], [29]- [31],
[34]- [36]. All of these previous papers model agents as
forming links only once; in our model, agents may form
links many times. More importantly, all of these previous
models impose preferential attachment as a behavioral rule
(so network growth is viewed as a conventional stochastic
urn process); in our model, preferential attachment emerges
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endogenously.
To fix ideas, we first provide a general definition of

preferential attachment that will be adopted in what follows.
Definition 1. (Preferential attachment) We say that preferential

attachment emerges in the network formation process if
deg−

i (t) ≥ deg−
j (t) implies ∆deg−

i (t) ≽ ∆deg−
j (t).

In words: preferential attachment means that agents who
are more popular at a given time are likely to become even
more popular in the future.

5.1 Popularity capital in tolerant societies

We begin by studying popularity capital in societies with
extreme exogenous homophily index for all types of agents
given by hk = 0, ∀k ∈ Θ. It seems natural to refer to such
societies as tolerant (rather than totally non-homophilic). We
study the factors that create inequality of popularity capital
in tolerant societies. In the following Theorem, we begin by
studying the impact of the exogenous network parameters
on the popularity growth rates.
Theorem 3. (Popularity growth in tolerant societies) For a toler-

ant society popularity growth rates enjoy the following
properties:

• For γk = 0, ∀k ∈ Θ, the popularity of any agent
i grows logarithmically with time, i.e. E[deg−

i (t)] is
O
(
L̄ log(t)

)
, where L̄ =

∑
m∈Θ pmL

∗
m(0).

• For γk = 1, ∀k ∈ Θ, the popularity of any agent i
grows at least sublinearly with time, i.e. E[deg−

i (t)] is
at least as fast asO

(
tb
)
, where b is given in Appendix

E in [74] and is the same for all types of agents.

This Theorem demonstrates the impact of opportunism
and gregariousness on popularity accumulation. On one
hand, the popularity of agents in non-opportunistic societies
grows logarithmically with time – very slowly. On the other
hand, the popularity of agents in opportunistic societies
grows sublinearly with time – again slowly, but much faster
than for non-opporunistic agents. Thus, opportunism has an
enormous influence on popularity. As we show below, this
is a consequence of preferential attachment.
Corollary 3. (Emergence of preferential attachment) For a toler-

ant society, preferential attachment emerges if all agents
are opportunistic, i.e. γk = 1,∀k ∈ Θ.

In the following Corollary, we show that agents’ ages in
the network create inequality in the popularity capital.
Corollary 4. (Superiority of older agents in tolerant societies) For

a tolerant society, we have that deg−
i (t) ≽ deg−

j (t) for all
i < j.

Thus in the setting of Corollary 4, age is the only factor
that creates inequality in popularity capital. In the following
Corollary, we show that opportunism creates long term
popularity advantages for agents forming the network.
Corollary 5. (Opportunism is good in the long-run) If d1i (t)

is the popularity of agent i at time t in a tolerant society
with γk = 0, ∀k ∈ Θ, and d2i (t) is the popularity of agent
i at time t in a tolerant society with γk = 1,∀k ∈ Θ,
then we have that E[d2i (t)] ≤ E[d1i (t)] for all t ≤ T ∗,
and E[d2i (t)] ≥ E[d1i (t)] for all t > T ∗, where T ∗ ≤
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Fig. 5: Expected popularity over time for an agent entering at
t = 10 for different levels of opportunism.
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i ×
(
−L̄ W−1

(
−1
L̄
e

−1
L̄

)) 1
b
, b =

∑
m∈Θ pmL

∗
m(0), and

W−1(.) is the lower branch of the Lambert W function
[56].

Thus, in societies where individuals are opportunistic,
the long-term popularity capital is harvested after a cer-
tain time threshold as shown in Fig. 5. Such threshold
is increasing in the agents’ average gregariousness. Thus,
younger agents or agents in a society with large average
gregariousness need to wait longer to harvest the popularity
gains attained by opportunism. To sum up, in tolerant
societies, only age creates popularity capital inequality, and
the growth of the popularity capital is governed by both
the level of opportunism and the average gregariousness
of the agents’ types. However, there is no inequality in
the acquisition of popularity capital across different social
category.
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5.2 Popularity capital in intolerant societies

We now study popularity capital in societies for which
hk = 1 for all k; it seems natural to refer to such societies as
intolerant (rather than totally homophilic). In the following
Theorem, we study the popularity growth rates for different
types of agents in the network.

Theorem 4. (Popularity growth in intolerant societies) For an
intolerant society, the popularity growth rates are given
as follows:

• For γk = 0, ∀k ∈ Θ, the expected popularity of
every agent i grows logarithmically with time, i.e.
E[deg−

i (t) | θi] is O
(
L∗
θi
(0) log(t)

)
.

• For γk = 1, ∀k ∈ Θ, the expected popularity of
every agent i grows at least sublinearly with time,
i.e. E[deg−

i (t) | θi] is at least as fast as O
(
tbθi
)
, where

bk > bm if L∗
k(0) > L∗

m(0), ∀k,m ∈ Θ.

Thus, for tolerant and intolerant societies, the popularity
growth rates are qualititatively similar – but the sublinear
growth obeys a different exponent. In the following Corol-
lary, we show that gregariousness and opportunism create
inequality in the popularity capital.

Corollary 6. (Gregariousness and opportunism create inequality
in the popularity capital) For an intolerant society, and
for the two agent types k,m ∈ Θ in the network with
arbitrary pk and pm, the following is satisfied:

• If γk = γm, γk ∈ {0, 1}, and L∗
k(0) > L∗

m(0), then
there exists a time T ∗ < ∞ where E[deg−

i (t)] ≥
E[deg−

j (t)], for all t > T ∗, where θi = k and θj = m.
• If γk = 1 and γm = 0, and L∗

k(0) = L∗
m(0), then there

exists a time T ∗ <∞ where E[deg−
i (t)] ≥ E[deg−

j (t)],
for all t > T ∗, where θi = k and θj = m.

This agent-level characterization can be further gen-
eralized to the collective popularity of social categories
in the following Theorem; we show that the popularity
distribution of a more gregarious (or opportunistic) social
category stochastically dominates that of a less gregarious
(or opportunistic) category.

Theorem 5. (Popularity capital inequality across social cat-
egories) For an intolerant society, the following is satis-
fied:

• If γk = γm, γk ∈ {0, 1}, and L∗
k(0) > L∗

m(0), then
f t,kd (d) first order stochastically dominates f t,md (d)
assuming a mean-field approximation for the popu-
larity acquisition process.

• If γk = 1 and γm = 0 and L∗
k(0) = L∗

m(0), then
f t,kd (d) first order stochastically dominates f t,md (d)
assuming a mean-field approximation for the popu-
larity acquisition process.

Thus, for intolerant societies, popularity is influenced by
gregariousness and structural opportunism rather than by
population share. See Fig. 6. In contrast with tolerant soci-
eties, a younger agent in an intolerant society can become
and remain more popular than an older agent if the younger
agent belongs to a more gregarious or more opportunistic
social category.

Theorem 5 can also be understood in the context of
citation networks [57]. In the context of citation networks,
intolerance means simply that papers only cite papers that
are really related – which is of course very common and
not at all unusual. [57] shows, in many scientific fields, that
there is a strong positive correlation between the number
of references per paper and the total number of citations.
We quote the following conclusion from the report in [58],
which is based on a statistical analysis of Thomson Reuters’
Essential Science Indicators database: “One might think that
the number of papers published or the population of researchers
in a field are the predominant factors that influence the average
rate of citation, but it is mostly the average number of references
presented in papers of the field that determines the average citation
rate.” This conclusion is in perfect agreement with Theorem
5 (and Corollary 6), which predict that for the inherently
intolerant citation networks, the popularity of researchers
in different fields (total citation rate) is governed by their
“gregariousness” (number of references per paper), and not
by the type distribution (number of papers/researchers). We
know from [58] that papers in mathematics typically list
few references, while those in molecular biology typically
list many. Thus, molecular biologists are more “gregarious”
than mathematicians – and one would expect that younger
molecular biologists can, on average, become more “popu-
lar” – have higher citation indexes – than mathematicians,
solely because of the differences between disciplines and
entirely unrelated to “quality” or “real impact”. This would
seem to provide caution for University review committees.

Of course, other dimensions in addition to popular-
ity/citation counts, express the value of scholarly work. One
of these dimensions is interdisciplinarity [63], which is a form
of bridging capital rather than a popularity capital as we
show in the next Section.

6 BRIDGING CAPITAL

6.1 Betweenness centrality as a measure for bridging
capital

In Sections 4 and 5, we have studied two forms of capital
that share two basic features: they are egocentric in the sense
that they create value for individuals, and they are only
affected by the agents’ local network structures. Bonding
occurs when an individual socializes with similar individ-
uals driven by homophily, whereas bridging occurs when
an individual links multiple segregated communities. While
bonding creates egocentric values for individuals, bridging
creates shared value for the network, e.g. allows diverse
research communities to exchange ideas and innovations.
As Burt points out in [8], individuals with bridging capital
enjoy a central position in the network as they act as a
gateway for information exchange. Betweenness centrality,
a graph-theoretic measure promoted by Freeman in [12],
is a conventional measure for centrality since for a given
agent it counts the number of shortest paths between any
two agents that involves that agents, and thus reflects the
agents’ ability to broker interactions at the interface between
different categories [60]- [64]. The betweenness centrality of
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Fig. 7: Different bridging modes with the same betweenness centrality for a central agent in a segregated network.
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trality.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time

E
{

b̄t k

}

|Θ| = 2, h1 = h2 = 1, L∗

1
(0) = L∗

2
(0) = 2, p1 = 0.3, p2 = 0.7

 

 

Average betweenness centrality of Type-1 agents b̄t
1

Average betweenness centrality of Type-2 agents b̄t
2

(b) Impact of type distribution on agents’
centrality.
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(c) Impact of structural opportunism on
agents’ centrality.

Fig. 8: Estimates for the average betweenness centrality of two types of agents in an extremely homophilic agents.

agent i at time t, which is denoted by bti, is an indicator of
its centrality in the network [12], and is given by

bti =
∑

k ̸=j ̸=i

σkj(i)

σkj
, (8)

where σkj is the total number of shortest paths between
k and j in Gt ignoring the edge directions, and σkj(i) is
the number of such paths that pass through i. In order to
characterize the centrality of a certain social category, we
define the average betweenness centrality of type-k agents
b̄tk as follows

b̄tk =
1

|Vt
k|
∑
i∈Vt

k

bti.

Betweenness is a relational measure: an agent with a high
betweenness centrality score does not belong to one of the
dense groups, but relates them. While the evolving network
is modeled as a directed graph, we capture the bridging cap-
ital by computing the betweenness centrality of agents in the
simplified undirected version of the graphGt. This is because
bridging capital reflects the structural centrality of the agent,
i.e. to what extent an agent is “between” segregated social
groups, whereas the edge directions reflect the directions
of information flow. As shown in Fig. 7, a central agent
can either disseminate information to segregated groups,
transfer information from one group to another, or gather
information produced by different groups. In Fig. 7, the cen-
tral agent has the same betweenness centrality score in the
networks (a), (b), and (c), yet the role played by that agent in
each network is different. In (a), the central agent gets non-
redundant information from community 1 and community
2, which allows that agent to come up with innovations and
new ideas. In (b), the central agent transfers information

from community 1 to community 2, which allows that
agent to control the flow of information across groups. In
(c), the central agent displays influence on community 1
and community 2 by disseminating information to those
communities. In the three networks, the bridging capital (i.e.
extent of the agent’s betweenness) is the same, yet the role
of the central agent and the nature of its social advantage
is different. We are interested in characterizing the extent of
structural centrality of the agents in the network rather than
the specific roles they play at the interface between groups.

Characterizing the betweenness centrality for a general
network is not mathematically tractable, and only empirical
and simulation results are obtained in the literature [60]-
[61]. We start by presenting simulation results for the be-
tweenness centrality of agents in a network with 2 types,
and show the impact of the exogenous parameters. In Fig.
8, we plot estimates for the expected average between-
ness centrality of 2 types of extremely homophilic agents
obtained via a Monte Carlo simulation, highlighting the
impact of gregariousness, type distribution, and structural
opportunism. In Fig. 8(a), we can see that increasing gregar-
iousness decreases centrality, which is intuitive since when
each agent forms many links, the number of shortest paths
that involve far agents in terms of the geodesic distance will
decrease, which leads to a decrease in the average centrality
of the whole social category. That is, when all agents are
sociable, then all agent are less central (on average). This is
in striking contrast with the popularity capital, where gre-
gariousness of agents in a social category was helping them
acquiring popularity. Moreover, we can see in Fig. 8(b) that
the type distribution plays a role in determining the agents’
centrality; majorities are more central than minorities. Such
result, which agrees with the qualitative study of Ibarra in
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[65], is again in a striking contrast with the popularity capi-
tal acquisition where the type distribution had no significant
impact on the agents’ popularity growth rates. Finally, Fig.
8(c) shows that structural opportunism decreases centrality,
which is again in contrast with the popularity acquisition
experience where structural opportunism was allowing for
the emergence of preferential attachment.

From the simulation results in Fig. 8, we conclude that
homophily creates inequality in the acquisition of bridging capital,
and the different behaviors and norms of different social cat-
egories lead to the emergence of different forms of capital.
The way that inequality is created in those forms of capital
can have very different dependencies on the behaviors of
the social categories. When agents in a homophilic group
are very sociable, every agent is likely to be popular but not
central. That is, socialization increases the bonding capital,
but decreases the bridging capital. Moreover, minorities
have the same chance as majorities to become popular, yet
they have less chances to be central.

The results in Fig. 8 and the discussion above are
concerned with the centrality of agents within their social
groups. However, a more interesting form of centrality
is the one that arises from bridging heterogeneous social
categories. In fact, this is the form of social capital that Burt
and Putnam have extensively studied in [6] and [8]. In the
following subsection, we introduce a new phenomenon that
provides insights into the interplay between centrality and
homophily.

6.2 Homophily and intergroup bridging
In this subsection, we study a striking phenomenon that
arises from the interplay between homophily and centrality.
In particular, we show via simulations that when a social
category possesses different homophilic tendencies com-
pared to all other social categories, they end up being the
most central group, and thus accrue the largest bridging
capital. That is, in an extremely homophilic society, non-
homophilic agents bridge segregated social groups, and
thus become the most central and gain access to diverse
sources of information. On the other hand, a homophilic
social category in a non-homophilic society ends up being
the most central as they form a highly connected core of the
global network structure, which represent an information
hub through which all individuals are bridged.

6.2.1 Filling structural holes: the power of tolerance, open-
mindedness, and interdisciplinarity
As first pointed out by Granovetter in [7], weak ties (the ties
between individuals of different types) have strength as they
bridge different segregated social groups. Opinions, beliefs,
and ideas are more homogeneous within than between
groups, so individuals connected across groups are more
exposed to alternative ways of thinking and behaving. In
other words, brokerage across the structural holes between
homophilic categories provides a vision of new options
that are otherwise unseen, which stimulates new ideas and
innovation, and also allows agents to control information
flow across different groups [9]. Thus brokerage creates
a social capital, namely a bridging capital, and centrality
in such case is gained by agents who link the segregated
homophilic groups.

In Fig. 9, we demonstrate the interplay between bonding
and bridging capital in a network that exhibits structural
holes. We carry out a Monte Carlo simulation by simulating
1000 instantiations of the network and plot the average
utility and betweenness centrality of each type of agents
in the network. We assume that the network has 3 types
of agents, where type-1 and type-2 agents are extremely
homophilic, whereas type-3 agents have a homophily index
of h3 = 1

3 . Since type-1 and type-2 agents are extremely
homophilic, their bonding capital is maximized, yet both
types are disconnected, which creates an opportunity for
harvesting bridging capital by type-3 agents since such a
type can bridge the two disconnected communities. The
ability of type-3 agents to acquire bridging capital depends
on their meeting process, i.e. the extent to which they
explore the network. If non-homophilic individuals are not
exploring the network, then they will end up in a peripheral
position in the network, and may not construct their ego
networks in finite time (recall Lemma 1). Fig. 9(a) and 9(b)
depict the impact of the meeting process on the bridging
capital acquired by non-homophilic agents in a homophilic
society. It is clear from both figures that there is a tension be-
tween the bonding capital (expressed in terms of the average
utility), and the bridging capital (expressed in terms of the
average centrality). That is to say, homophilic type-1 and
type-2 agents acquire higher utility since they enjoy more
homogeneous ego networks than type-3 agents. However,
when γ3 = 0, type-3 agents are more central in the network
as they broker the interface between type-1 and type-2 social
categories. Contrarily, when γ3 = 1, type-3 agents acquire
less bonding and bridging capital as they do not explore the
network, thus they cannot bridge segregated groups, albeit
being non-homophilic.

Fig. 10 depicts the network structure at t = 1000 for var-
ious meeting processes. In Fig. 10(a), we see that when type-
3 agents (red colored) are fully opportunistic, they end up
being either marginalized (acquire a peripheral position) or
unsatisfied (never forms a satisfactory ego network). When
the network exploration rate increases, we see in Fig. 10(b)
that only a fraction of non-homophilic agents are peripheral
at any time step, yet an intermediate community of such
agents emerges and it bridges the otherwise segregated
social groups. When γ3 = 1, we see in Fig. 10(c) that all
non-homophilic agents will reside in the central community
and will acquire a central position. Such result provides the
following interesting insight: it is not enough for individuals
to be non-homophilic, tolerant, or open-minded in order to
harvest the bridging capital, but it is essential for them to
explore the network structure such that they meet diverse
types of agents. Thus, in a society where the meeting pro-
cess; reflected by policies, norms, regulations, geographical
constraints or rules; hinders network exploration, then the
existence of non-homophilic individuals does not guarantee
that structural holes will be filled. In the following Theorem,
we provide the necessary and sufficient conditions for any
network to be connected.

Theorem 6. (Network connectedness) An asymptoti-
cally large network is connected almost surely, i.e.
P (limt→∞ ω (Gt) = 1) = 1, if and only if there exists
at least one type of agents k with hk < 1 and γk < 1.
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(a) Centrality and utility of non-homophilic and
exploring agents in a homophilic society.
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(b) Centrality and utility of non-homophilic, non-exploring agents in a homophilic society.

Fig. 9: Betweenness centrality and average utility of agents in a network that exhibits structural holes.

(a) γ3 = 1. (b) γ3 = 0.1. (c) γ3 = 0..

Fig. 10: A Snapshot for a network with h1 = h2 = 1, γ1 = γ2 = 1, and h3 = 1
3

. Non-homophilic agents acquire a central position
in the network when they are less opportunistic.

Theorem 6 says that the existence of non-homophilic
type of agents that explore the network with any non-zero
rate will guarantee network connectedness. The condition
of γk < 1 follows from our assumption that agents have
infinite lifetimes. If agents have finite lifetimes, then a
threshold on γk will decide the network connectedness. That
is to say, open-minded individuals will have a threshold on
the minimum rate of network exploration that is a function
of their lifetime, beyond which they will not be able to fill
the structural holes and acquire the largest bridging capital.
Thus, non-homophilic agents, who can be thought of as
being “tolerant” or “open-minded” individuals, can bridge
segregated social groups and become the most central in the
network when their meeting process involves exploring the
network.

The literature argues that the centrality of non-
homophilic (or tolerant and open-minded) individuals play
an important role in many networks. For instance, in the
context of citation networks, Leydesdorff proposes between-
ness centrality as a measure of a journal’s “interdisciplinar-
ity”. In addition to the impact factor which is a measure of a

journal’s influence, centrality of a journal indicates the role
it plays in promoting innovative and interdisciplinary re-
search, which creates a social capital in the research citation
and collaboration networks [63] [64]. Moreover, Burt empha-
sizes the role of centrality in the diffusion of information [8],
and the creation of new ideas as a result to the exposure to
non redundant sources of information [9]. It is worth noting
that bridging capital not only leads to egocentric returns to
individuals, but also creates a shared value for the network:
it stimulates innovative and interdisciplinary research ideas,
and allows for the diffusion of information along the global
network structure.

6.2.2 Emergence of information hubs: the power of the
dominant coalition
In the previous subsection, we have shown that non-
homophilic agents in a homophilic society acquire the
most central network positions and thus attain the highest
bridging capital. In this subsection, we show that in the
reciprocal scenario where there is one homophilic type of
agents in a non-homophilic society, homophilic agents end
up being more central than others. In Fig. 11, we plot the
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Fig. 11: Betweenness centrality and average utility of agents in
a network with a dominant information hub.

average utility and betweenness centrality of 3 types of
agents forming a network, where types 1 and 2 agents
are extremely non-homophilic, whereas type 3 agents are
extremely homophilic. It can be observed that the average
centrality of type 3 agents dominates that of types 1 and
2. This is because type 3 agents tend to connect to each
other, thus forming a dominant coalition or an information
hub that resides in the core of the network, and acts as a
central ”super-node” in a star-like graph, hence achieving a
high level of centrality (see Appendix M for an illustration).
The term “dominant coalition” was coined by Brass in [67]
to describe same-gender highly connected influential agents
in an organization’s interaction network. Unlike the result
of the previous subsection, homophilic central agents in a
society dominated by non-homophilic types of agents do
not bridge structural holes in the network, but rather form a
densely connected sub-network through which information
is disseminated over the entire network topology. In the
context of citation networks, this result predicts that if types
corresponds to journals, then a journal that is highly cited
and at the same time maintains a self-citation rate that is
significantly higher than other journals is likely to form an
information hub in a network of papers. Fig. 12 illustrates
the formation of an information hub by the extremely ho-
mophilic agents in a non-homophilic society, where it can
be seen that the type-3 agents form a core sub-network that
resides in the center of the global network topology.

7 CONCLUSIONS

In this paper, we presented a micro-founded mathematical
model of the emerging social capital in evolving social
networks. In our model, the evolution of the network and
of social capital are driven by exogenous and endogenous
processes, which are influenced by the extent to which indi-
viduals are homophilic, structurally opportunistic, socially
gregarious and by the distribution of agents’ types in the so-
ciety. We focused on three different forms of endogenously
emerging social capital: bonding, popularity, and bridging
capital, and showed how these different forms of capital

Fig. 12: The formation of an information hub in a network with
h1 = h2 = 1

3
, and h3 = 1. The extremely homophilic type-3

agents form a dominant coalition that resides in the core of the
network.

depend on the exogenous parameters. Bonding capital is
maximized in extremely homophilic societies, yet extreme
homophily creates structural holes that hinder communica-
tions across network components. Popularity capital leads
to preferential attachment due to the agents’ structural op-
portunism, which offers agents a cumulative advantage in
popularity capital acquisition. Homophily creates inequality
in the popularity capital; more gregarious types of agents
are more likely to become popular. However, in homophilic
societies, individuals who belong to less gregarious, less
opportunistic, or major types are likely to be more central
in the network and thus acquire a bridging capital. Finally,
we studied a striking phenomenon that arises from the
interplay between homophily and centrality. In particular,
we showed that when a social category that possesses
different homophilic tendencies compared to all other social
categories, they end up being the most central group, and
thus accrue the largest bridging capital. Future research
directions may include studying a network with foresighted
agents, and investigating the impact of an initial network
construction on the emerging network’s growth paths.
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APPENDIX A
PROOF OF LEMMA 1
Our goal is to prove that an agent i is socially unsatisfied
with a positive probability, i.e. P (Ti = ∞|θi ) > 0, if and
only if γθi = 1 and 0 < hθi < 1. That is, we want to prove
that the following statement is true:

(γθi = 1) ∧ (0 < hθi < 1) ⇐⇒ P (Ti = ∞|θi ) > 0. (A.1)

Proving that statement (A.1) is true requires proving the
truth of the following sufficiency and necessity statements:

Sufficiency: (γθi = 1) ∧ (0 < hθi < 1) ⇒ P (Ti = ∞|θi ) > 0.

Necessity: (γθi = 1) ∧ (0 < hθi < 1) ⇐ P (Ti = ∞|θi ) > 0.

We start by proving the sufficiency condition in Subsection
A.1, and then we prove the necessity condition in Subsection
A.2, thereby concluding the proof of the lemma. Before
proceeding with the proofs, we provide a useful Lemma
which will be used in Subsection A.1.
Lemma A.1. For γθi = 1 and hθi ∈ [0, 1], we have that
P(Ns

i (∞) = L∗
θi
(0) | θi) > 0.

Proof We can prove that P(Ns
i (∞) = L∗

θi
(0) | θi) > 0 by

showing that the event that agent i meets L∗
θi
(0) similar-

type agents consecutively upon entering the network, i.e.

the event {θmi(t) = θi}
i+L∗

θi
(0)−1

t=i , happens with a positive
probability. Note that the probability that agent i meets a
similar-type agent at any given time step t given a step
graph Gt is (refer to Section 3.3)

P(θmi(t) = θi |Gt) =


|Kθi

i,t|
|Ki,t| , deg+

i (t) > 0, Ki,t ̸= ∅,
|Vt

θi
|

t , Otherwise,
(A.2)

which is always non-zero whenever |Kθi
i,t| > 0 and |Vt

θi
| > 0.

In (A.3), we derive the probability of the event {θmi(t) =
θi}Mt=i, where M = i+L∗

θi
(0)−1, in terms of the conditional

probability P(θmi(t) = θi |Gt) in (A.2) using Bayes’ rule.
Since we know from (A.2) that the term P(θmi(t) = θi |Gt)

in (A.3) is non-zero for |Kθi
i,t| > 0, and since the random vari-

able |Kθi
i,t| is non-degenerate, then it follows that the terms∑

Gt P(θmi(t) = θi |Gt)P(Gt |Gi, {θmi(j) = θi}t−1
j=i) in (A.3)

are non-zero, and hence we have that P({θmi(t) = θi}Mt=i) >
0, which concludes the proof of the Lemma.

A.1 Proving Sufficiency
In this Subsection, we want to prove that

(γθi = 1) ∧ (0 < hθi < 1) ⇒ P (Ti = ∞|θi ) > 0. (A.4)

We start by examining the meeting process and the linking
actions of an agent i, with a type θi that satisfies the
conditions γθi = 1 and 0 < hθi < 1. For such an agent,
the following events take place over time:

• At time t = i: Agent i enters the network, meets
agent mi(i), and since hθi < 1, it links to that agent
irrespective of its type, i.e. aii = 1 for any θmi(i) ∈ Θ.

• At time t > i: Since γθi = 1, agent i meets an agent
mi(t) picked randomly from the choice set Ki,t, and
decides whether or not to form a link with that agent
based on its type.

We know from Section 3.5 that since hi > 0, then agent i
has to connect to at least one agent of type θi in order to get
socially satisfied. If agent i never meets an agent of type θi,
then Ti = ∞. Combining this fact with the meeting process
described above, we have that

(θmi(i) ̸= θi) ∧ (∪∞
t=i+1K

θi
i,t = ∅) ⇒ (Ti = ∞), (A.5)

where Kθi
i,t ⊆ Ki,t is the set of type-θi followees of followees

for agent i at time t. Statement (A.5) says that if agent i does
not meet a type-θi agent at time step i, i.e. (θmi(i) ̸= θi),
and if the choice set Ki,t is free of type-θi agents for all time
steps t > i, i.e. (∪∞

t=i+1K
θi
i,t = ∅), then agent iwill be socially

unsatisfied, i.e. Ti = ∞. It follows from statement (A.5) that

P(Ti = ∞|θi ) ≥ P(θmi(i) ̸= θi,∪∞
t=i+1K

θi
i,t = ∅ | θi). (A.6)

Thus, it suffices to show that P(θmi(i) ̸= θi,∪∞
t=i+1K

θi
i,t =

∅ | θi) is bounded away from zero in order to prove the suf-
ficiency condition in (A.4). Note that using Bayes’ theorem,
the right hand side in (A.6) can be decomposed as follows

P(θmi(i) ̸= θi,∪∞
t=i+1K

θi
i,t = ∅ | θi) =

P(∪∞
t=i+1K

θi
i,t = ∅ | θmi(i) ̸= θi, θi)P(θmi(i) ̸= θi | θi). (A.7)

Since P(θmi(i) ̸= θi | θi) = 1 − pθi > 0, then we only need
to show that P(∪∞

t=i+1K
θi
i,t = ∅ | θmi(i) ̸= θi, θi) is strictly

positive in order to conclude the sufficiency condition in
(A.4). Hence, in the rest of this Subsection, we will prove
that

P(∪∞
t=i+1K

θi
i,t = ∅ | θmi(i) ̸= θi, θi) > 0. (A.8)

Direct evaluation of the probability in (A.8) is a hard task,
and hence we first obtain a lower bound on P(∪∞

t=i+1K
θi
i,t =

∅ | θmi(i) ̸= θi, θi), and then show that such a lower bound is
bounded away from zero. We achieve this by establishing a
chain of simple conditions that logically suffice for condition
(∪∞

t=i+1K
θi
i,t = ∅) in (A.8) to be true. To that end, we define

the conditions C1, C2, and C3 as follows.

C1 : ∪∞
t=i+1 K

θi
i,t = ∅.

C2 : ∪∞
t=i+1 N

+,θi
mi(t),t

= ∅.

C3 : ∧
i+L̄∗

θi
(0)−1

t=i (Ns
mi(t)

(t) = L∗
θmi(t)

(0)).

That is, C1 is the condition that agent i has no type-θi agents
in its choice set Ki,t for all t > i, C2 is the condition that
none of the agents that agent i meets at t > i have a type-
θi agent in their followee sets, and C3 is the condition that
each of the first L̄∗

θi
(0) agents3 that agent i meets are linked

only to same-type agents. Whenever (θmi(i) ̸= θi) is true,
the following statements hold:

C2
(a)⇐⇒ C1

C3
(b)⇒ C2. (A.9)

Statement (A.9)-a is tautological: it follows from the fact
that agent i’s choice set Ki,t is the union of the followee
sets {N+,θi

mi(t),t
}mi(t) of the agents it meets. Statement (A.9)-

b follows from the fact that if the agents {mi(t)} were

3. Refer to Section 3.5 for the definition of L̄∗
θi
(0).
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P({θmi(t) = θi}Mt=i) =
∑

Gi P({θmi(t) = θi}Mt=i |Gi)P(Gi)

=
∑

Gi P(Gi)
∏M

t=1 P(θmi(t) = θi |Gi, {θmi(j) = θi}t−1
j=i ).

=
∑

Gi P(Gi)
∏M

t=1

∑
Gt P(θmi(t) = θi |Gt)P(Gt |Gi, {θmi(j) = θi}t−1

j=i ). (A.3)

connected to other agents of their own type only, then
their followee sets {N+,θi

mi(t),t
}mi(t) will not contain a type-

θi agent. By forward chaining, (A.9) implies that C3 ⇒ C1,
and hence we have that

P(C1 | θmi(i) ̸= θi, θi) ≥ P(C3 | θmi(i) ̸= θi, θi). (A.10)

Based on the inequality in (A.10), we can prove that in-
equality in (A.8) by showing that P(C3 | θmi(i) ̸= θi, θi) is
bounded away from zero, i.e. we need to show that

P(∧
i+L̄∗

θi
(0)−1

t=i (Ns
mi(t)

(t) = L∗
θmi(t)

(0)) | θmi(i) ̸= θi, θi) > 0.

(A.11)

From Lemma A.1, we know that the inequality in (A.11)
holds. Combining (A.10) and (A.11), we conclude that the
inequality in (A.8) also holds, which concludes the suffi-
ciency condition in (A.4).

A.2 Proving Necessity

In this Subsection, we prove the necessity condition:

(γθi = 1) ∧ (0 < hθi < 1) ⇐ P (Ti = ∞|θi ) > 0, (A.12)

which is the converse of the sufficiency condition in (A.4).
We prove the statement in (A.12) by showing that when
P (Ti = ∞|θi ) > 0, both the conditions 0 < hθi < 1 and
γθi = 1 must be satisfied.

Note that the statement in (A.12) can be broken down as
follows

(0 < hθi < 1) ⇐ P (Ti = ∞|θi ) > 0,

(γθi = 1) ⇐ P (Ti = ∞|θi ) > 0. (A.13)

We first prove that (0 < hθi < 1) ⇐ P (Ti = ∞|θi ) > 0.
Note that this statement can be further broken down into
the following equivalent statements

(hθi > 0)
(a)⇐ P (Ti = ∞|θi ) > 0,

(hθi < 1)
(b)⇐ P (Ti = ∞|θi ) > 0. (A.14)

We start by proving statement (A.14)-a. In order for
P (Ti = ∞|θi ) > 0 to be true, then (Ti = ∞) must be
true for a nonempty set of realizations of the graph process
{Gt}t. Assume that (Ti = ∞) is true for a particular real-
ization of {Gt}t, then in such a realization agent i follows
an action profile (aii, . . ., a

t
i, . . .) for which aji = 0, ∀j > t̄ for

some t̄ ≥ i. That is, agent i deters from forming links with
all the agents it meets after some time step t̄. This can be
true only if L∗

θi
(αd

θi
L̄∗
θi
(0)) > 0, i.e. agent i must link to a

similar-type followee in order to get socially satisfied. Since

hθi =
L∗

θi
(αd

θi
L̄∗

θi
(0))

L∗
θi

(αd
θi

L̄∗
θi

(0))+L̄∗
θi

(0)
(see Section 3.5), then it follows

that hθi > 0.

Now we prove statement (A.14)-b by contradiction. That
is, we assume that (Ti = ∞) for some realization of {Gt}t,
and that the condition hθi = 1 is true as well. Since
(Ti = ∞) is true, then agent i follows an action profile
(aii, . . ., a

t
i, . . .) for which aji = 0, ∀j > t̄ for some t̄ ≥ i.

This means that agent i never meets a similar-type agent
after time step t̄, i.e. P(θmi(t) = θi) = 0, ∀t > t̄. Note that
the meeting process of agent i is given as follows (refer to
Section 3.3):

P(θmi(t) = θi) =

 γθi + (1− γθi)
|Vt

θi
|

t , deg+
i (t) > 0

|Vt
θi

|
t , deg+

i (t) = 0,
(A.15)

which for an asymptotically large t converges to γθi + (1−
γθi)pθi ; since γθi + (1 − γθi)pθi is strictly positive, no finite
value for t̄ satisfies that P(θmi(t) = θi) = 0, ∀t > t̄, which
contradicts with (Ti = ∞) being true. Therefore, in order
for (Ti = ∞) to be true, we must have that hθi < 1, which
concludes the proof of statement (A.14).

Now we prove the statement

(γθi = 1) ⇐ P (Ti = ∞|θi ) > 0

in (A.13). Again, we prove this statement by contradiction.
Assume that both (Ti = ∞) and (γθi < 1) are true for some
agent i in the network. For such an agent, the probability of
meeting a similar-type agent is

P(θmi(t) = θi) =

{
γθi

|Kθi
i,t|

|Ki,t| + (1− γθi)pθi , deg+
i (t) > 0

pθi , deg+
i (t) = 0,

which is always positive. Hence, any agent with γθi < 1
has a non-zero probability for meeting a similar-type agent
at each time step, which means that such an agent is
not socially unsatisfied in the almost sure sense. Thus,
P (Ti = ∞|θi ) > 0 implies that γθi = 1.

APPENDIX B
PROOF OF THEOREM 1

We prove statements (1) and (2) in Subsections B.1 and B.2
respectively.

B.1 Proof of Statement (1)

Recall that the exogenous homophily index of an agent i is
given by

hθi =
L∗
θi
(αd

θi
L̄∗
θi
(0))

L̄∗
θi
(0) + L∗

θi
(αd

θi
L̄∗
θi
(0))

. (B.1)

If hθi = 0, then from (B.1) we know that L∗
θi
(αd

θi
L̄∗
θi
(0)) = 0,

and L∗
θi
(0) = L̄∗

θi
(0). Thus, it follows from (3) and (4) that



XX, VOL. XX, NO. X, XXXX 2017 19

agent i forms a link with the first L∗
θi
(0) agents it meets

irrespective of their types, i.e.

P(ati = 1 | θmi(t)) =

{
1, t ≤ L∗

θi
(0),

0, t > L∗
θi
(0),

and it follows that P
(
Ti = L∗

θi
(0)
)
= 1.

B.2 Proof of Statement (2)
It follows from (B.1) that when hθi = 1, we have that
L̄∗
θi
(0) = 0, i.e. agent i forms links with similar-type agents

only. From (3), we know that agent i forms exactly L∗
θi
(0)

links. The rest of the proof is organized as follows. First,
we evaluate the probability distribution of the EFT Ti for
agent i, and then we show that for a large network, this
distribution becomes independent of the network topology.
Next, we evaluate the expected EFT Ti.

The probability that agent i forms a link at a given time
step t conditioned on the current step graph Gt and the
realized meeting process is

P(ati = 1 | θmi(t), G
t) = 1{

θmi(t)
=θi,deg+

i (t)≤L∗
θi

(0)
}. (B.2)

That is, agent i forms a link with probability 1 if it meets a
similar-type (θmi(t) = θi) and it has not formed L∗

θi
(0) links

yet (deg+
i (t) ≤ L∗

θi
(0)), and it forms a link with probability

0 otherwise. From the law of total probability, we can write
the probability that agent i forms a link at time t conditioned
on the step graph Gt as

P(ati = 1 |Gt) = P(θmi(t) = θi |Gt)P(ati = 1 | θmi(t) = θi, G
t)

+ P(θmi(t) ̸= θi |Gt)P(ati = 1 | θmi(t) ̸= θi, G
t).

From (B.2), we know that

P(ati = 1 | θmi(t) ̸= θi, G
t) = 0,

and hence we can write P(ati = 1 |Gt) as

P(ati = 1 |Gt) = P(θmi(t) = θi |Gt)P(ati = 1 | θmi(t) = θi, G
t)

= P
(
θmi(t) = θi

∣∣Gt
)
1{

deg+
i (t)≤L∗

θi
(0)

}.
(B.3)

The probability that agent i meets a similar-type agent,
P
(
θmi(t) = θi |Gt

)
, is given by

P(θmi(t) = θi | deg+
i (t) = 0, Gt) =

|Vt
θi
| − 1

|Vt| − 1
, (B.4)

and
P
(
θmi(t) = θi

∣∣deg+
i (t) > 0, Gt

)
=(

(1− γθi)(1− P(Ki,t = ∅ |Gt)) + P(Ki,t = ∅ |Gt)
)
×

P
(
θmi(t) = θi

∣∣mi(t) ∈ K̄i,t ∪ Ki,t, G
t
)
+

γθi(1− P(Ki,t = ∅ |Gt))P(θmi(t) = θi |mi(t) ∈ Ki,t, G
t),

which can be simplified as follows

P(θmi(t) = θi | deg+
i (t) > 0, Gt) =

γθiK
s
i (t)

Ki(t)
(1− P(Ki(t) = 0 |Gt))+ (B.5)

(1− γθi + γθiP(Ki(t) = 0 |Gt))
|Vt

θi
| −Ns

i (t)− 1

|Vt| −Ns
i (t)−Nd

i (t)− 1
.

The expressions in (B.4) and (B.5) follow directly from the
meeting process described in Section 3.3. Since at time t
agent i meets agents picked uniformly at random from
the network when it has no followees by that time, then
the probability of meeting similar-type agents in (B.4) is
simply the fraction of type-θi agents in the network (after
excluding agent i), i.e. (|Vt

θi
| − 1)/(|Vt| − 1). If at time t

agent i has at least one link (i.e. deg+
i (t) > 0), then it

meets a stranger from the set K̄i,t with probability (1− γθi)
(or if the set Ki,t is empty), or a followee of a followee
from the set Ki,t. As shown in (B.5), the fractions of
type-θi agents in sets Ki,t and K̄i,t are Ks

i (t)/Ki(t) and
(|Vt

θi
|−Ns

i (t)−1)/(|Vt|−Ns
i (t)−Nd

i (t)−1), respectively. By
combining (B.3), (B.4) and (B.5), the probability of forming
a link at any given time step t conditioned on the step
graph Gt is given by (B.7). Now we show that for an
asymptotically large network, the conditional probability
in (B.7) becomes independent on the network topology
Gt. Note that the probability that the set is empty, i.e.
P(Ki(t) = 0 |Gt) in (B.5), can be bounded as follows

P(Ki(t) = 0 |Gt) ≤ 1

|Vt
θi
|
∑

j∈Vt
θi

1{t<Tj}. (B.8)

That is, the probability of the event that the followees of
followees choice set of agent i becomes empty is always
less than the probability of the event that agent i links to an
agent j with less than L∗

θi
(0) followees; this follows from the

fact the occurrence of the first event implies that the second
event has occurred. Since, limt→∞

1
|Vt

θi
|
∑

j∈Vt
θi

1{t<Tj} = 0,

then if follows that P(Ki(t) = 0) → 0 in an asymptotically
large network. Furthermore, since we know from Lemma 1
that agent i forms L∗

θi
(0) links in a finite time almost surely,

then we have that

lim
t→∞

|Vt
θi
| −Ns

i (t)− 1

|Vt| −Ns
i (t)−Nd

i (t)− 1
= lim

t→∞

pθit− L∗
θi
(0)− 1

t− L∗
θi
(0)− 1

= pθi . (B.9)

This leads to the expressions in (B.8), which implies that for
a large network, the probability of taking a link formation
decision at any time step t is independent on the global
network structure Gt, and depends only on the current
number of followees deg+

i (t) of agent i.
Now that we know (from (B.8)) the probability that

agent i forms a link at any given time t, we can derive
the probability distribution of the EFT Ti for agent i as the
distribution of the number of time steps needed for agent i
to make L∗

θi
(0) linking decisions. Let N j

i for j > 1, be the
number of time steps that agent i takes between forming
links j − 1 and j, and let N1

i be the number of time steps
that agent i waits after its entrace date until it forms its first
link. The EFT Ti can be written as

Ti = N1
i +

L∗
θi

(0)∑
j=2

N j
i . (B.10)

From the expressions in (B.8), it is easy to see that both
N1

i and N j
i , j > 1 can be interpreted as geometric random
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P(ati = 1 |Gt) =


|Vt

θi
|−1

|Vt|−1 , deg+
i (t) = 0

γθi
Ks

i (t)

Ki(t)
(1− P(Ki(t) = 0)) + (1− γθi + γθiP(Ki(t) = 0))

|Vt
θi
|−Ns

i (t)−1

|Vt|−Ns
i (t)−Nd

i (t)−1
, 0 < deg+

i (t) ≤ L∗
θi
(0)

0, deg+
i (t) > L∗

θi
(0)
(B.7)

lim
t→∞

P
(
ati = 1

∣∣Gt
)
=


pθi , deg+

i (t) = 0
γθi + (1− γθi)pθi , 0 < deg+

i (t) ≤ L∗
θi
(0)

0, deg+
i (t) > L∗

θi
(0)

(B.8)

variable with a different success probabilities determined by
the linking probabilities in (B.8) as follows

N1
i ∼ Geom(pθi),

N j
i ∼ Geom(γθi + (1− γθi) pθi), j = 2, . . ., L∗

θi(0), (B.11)

where N1
i is independent on N j

i , j > 1, and all the variables
N j

i , j > 1 are i.i.d. The independence of the variables
N j

i , j > 1 follow from the fact that the linking probability
in (B.8) is independent of the graph Gt for a large network,
and hence the process {N j

i }j>1 is memoryless. Therefore,
the distribution of EFT Ti for agent i in an asymptotically
large network follows a distribution

fTi(Ti | θi) = fN1
i
(N1

i ) ⋆ fN2
i
(N2

i ) ⋆ . . . ⋆ f
N

L∗
θi

(0)

i

(N
L∗

θi
(0)

i ),

where ⋆ is the convolution operator. Therefore, the distribu-
tion of the EFT for agent i converge to a steady-state distri-
bution that is independent of the entry date i and is only
dependent on the agent’s type θi. From Scheffe’s lemma, we
know that convergence of the probability mass functions
implies convergence in distribution, thus the sequence of
EFTs {Ti}i converges in distribution for all types of agents.
This concludes the proof of the first part of statement (2).

Now we compute the EEFT, which is simply given by

T i = E[
∑L∗

θi
(0)

j=1 N j
i ], where

E[N j
i ] =

{
1

pθi
, j = 1,

1
(1−γθi

) pθi
+γθi

, 2 ≤ j ≤ L∗
θi
(0) .

Therefore, the EEFT is given by

T i = E
[
N1

i

]
+

L∗
θi

(0)∑
j=2

E
[
N j

i

]
(B.12)

=
1

pθi
+

L∗
θi
(αs

θi
)

(1− γθi) pθi + γθi
,

which concludes the proof of statement (2) of the Theorem.

APPENDIX C
PROOF OF COROLLARY 1
We first define the notion of first-order stochastic dominance
as follows. A pdf (or pmf) f(x) first-order stochastically
dominates a pdf g(x) if and only if G(x) ≥ F (x),∀x, with
strict inequality for some values of x, where F (x) and G(x)

are the cumulative density functions. In this proof, we will
use first-order stochastic dominance and stochastic dominance
interchangeably. For the two random variables x and y, if
f(x) stochastically dominates f(y), then we say y ≽ x. In
the following, we prove some useful Lemmas that will be
utilized in proving this Theorem.
Lemma C.1. Let X1, X2, Y1, and Y2 be independent random
variables, and let Z1 = X1 + Y1 and Z2 = X2 + Y2. If
X1 ≽ X2 and Y1 ≽ Y2, then Z1 ≽ Z2.

Proof We prove the Lemma for continuous random
variables; the result can be straightforwardly general-
ized to discrete random variables. Since X1 ≽ X2

and Y1 ≽ Y2, then we have FX1(x1) ≤ FX2(x2),
FY1(Y1) ≤ FY2(Y2),

∫
u(x1)f(x1)dx1 ≥

∫
u(x2)f(x2)dx2,

and
∫
u(y1)f(y1)dy1 ≥

∫
u(y2)f(y2)dy2, for any increas-

ing function u(.). Note that since Z1 = X1 + Y1 and
Z2 = X2 + Y2, then we have that FZ1(z1) =

∫
FY1(z1 −

x1)f(x1)dx1, and FZ2(z2) =
∫
FY2(z2 − x2)f(x2)dx2. Since

FY1(Y1) ≤ FY2(Y2) and X1 ≽ X2, then FZ1(z1) ≤ FZ2(z2)
and it follows that Z1 ≽ Z2.

Lemma C.2. If Z1 =
∑N

i=1Xi and Z2 =
∑M

i=1Xi, where
N > M , and the variables Xi, ∀i ≤ N are i.i.d non-negative
random variables, then Z1 ≽ Z2.

Proof Let X̃1 =
∑M

i=1Xi, and X̃2 =
∑N−M

i=1 Xi. We
can write Z1 as Z1 = X̃1 + X̃2. The cdf of Z1 is
then given by FZ1(z1) =

∫
FX1(z1 − x̃2)fx̃2(x̃2)dx̃2.

Since
∫
FX1(z1 − x̃2)fx̃2(x̃2)dx̃2 ≤ FX1(z1),∀z1, and since

FX1(z1) = FZ2(z1), then FZ1(z) ≤ FZ2(z), ∀z, and it
follows that Z1 ≽ Z2.

The statement of the Theorem entails a comparative statics
analysis for the effect of 3 different exogenous parameters
(L∗

θi
(0), pθi , γθi) on the distribution of the EFT Ti (in terms

of the FOSD) in an asymptotically large network. We have
shown in Appendix B that the distribution of Ti converges
to a steady-state distribution when the network is asymptot-

ically large. Recall from (B.10) that Ti = N1
i +

∑L∗
θi

(0)

j=2 N j
i .

Define N̄1
i =

∑L∗
θi

(0)

j=2 N j
i , hence Ti = N1

i + N̄1
i . Since N1

i

is a geometric random variable (see (B.11)), then the pmf of
N1

i is given by

fN1
i
(N1

i | θi) = pθi (1− pθi)
N1

i −1. (C.1)

On the other hand, N̄1
i is the same of L∗

θi
(0) − 1 i.i.d

geometric random variable, and hence it follows a negative
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binomial distribution with the following pmf:

fN̄1
i
(N̄1

i | θi) =
(

N̄1
i − 1

L∗
θi
(0)− 2

)
pL

∗
θi

(0)−1 (1− p)
N̄1

i −L∗
θi

(0)+1
,

(C.2)
where p = (1 − γθi)pθi + γθi . In the rest of this Section, we
will use the results in (C.1) and (C.2), together with Lemmas
C.1 and C.2 in order to verify the comparative statics in
the Theorem statement. That is, we will show that if hk =
1, ∀k ∈ Θ, L̃∗

θi
(0) ≥ L∗

θi
(0), p̃θi ≥ pθi , and γ̃θi ≥ γθi , then

for an agent i entering an asymptotically large network we
have that

Ti
(
pθi , γθi , L

∗
θi(0)

)
≽ Ti

(
pθi , γ̃θi , L

∗
θi(0)

)
,

Ti
(
pθi , γθi , L

∗
θi(0)

)
≽ Ti

(
p̃θi , γθi , L

∗
θi(0)

)
,

Ti
(
pθi , γθi , L

∗
θi(0)

)
≼ Ti

(
pθi , γθi , L̃

∗
θi(0)

)
, (C.3)

where Ti
(
pθi , γθi , L

∗
θi
(0)
)

is the EFT associated with the
exogenous parameter tuple

(
pθi , γθi , L

∗
θi
(0)
)
.

Recall that Ti = N1
i + N̄1

i . Based on (C.1) and (C.2), the
cdf of the two random variables N1

i and N̄1
i are given by

F (N1
i | θi) = 1− (1− pθi)

N1
i

F (N̄1
i | θi) = 1− I1−p(L

∗
θi(0), N̄

1
i − L∗

θi(0) + 1), (C.4)

where p = (1− γθi)pθi + γθi , I1−p(x, y) is the regularized in-
complete beta function, which is defined in terms of the incom-
plete beta function B(1− p;x, y) =

∫ 1−p
0 zx−1(1− z)y−1dz

as I1−p(x, y) =
B(1−p;x,y)

B(x,y) . The first derivative of I1−p(x, y)
with respect to p is given by

∂I1−p(x, y)

∂p
=

−(1− p)x−1py−1

B(x, y)
< 0,

thus, I1−p(x, y) is monotonically decreasing in p. Let
p̃ = (1 − γθi)p̃θi + γθi . If p̃θi > pθi , then p̃ >
p, and it follows that 1 − (1 − p)N

1
i < 1 − (1 −

p̃)N
1
i , and 1 − I1−p̃

(
L∗
θi
(0), N̄1

i − L∗
θi
(0) + 1

)
> 1 −

I1−p

(
L∗
θi
(0), N̄1

i − L∗
θi
(0) + 1

)
, and hence we have that

F (N1
i | p̃θi) ≥ F (N1

i | pθi)
F (N̄1

i | p̃θi) ≥ F (N̄1
i | pθi). (C.5)

By combining the inequalities in (C.5) with Lemma C.1,
it follows that F (Ti | p̃θi) ≥ F (Ti | pθi) for all values
of Ti. Therefore, we have that Ti

(
pθi , hθi , γθi , L

∗
θi
(0)
)

≽
Ti
(
p̃θi , hθi , γθi , L

∗
θi
(0)
)
, which concludes the proof of the

first comparative statics result in (C.3). The second compar-
ative statics result in (C.3) can be proved in the exact same
manner by defining p̃ as p̃ = ((1− γ̃θi)pθi + γ̃θi) and then
following the same procedure.

Finally, since Ti = N1
i +

∑L∗
θi

(0)−1

j=2 N j
i , then it follows

directly from Lemma C.2 that if L̃∗
θi
(0) > L∗

θi
(0), then

Ti(pθi , hθi , γθi , L̃
∗
θi
(0)) ≽ Ti(pθi , hθi , γθi , L

∗
θi
(0)).

APPENDIX D
PROOF OF THEOREM 2
Since αs

θ ≥ αd
θ , ∀θ ∈ Θ, the utility function of an agent i

is maximized when this agent is linked L∗
θi
(0) similar-type

agents; the (saturated) utility function achieved by such an

agent is uti = vθi(α
s
θi
L∗
θi
(0)) − cL∗

θi
(0) at time t. Conse-

quently, the average utility of agents in the network at time
t, U t = 1

t

∑
i u

t
i, is maximized when every agent i in the

network achieves a utility of uti = vθi(α
s
θi
L∗
θi
(0))− cL∗

θi
(0).

Thus, the optimal average network utility U
∗

at time t is

U
∗
=
∑
θ∈Θ

|Vt
θ|
t

(vθ(α
s
θL

∗
θ(0))− cL∗

θ(0)),

which for a large network converges to

U
∗
=
∑
θ∈Θ

pθ (vθ (α
s
θL

∗
θ(0))− cL∗

θ(0)) . (D.1)

We want to prove the following statement(
lim
t→∞

U t = U
∗) ⇐⇒ (hθ = 1, ∀θ ∈ Θ). (D.2)

We prove the statement in (D.2) by proving the following
sufficiency and necessity statements:(

lim
t→∞

U t = U
∗)⇒ (hθ = 1,∀θ ∈ Θ).(

lim
t→∞

U t = U
∗)⇐ (hθ = 1,∀θ ∈ Θ). (D.3)

We start by proving the sufficiency condition by contradic-
tion. Assume that limt→∞ U t = U

∗
and that there exists

exactly one type of agents θ ∈ Θ with hθ < 1. When hθ < 1,
a type-θ agent i will form a link with a different-type agent
upon its entrance in the network if θmi(i) ̸= θ. In a large
network, there exists a fraction of (1−pθ) type-θ agents that
would have met a different-type agent upon its entrance in
the network. Since αs

θ ≥ αd
θ , the utility achieved by those

agents is strictly less than uti = vθi(α
s
θi
L∗
θi
(0)) − cL∗

θi
(0),

and hence it follows that limt→∞ U t < U
∗
, which con-

tradicts with the fact that limt→∞ U t = U
∗
. Therefore,

if limt→∞ U t = U
∗
, then all agents must be extremely

homophilic.
Now we prove the converse. If all agents are extremely

homophilic, then each agent connects only to similar type
agents, i.e. P

(
ati
∣∣θmi(t)

)
= 1{

θmi(t)
=θi,Ni(t)<L∗

θi
(0)

}. Since

each agent meets a same-type agent with a non-zero prob-
ability in every time step, and will always form its ego net-
work in a finite time (recall Lemma 1), the utility achieved
by each agent i is then given by vθi

(
αs
θi
L∗
θi
(0)
)
− cL∗

θi
(0),

and it follows that limt→∞ U t = U
∗
.

Finally, since when hθ = 1, ∀θ ∈ Θ, agents restrict
their links to same-type agents only, then there is no links
between different groups and the network will be discon-
nected with the number of components being at least equal
to the number of types, i.e. ω (Gt) ≥ |Θ|.

APPENDIX E
PROOF OF THEOREM 3

The first and second statements of the Theorem quantify
the popularity growth in non-opportunistic and opportunis-
tic societies, respectively. We prove the first statement in
Subsection E.1, and then prove the second statement in
Subsection E.2.
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E.1 Popularity Growth in Non-opportunistic Societies
We start by evaluating the popularity growth rate of a given
agent i in a tolerant society with fully non-opportunistic
agents, i.e. a society with hk = 0, γk = 0, ∀k ∈ Θ. Note that
the popularity of agent i at time t ≥ i can be written as
deg−

i (t) =
∑t

j=i ∆deg−
i (j), and hence the expected popular-

ity of agent i is given by

E[deg−
i (t)] = E

 t∑
j=i

∆deg−
i (j)


=

t∑
j=i

E[∆deg−
i (j)], (E.1)

where the expectation is taken over all the realizations of
the graph process {Gt}∞t=1; therefore, by the the law of total
expectation we have that

E[∆deg−
i (t)] = E

[
E[∆deg−

i (t) |Gt]
]

=
∑

Gt∈Gt

E[∆deg−
i (t) |Gt] · P(Gt). (E.2)

Recall that from Theorem 1, we know that in a tolerant
society (hk = 0, ∀k ∈ Θ), each agent j stays L∗

θj
(0) time

steps in the ego network formation process, i.e. Tj = L∗
θj
(0)

with probability 1. Thus, at any given time t, the set of
agents that can potentially link to agent i, which we denote
as Φt, in any realization of Gt is given by

Φt = {t− L∗ + 1, t− L∗ + 2, . . ., t},

where L∗ = maxθ∈Θ L
∗
θ(0). The set Φt comprises the most

recent L∗ agents entering the network; since only these
agents can link to agent i at time t, the subgraphGt

Φ induced
by the set of agents in Φt is a sufficient statistic for ∆deg−

i (t).
That is, we have that

∆deg−
i (t) |Gt d

= ∆deg−
i (t) |Gt

Φ, (E.3)

where d
= denotes equality in distribution. The condition in

(E.3) means that the distribution of the number of links
acquired by an agent at any given time depends only on
what happened in the network in the previous L∗ time
steps, which is a direct consequence of Theorem 1(a). Based
on (E.3), (E.2) can be written as

E[∆deg−
i (t)] =

∑
Gt

Φ

E[∆deg−
i (t) |Gt

Φ] · P(Gt
Φ). (E.4)

The expectation in (E.4) is analytically evaluated for an
asymptotically large network through the steps (a)-(h) in
(E.5). In the following, we explain the steps involved in (E.5).
In step (a), we start by the result in (E.4) in which we apply
the law of total expectation by marginalizing the conditional
expectation of the random variable ∆deg−

i (t) |Gt
Φ over the

distribution of the subgraph Gt
Φ. The random variable

∆deg−
i (t) |Gt

Φ corresponds to the number of links gained
by agent i at time t; since there are only L∗ agents that can
form links at time t (i.e. the members of the set Φt), then the
distribution of ∆deg−

i (t) |Gt
Φ has a support {0, 1, . . ., L∗}.

Since hθ = 0, ∀θ ∈ Θ, then every agent that meets agent i at
time t will link to it, and hence we have that

∆deg−
i (t) |Gt

Φ =
∑
k∈Φt

1{mk(t)=i} |Gt
Φ.

Step (b) follows by substituting the equation above in (a),
and realizing that E[1{mk(t)=i} |Gt

Φ] = P(mk(t) = i |Gt
Φ).

Note that since γθ = 0, ∀θ ∈ Θ, then the meeting process is
independent of the network structure Gt

Φ (refer to Section
3.3), i.e. the probability that agent k ∈ Φt meets agent i at
time t is given by

P(mk(t) = i |Gt
Φ) =

1{
k /∈ N−

i,t−1, L
∗
θk
(0) ≥ t− k + 1

}
t− 1− |N+

k,t|
.

(E.6)

That is, if k ∈ N−
i,t−1 (k is already linked to i) or if

L∗
θk
(0) < t− k + 1 (k has already formed L∗

θk
(0) links and

saturated its utility function), then k meets iwith probability
0, otherwise, k meets agents picked randomly from the
set of agents that are not in its followee set N+

k,t, and
hence it meets i with probability 1

t−1−|N+
k,t|

. From the above

expression of P(mk(t) = i |Gt
Φ), we observe that the θk and

the events k ∈ N−
i,t−1 and L∗

θk
(0) < t− k + 1 are sufficient

statistics for the event (mk(t) = i), and hence we have that

P(mk(t) = i |Gt
Φ) =

P(mk(t) = i | k /∈ N−
i,t−1, L

∗
θk
(0) ≥ t− k + 1, θk).

Step (c) substitutes the above in the result of step (b). In
step (d), we plug in the expression in (E.6) into the result
of step (c) after observing that |N+

k,t| = t − k, which
follows from the fact that, since hk = 0, agent k forms
exactly one link at each time step since its entrance. In step
(d), the probability P(k /∈ N−

i,t−1, L
∗
θk
(0) ≥ t− k + 1 | θk) is

evaluated by noting that for L∗
θk
(0) ≥ t− k + 1, we have

that
P(k /∈ N−

i,t−1, L
∗
θk
(0) ≥ t− k + 1 | θk) =

t−1∏
n=k

P(mk(n) = i | k /∈ N−
i,n−1, θk).

That is, the probability that k is not linked to i by time t
is the equal to the probability that k has never met i in
the previous t − k time steps. Step (e) is a straightforward
algebraic simplification of (d). A standard Taylor series
approximation (1 − 1

x )
a ≈ e−

a
x is used in (f)-(g), and the

asymptotic value of E[deg−
i (t)] for a large t is provided in

(h).
The expected popularity of agent i at time t ≥ i can thus

be characterized by combining (E.1) and (E.5) as follows

E[deg−
i (t)] =

t∑
j=i

E[∆deg−
i (j)]

=
t∑

j=i

L̄

j

= L̄ (Ht −Hi−1)

≍ L̄ ((log(t)− ψ)− (log(i− 1)− ψ))

= L̄ log

(
t

i− 1

)
, (E.7)

where HN is the N th harmonic number, and ψ is the Euler-
Mascheroni constant. If follows from (E.7) that E[deg−

i (t)] is
O(L̄ log(t)), which concludes the proof of the first statement
of the Theorem.
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E[∆deg−
i (t)]

(a)
=
∑
Gt

Φ

E[∆deg−
i (t) |Gt

Φ] · P(Gt
Φ)

(b)
=
∑
Gt

Φ

∑
k∈Φt

E[1{mk(t)=i} |Gt
Φ] · P(Gt

Φ) =
∑
Gt

Φ

∑
k∈Φt

P(mk(t) = i |Gt
Φ) · P(Gt

Φ)

(c)
=
∑
k∈Φt

∑
θk∈Θ

pθk P(mk(t) = i | k /∈ N−
i,t−1, L

∗
θk
(0) ≥ t− k + 1, θk)P(k /∈ N−

i,t−1, L
∗
θk
(0) ≥ t− k + 1 | θk)

(d)
=
∑
k∈Φt

∑
θk∈Θ

pθk · 1{
L∗

θk
(0)≥t−k+1

} ·
(

1

t− 1− (t− k)

) t−1∏
n=k

(
1− 1

n− 1− (n− k)

)
(e)
=
∑
k∈Φt

∑
θk∈Θ

pθk · 1{
L∗

θk
(0)≥t−k+1

} ·
(

1

k − 1

)(
1− 1

k − 1

)t−k

(f)
≈

t∑
k=t−L∗+1

∑
θk∈Θ

pθk · 1{
L∗

θk
(0)≥t−k+1

} ·
(
e−

t−k
k−1

k − 1

)

(g)
=

L∗∑
w=1

∑
θ∈Θ

pθ1{L∗
θ(0)≥w}

(
e−

w−1
t−w

t− w

)
≍ 1

t

L∗∑
w=1

∑
θ∈Θ

pθ1{L∗
θ(0)≥w}︸ ︷︷ ︸

L̄

(h)
=

L̄

t
(E.5)

E.2 Popularity Growth in Opportunistic Societies

Now we evaluate the popularity growth rate in a tolerant
society with fully opportunistic agents, i.e. a society with
hk = 0, γk = 1, ∀k ∈ Θ. Following the same steps as in
Subsection E.1, we start by evaluating the expected number
of links gained by agent i, E[∆deg−

i (t)], using the law of
iterated expectation E[∆deg−

i (t)] = E [E[∆deg−
i (t) |Gt

Φ]] in
(E.6), where Gt

Φ is the subgraph induced by the length-2
ego networks of agents in Φ. (Unlike the case in Subsection
E.1, here the sufficient statistic for ∆deg−

i (t) is the length-
2 ego networks of agents in Φ, since the agents in Φ are
fully opportunistic and can only meet the followees of their
followees.)

In what follows, we explain steps (a)-(g) involved in the
derivation in (E.6). Steps (a)-(b) are identical to steps (a)-(b)
in (E.5). The probability that agent k meets agent i at time t
is given by

P(mk(t) = i |Gt
Φ) =


1

t−1 , k = t,
1{

F1(k,i),F2(k,i),L∗
θk

(0)≥t−k+1

}
Kk(t)

, k ̸= t,
(E.9)

where

F1(k, i) := k /∈ N−
i,t−1

F2(k, i) := k ∈ ∪j∈N−
i,t−1

N−
j,t−1.

The expression in (E.9) follows directly from the meeting
process in Section 3.3. Agent k = t has no followees since
it has just entered the network, and hence it meets agents
picked randomly from Gt, thus we have that P(mt(t) =
i |Gt

Φ) = 1
t−1 . For any k < t, agent k meets agent i only

if the two agents have not met in a previous time step
(event F1(k, i)), and i resides in agent k’s set of followees
of followees (event F2(k, i)); such a meeting happens with a
probability 1

Kk(t)
. In step (c), we substitute (E.9) in the result

of step (b). In step (d), we pull out the term corresponding

to k = t − 1 in the summation in (c). Step (e) follows by
substituting the following expressions in (d):

P(F1(t− 1, i) |Gt
Φ) = (1− 1

t− 2
),

P(F2(t− 1, i) |Gt
Φ) =

deg−
i (t− 1)

t− 2
.

That is, the probability that agent t− 1 is not a followee of i
at time t is equal to the probability that t − 1 has not met i
upon its entrance, which is given by (1− 1

t−2 ). Furthermore,
the probability that agent i is a followee of a followee of
t− 1 at time t is equal to the probability that agent t− 1 has
linked to one of the followers of i at time step t − 1, which

is given by deg−
i (t− 1)
t−2 . Since type-m agents form L∗

m(0)
links, then we have that Kt−1(t) = L∗

mt−1(t−1)(0). The rest
of the derivation follows straightforwardly.

In order to find a lower bound on the growth rate of
E[deg−

i (t)], we analyze a process that is described by

E[∆deg−
i (t)] =

1

t
(1 + bE[deg−

i (t− 1)]), (E.10)

where b =
∑

w∈Θ pw/L
∗
w(0). Following [29] and [24], we

adopt a continuous-time mean-field approximation for the
popularity growth process. That is, since E[∆deg−

i (t)] =
E[deg−

i (t)]−E[deg−
i (t− 1)], we adopt the following approx-

imation

∂E[deg−
i (t)]

∂t
≈ E[∆deg−

i (t)]. (E.11)

Combining (E.10) and (E.11), the popularity of each agent i
is governed by the following differential equation

∂E[deg−
i (t)]

∂t
=

1

t
(1 + bE[deg−

i (t)]). (E.12)
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E[∆deg−
i (t)]

(a)
=
∑
Gt

Φ

E[∆deg−
i (t) |Gt

Φ] · P(Gt
Φ)

(b)
=
∑
Gt

Φ

∑
k∈Φt

P(mk(t) = i |Gt
Φ) · P(Gt

Φ)

(c)
=

1

t− 1
+
∑
Gt

Φ

∑
k∈Φt/{t}

1

Kk(t)
· 1{

F1(k,i),F2(k,i),L∗
θk

(0)≥t−k+1
} · P(Gt

Φ)

(d)
=

1

t− 1
+
∑
Gt

Φ

1

L∗
θmt−1(t−1)

(0)
· 1{

F1(t−1,i),F2(t−1,i),L∗
θt−1

(0)≥2
} · P(Gt

Φ)

+
∑
Gt

Φ

∑
k∈Φt/{t,t−1}

1

Kk(t)
· 1{

F1(k,i),F2(k,i),L∗
θk

(0)≥t−k+1
} · P(Gt

Φ)︸ ︷︷ ︸
Ψ≥0

(e)
=

1

t− 1
+ E

[
deg−

i (t− 1)

t− 2

]
·
(
1− 1

t− 2

)
·

 ∑
θt−1∈Θ

pθt−1
1{

L∗
θt−1

(0)≥2
}
 ∑

m∈Θ

pm
L∗
m(0)

+ Ψ

(f)
≥ 1

t− 1
+ E

[
deg−

i (t− 1)

t− 2

]
·
(
1− 1

t− 2

)
·
∑
m∈Θ

pm
L∗
m(0)

(g)
≈ 1

t
+

1

t
E [deg−

i (t− 1)] ·
∑
w∈Θ

pw
L∗
w(0)

. (E.6)

The differential equation in (E.12) can be solved by dividing
both sides by (1 + bE[deg−

i (t)]) and then integrating both
sides as follows∫

1

(1 + bE[deg−
i (t)])

dE[deg−
i (t)] =

∫
1

t
dt,

which reduces to
1

b
log(1 + bE[deg−

i (t)]) + c1 = log(t) + c2,

and hence we have that

E[deg−
i (t)] = c3t

b − 1

b
,

where c1, c2, and c3 are constants. The constant c3 can be
obtained from the initial conditions as follows. Note that at
t = i, agent i cannot receive any links since all agents in the
network are opportunistic, and the set of followers of i is
empty at its entry date. Thus, deg−

i (t) = 0, E[deg−
i (t)] = 0,

which means that c3 = 1
ibb

, and it follows that

E[deg−
i (t)] ≥

1

b

(
t

i

)b

− 1

b
, ∀t ≥ i,

which implies that the popularity of every agent i grows
at least sublinearly in time. This concludes the proof of the
second statement of the Theorem.

APPENDIX F
PROOF OF COROLLARY 3
Recall that from Definition 1, we say that preferential attach-
ment emerges if

deg−
i (t) ≥ deg−

j (t) ⇒ ∆deg−
i (t) ≽ ∆deg−

j (t),

for all i, j ≤ t, t ∈ N. From Appendix E, we know that in
a tolerant society (hθ = 0, ∀θ ∈ Θ), the set of agents that

can potentially link to a given agent i at time step t in any
realization of Gt is

Φt = {t− L∗ + 1, t− L∗ + 2, . . ., t},

where L∗ = maxθ∈Θ L
∗
θ(0). Let ptik(d) be the probability

that agent k ∈ Φt links to agent i at time t given that
deg−

i (t) = d; from Appendix F, we know that ptik(d) is given
by

ptik(d) = P(mk(t) = i | deg−
i (t) = d).

From Subsection E.2, we know that ptik(d) ≥ ptik(d
′) for d ≥

d′. The random variable ∆deg−
i (t) | deg−

i (t) = d is equiva-
lent to

∑
k∈Φt 1{mk(t)=i} | deg−

i (t) = d, and hence it obeys
a Poisson binomial distribution with a support {0, 1, . . ., L∗}.
Therefore, the pmf of ∆deg−

i (t) | deg−
i (t) = d is given by

P(∆deg−
i (t) = n | deg−

i (t) = d) =∑
A∈St

n

∏
q∈A

ptiq(d)
∏
r∈Ac

(1− ptir(d)),

where St
n is the set of all size-n subsets of Φt. The CDF of

∆deg−
i (t) | deg−

i (t) = d is given by

P(∆deg−
i (t) ≤ n | deg−

i (t) = d) =

n∑
l=0

∑
A∈St

l

∏
q∈A

ptiq
∏
r∈Ac

(1− ptir).

It can be easily shown that

∂P(∆deg−
i (t) ≤ n | deg−

i (t) = d)

∂ptik(d)
< 0,

∀k ∈ Φt. Thus, if d ≥ d′, then ptik(d) ≥ ptik(d
′) and hence

P(∆deg−
i (t) ≤ n | deg−

i (t) = d) ≤
P(∆deg−

i (t) ≤ n | deg−
i (t) = d′),
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∀n, which implies that

∆deg−
i (t) ≤ n | deg−

i (t) = d ≽ ∆deg−
j (t) ≤ n | deg−

i (t) = d′.

This conclude the proof of the Corollary.

APPENDIX G
PROOF OF COROLLARY 4

Note that for agents i and j, i < j, we can write deg−
i (t) as

deg−
i (t) =

j−1∑
m=i

∆deg−
i (m)+

t∑
n=j

∆deg−
i (n),

whereas deg−
j (t) can be written as

deg−
j (t) =

t∑
n=j

∆deg−
j (n).

Since
∑t

n=j ∆deg−
j (n)

d
=
∑t

n=j ∆deg−
i (n), then it follows

from the result of Lemma C.1 that deg−
i (t) ≽ deg−

j (t).

APPENDIX H
PROOF OF COROLLARY 5

From (E.7), we know that

E[d1i (t)] = L̄ log

(
t

i− 1

)
,

whereas E[d2i (t)] is lower-bounded as follows (refer to Sub-
section E.1)

E[d2i (t)] ≥
1

b

((
t

i

)b

− 1

)
.

Since E[d2i (t)] grows faster than E[d1i (t)], we know that
E[d2i (t)] dominates E[d1i (t)] after a finite time T ∗. We can
obtain T ∗ by solving the following transcendental equation
for t

E[d1i (t)] = E[d2i (t)].

An upper-bound on the solution can be obtained by solving
the following transcendental equation for t, in which we
substitute for E[d2i (t)] by its lower-bound

L̄ log

(
t

i− 1

)
=

1

b

((
t

i

)b

− 1

)
. (H.1)

Through straightforward algebraic manipulations, (H.1) can
be put in the following form

tbL̄ =
(i− 1)bL̄

e
e(

t
i )

b

. (H.2)

A functional form for the solution to (H.2) can be obtained
in terms of the Lambert W function W−1(.) [56] as follows

t∗ = i×
(
−L̄W−1

(−1

L̄
e

−1
L̄

)) 1
b

, (H.3)

which concludes the proof of the Theorem.

APPENDIX I
PROOF OF THEOREM 4

The first and second statements of the Theorem quantify the
popularity growth in non-opportunistic and opportunistic
societies, respectively, where in both cases we study societies
that are extremely homophilic. The proof of the Theorem
follows the same steps involved in the proof of Theorem 3
(Appendix E). In what follows, we prove the first statement
of the Theorem; the proof of the second statement parallels
exactly the proof in Subsection E.2.

In (I.3), we follow the same analysis approach used
in (E.5) in Appendix E; we derive an expression for the
expected number of links gained by an agent i at time t,
i.e. E[∆deg−

i (t) | θi], using the law of total expectation. Steps
(a) and (b) are similar to setps (a) and (b) in (E.5), with
the following two differences: (1) since agents are extremely
homophilic, then it does not hold that each agent k has an
EFT of L∗

k(0) (Theorem 1), and hence Gt
Φ is not a sufficient

statistic for the random variable ∆deg−
i (t) | θi as in (E.5), and

(2) agents link to each other when they meet only if they are
of the same type, i.e. agent k links to i at time t if mk(t) = i
and θk = θi. Steps (c) and (d) follow by observing that
P(mk(t) = i, θk = θi |Gt) = pθiP(mk(t) = i, |Gt, θk = θi),
and

P(mk(t) = i, |Gt, θk = θi) =
1{

k/∈N−
i,t−1,deg+

k (t)<L∗
θk

(0)
}

t− deg+
k (t)− 1

≈ 1

t
1{

k/∈N−
i,t−1,deg+

k (t)<L∗
θk

(0)
}.

That is, since γk = 0 (meetings are random), k meets i with
probability 1

t (in a large enough network) if i is not already
linked to k (k /∈ N−

i,t−1), and k has not yet formed its ego
network (deg+

k (t) < L∗
θk
(0)); k meets i with probability 0

otherwise. Thus, the event mk(t) = i depends only on the
step graph Gt only through the conditions (k /∈ N−

i,t−1) and
(deg+

k (t) < L∗
θk
(0)); for an asymptotically large network,

P(k /∈ N−
i,t−1 | θi) → 1, which leads to the approximation

in step (d). The term
∑t

k=1 P(deg+
k (t) < L∗

θk
(0) | θk = θi)

corresponds to the expected number of agents who have
not formed their ego networks by time t. In step (e), we
replace this term with its mean-field approximation, i.e. we
assume that each agent has a deterministic EFT that is equal
to its expected EFT, which we know from Theorem 1 that it

is given by E[Tk | θk] =
L∗

θk
(0)

pθk

. This leads to the expression
in (f).

Based on (I.3), the popularity of an agent i at time t is
given by

E[deg−
i (t) | θi] =

t∑
j=i

E[∆deg−
i (j) | θi]

=
t∑

j=i

L∗
θi
(0)

j

= L∗
θi(0)(Ht −Hi−1)

≍ L∗
θi(0) log

(
t

i− 1

)
, (I.2)

which concludes the proof of the Theorem.
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E[∆deg−
i (t) | θi]

(a)
=
∑
Gt

E[∆deg−
i (t) |Gt, θi] · P(Gt | θi)

(b)
=
∑
Gt

t∑
k=1

E[1{mk(t)=i,θk=θi} |G
t, θi] · P(Gt | θi) =

∑
Gt

t∑
k=1

P(mk(t) = i, θk = θi |Gt, θi) · P(Gt | θi)

(c)
≈

t∑
k=1

pθi P(mk(t) = i | k /∈ N−
i,t−1, deg+

k (t) < L∗
θk
(0), θk = θi)P(k /∈ N−

i,t−1, deg+
k (t) < L∗

θk
(0) | θk = θi)

(d)
=
pθi
t

t∑
k=1

P(k /∈ N−
i,t−1, deg+

k (t) < L∗
θk
(0) | θk = θi) ≈

pθi
t

t∑
k=1

P(deg+
k (t) < L∗

θk
(0) | θk = θi)

(e)
≈ pθi

t

L∗
θi
(0)

pθi

(f)
=
L∗
θi
(0)

t
. (I.3)

APPENDIX J
PROOF OF COROLLARY 6
We start by proving the first statement of the Corollary.
From Theorem 4, we know that for an intolerant society
with γm = γk = 0 we have that

E[deg−
i (t)] = L∗

k(0) log(t/(i− 1)),

E[deg−
j (t)] = L∗

m(0) log(t/(j − 1)), (J.1)

for agents i and j, with θi = k and θj = m. Thus, it
follows from (J.1) that if L∗

k(0) > L∗
m(0) and i < j, then

E[deg−
i (t)] ≥ E[deg−

j (t)],∀t ≥ i, whereas L∗
k(0) > L∗

m(0)
and i > j, then E[deg−

i (t)] ≥ E[deg−
j (t)], ∀t ≥ T ∗, where

T ∗ =
(i− 1)

L∗
k(0)

L∗
k
(0)−L∗

m(0)

(j − 1)
L∗
m(0)

L∗
k
(0)−L∗

m(0)

.

The proof for the case of γm = γk = 1 can be carried
out in the exact same manner. The second statement of
the Corollary follows straightforwardly from the fact that
popularity grows logarithmically in non-opportunistic so-
cieties, whereas it grows at least sublinearly in time for
opportunistic societies (Theorem 4), thus there always exists
a finite time after which the expected popularity of an agent
in an opportunistic society exceeds that of an agent in a
non-opportunistic society.

APPENDIX K
PROOF OF THEOREM 5
Following [24], [29], we adopt a mean-field approximation
for the popularity growth process. That is, we assume that
an agent’s indegree is deterministic and is given by the
expected indegree of that agent (numerical validation and
justification of such an assumption can be found in [24],
[29]). In this case, the cdf of the popularity of type-k agents
at time t, denoted by F t,k

d (d), can be computed as follows
(see Lemma 1 in [24])

F t,k
d (d) = 1− |{i ≤ t |E[deg−

i (t)] ≥ d, θi = k}|
|Vt

k|

= 1− i∗(d)

t
, (K.1)

where i∗(d) is the solution to the equation E[deg−
i (t)] = d.

In the case when γm = γk = 0, we have that (Theorem 4)

E[deg−
i (t)] = L∗

θi(0) log(t/(i− 1)),

and hence i∗(d) = t e
−d

L∗
θi

(0) , and we have that

F t,θ
d (d) = 1− e

−d
L∗
θ
(0) .

Therefore, for L∗
k(0) > L∗

m(0), we have that F t,m
d (d) ≥

F t,k
d (d), ∀d, which concludes the first statement of the The-

orem. The second statement of the Theorem can be proved
in the exact same manner.

APPENDIX L
PROOF OF THEOREM 6
We want to prove that

(∃k ∈ Θ, hk < 1, γk < 1) ⇐⇒ (P( lim
t→∞

ω(Gt) = 1) = 1),

(L.1)

which can be broken down to the following sufficiency and
necessity statements

(∃k ∈ Θ, hk < 1, γk < 1) ⇒ (P( lim
t→∞

ω(Gt) = 1) = 1).

(L.2)

(∃k ∈ Θ, hk < 1, γk < 1) ⇐ (P( lim
t→∞

ω(Gt) = 1) = 1).

(L.3)

We start by proving the sufficiency condition in (L.2). As-
sume that the statement (∃k ∈ Θ, hk < 1, γk < 1) is true,
and assume that at an arbitrary time step τ , the network
has 2 disconnected components C1 and C2, where Ci is the
set of agents in component i. Let Et

12 be the event that
a type-k agent who is attached to component C1 meets a
stranger who belongs to component C2 and links to it, and
let Et

21 be the event that a type-k agent who is attached
to component C2 meets a stranger who belongs to type C1
and links to it. Given the definitions of Et

12 and Et
21, the

following statements hold

(mi(t) = j | i ∈ C1, j ∈ C2) ⇒ Et
12,

(mj(t) = i | i ∈ C1, j ∈ C2) ⇒ Et
21, (L.4)
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Complete graph Star graph

Betweenness centrality = (N−1)!
(N−2)!·2!Betweenness centrality = 0

Fig. 13: Network topologies leading to maximum and mini-
mum betweenness centrality.

where θi = θj = k. The statements in (L.4) say that agents
i ∈ C1 and j ∈ C2will indeed link if they meet since they are
similar-type agents. If follows from (L.4) that

P(Et
12) ≥ P(mi(t) = j | i ∈ C1, j ∈ C2),

P(Et
21) ≥ P(mj(t) = i | i ∈ C1, j ∈ C2). (L.5)

Note that since i ∈ C1 and j ∈ C2, with C1 and C2 being two
disconnected network components, then both i and j reside
in each others’ set of strangers. Hence, we have that for a
large network, we have that

P(mi(t) = j | i ∈ C1, j ∈ C2) =
pk(1− γk) |C2|

|C1|+ |C2|
,

P(mj(t) = i | i ∈ C1, j ∈ C2) =
pk(1− γk) |C1|

|C1|+ |C2|
. (L.6)

That is, the probability that agent i meets j is equal to
the probability that agent i meets a stranger (which hap-
pens with probability (1 − γk)), and that such a stranger
belongs to component C2 (which happens with proba-
bility |C2|

|C1|+|C2| ), and that it is of type-k (which happens

with probability pk). Since pk(1 − γk)
|C2|

|C1|+|C2| > 0 and

pk(1 − γk)
|C1|

|C1|+|C2| > 0, then it follows from (L.5) and
(L.6), then it follows that P (Et

12 ∨ Et
21) > 0, ∀t > τ and

hence P (
∨∞

t=τ (E
t
12 ∨ Et

21)) = 1. Therefore, if ∃k ∈ Θ, hk <
1, γk < 1, then any two disconnected components in the
network will eventually get connected through a type-k
agent, and hence the sufficiency condition in (L.2) follows.

Now we prove the converse. Assume that all realizations
of an asymptotically large network are fully connected, then
it follows that in all such realizations, there exists links
across different types of agents, and hence the condition
hk = 1,∀k ∈ Θ cannot be satisfied, and hence it follows
that ∃k ∈ Θ, hk < 1, γk < 1.

APPENDIX M
ILLUSTRATION FOR THE FORMATION OF A DOMI-
NANT COALITION

Before explaining the phenomenon under consideration,
we point out to the fact that as shown in Figure 13, the
minimum average betweenness centrality for an N -node
graph is achieved by a complete graph, b̄ = 0, whereas the
maximum average betweenness centrality is achieved by a
star graph as depicted in Figure 13, b̄ = 1

N ·
(N
2

)
.

Fig. 14: An exemplary topology for an extremely homophilic
group suited in the center of a non-homophilic network.

Now consider a network with four types of nodes: red,
blue, green and yellow, with a uniform type distribution
and uniform gregariousness among all types (i.e. each agent
forms 1 link). The homophily indexes of these types are
given by hblue = hyellow = hgreen = 0 and hred = 1.
That is, the red type is extremely homophilic, whereas other
types are extremely non-homophilic. Figure 14 shows an
exemplary network structure that can emerge at time t = 12.
In this exemplary network, agents are equally distributed,
the red agents only form links with other red agents, and
the other types of agents form links with any other type.
We select the exemplary network structure in Figure 14
because: the non-homophilic agents form star sub-graphs
(e.g. maximum centrality), and the homophilic agents form
a complete sub-graph (e.g. minimum centrality), and such
a network structure emerges with a positive probability.
Thus, in such a worst case scenario (from the perspective
of the homophilic (red) agent), if the homophilic agents are
found to be more central than the non-homophilic agents,
then it is likely that this would also hold on average for
all network paths. This qualitative analysis is not a ”proof”;
however, the exemplary network realization in Figure 14
is expressive for the source of centrality of the homophilic
agents. The average betweenness centrality of all the four
types are given by:

b̄green =
1

3
·
(
3

2

)
= 1,

b̄blue =
1

3
·
(
3

2

)
= 1,

b̄yellow =
1

3
·
(
3

2

)
= 1,

b̄red >
3× 3 + 3× 3

3
= 6,

where b̄green, b̄blue and b̄yellow are obtained by observing
that all non-homophilic agents from star sub-graphs (see
Figure 14), whereas b̄red is lower bounded by observing
that every two non-homophilic agents in disconnected non-
homophilic sub-graphs are bridged by a homophilic agent.
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Therefore, b̄red > b̄green, b̄red > b̄blue, and b̄red > b̄yellow,
and hence the homophilic agents accrue the maximum
bridging capital.

In light of the example given above, we can see that the
key insight behind the phenomena of homophilic agents’
centrality is that homophilic agents form a central super-
node in a star graph of super-nodes as depicted via the
dashed circles in Figure 14, and the nodes within this central
super-node would naturally exhibit a central position in the
network (by analogy with the simple star graph in Figure
13, in which the central node has the maximum between-
ness centrality and peripheral nodes have zero centrality).
Hence, homophilic agents, suited as a central super-node
in a star-like graph, end up bridging agents from different
groups, whereas the agents in other groups lie on peripheral
positions in the network that exhibits less bridging capital.
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