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Abstract—Objective: In this paper, we develop a personal-
ized real-time risk scoring algorithm that provides timely and
granular assessments for the clinical acuity of ward patients
based on their (temporal) lab tests and vital signs; the proposed
risk scoring system ensures timely intensive care unit (ICU)
admissions for clinically deteriorating patients. Methods: The risk
scoring system is based on the idea of sequential hypothesis testing
under an uncertain time horizon. The system learns a set of latent
patient subtypes from the offline electronic health record data,
and trains a mixture of Gaussian Process (GP) experts, where each
expert models the physiological data streams associated with a
specific patient subtype. Transfer learning techniques are used
to learn the relationship between a patient’s latent subtype and
her static admission information (e.g. age, gender, transfer status,
ICD-9 codes, etc). Results: Experiments conducted on data from
a heterogeneous cohort of 6,321 patients admitted to Ronald
Reagan UCLA medical center show that our score significantly
outperforms the currently deployed risk scores, such as the
Rothman index, MEWS, APACHE and SOFA scores, in terms
of timeliness, true positive rate (TPR), and positive predictive
value (PPV). Conclusion: Our results reflect the importance of
adopting the concepts of personalized medicine in critical care
settings; significant accuracy and timeliness gains can be achieved
by accounting for the patients’ heterogeneity. Significance: The
proposed risk scoring methodology can confer huge clinical and
social benefits on a massive number of critically ill inpatients who
exhibit adverse outcomes including, but not limited to, cardiac
arrests, respiratory arrests, and septic shocks.

Index Terms—Ceritical care medicine, Sequential Hypothesis
testing, Personalized Medicine, Prognosis.

I. INTRODUCTION

RITICALLY ill patients who are hospitalized in regular
Cwards with brain tumors, hematological malignancies,
neutropenia, or those who are recipients of stem cell trans-
plants, or upper-gastrointestinal surgeries, are vulnerable to a
wide range of adverse outcomes, including neurologic condi-
tions [1], septic shocks [2], post-operative complications [3]-
[10], cardiopulmonary arrest [11], [12], and acute respiratory
failure [13]. All these adverse events can lead to an unplanned
ICU transfer [4], the timing of which plays a major role in
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determining clinical outcomes!; recent medical studies have

confirmed that the efficacy of acute care interventions depends
substantially on the timeliness of their application [8], [13],
[15]. The problem of delayed ICU transfer is enormous: over
750,000 septic shocks and 200,000 cardiac arrests occur in
the U.S. each year with mortality rates of 28.6% and 75%
respectively [16], [17]. Fortunately, experts believe that much
of these events could be prevented with accurate prognosis
and early warning [18].

A. Summary of Contributions

To address the problem above, we develop a risk scoring
algorithm that provides real-time, personalized assessments
for the acuity of critical care patients in a hospital ward.
The algorithm is trained using the electronic health record
(EHR) data in an offline stage, and risk scores for a newly
hospitalized patient are computed via the trained model in
real-time using her temporal, irregularly sampled physiological
measurements. The proposed risk scoring methodology is
based on the idea of sequential hypothesis testing under an
uncertain time horizon. That is, we view a patient’s risk score
as the optimal test statistic of a sequential hypothesis test
that disentangles clinically stable patients from the clinically
deteriorating ones as more physiological measurements are
gathered over time. The sequential hypothesis test is based
on a non-stationary model for the deteriorating patients’
physiological time series. (Non-stationarity creates uncertainty
in the latent time horizon of the patient’s physiological time
series.) Our conception of the risk score advances on the
seminal work of Wald on sequential analysis [19], and is
logically related to optimal stopping problems in the areas of
finance and automatic control [20].

The underlying patient’s physiological streams, based
on which the sequential test is conducted, are modeled
as multitask Gaussian Processes (GP) [21], [22], the
hyper-parameters of which depend on the patient’s (latent)
clinical status, i.e. the true hypothesis of whether the
patient is clinically stable or deteriorating. We capture the
non-stationarity of the deteriorating patients’ physiological
streams by dividing every patient’s stay in the ward into a
sequence of temporal epochs, and allow the parameters of the
multitask GP to vary across these epochs. Non-stationarity

! According to the Joint Commission (a nonprofit organization that accredits
hospitals and gathers data related to adverse events), around 29% of (narcotic-
related) bedside adverse events reported during the period from 2004 to 2011
were resulting from improper post-operative (or pre-operative) monitoring of
patients [14]
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is taken into account in the training phase by temporally
aligning the physiological streams recorded in the EHR data,
and is taken into account in the real-time deployment phase by
repeatedly estimating the multitask GP epoch index over time.

The heterogeneity of the patients’ population is captured
by considering the patients’ latent subtypes (or phenotypes
[23]). The proposed algorithm discovers the number of patient
subtypes from the training data, and learns a separate multitask
GP model for the physiological streams associated with each
subtype. Unsupervised discovery of the patients’ latent
subtypes is carried out using the expectation-maximization
(EM) algorithm applied on the domain of clinically stable
patients since these patients are dominant in the dataset, and
are more likely to exhibit stationary physiological trajectories,
thus their physiological streams are described with few hyper-
parameters and can be efficiently estimated. The knowledge
of the patients’ latent subtypes —extracted from the domain of
clinically stable patients— is then transferred to the domain of
clinically deteriorating patients via transfer learning. Every
GP model associated with (stable or deteriorating) patients
who belong to a specific subtype is called a GP expert. Thus,
every GP expert specialized in scoring the risk for one of
the discovered patient subtypes. A patient’s risk score is the
optimal statistic of a sequential test, i.e. a weighted average
of the posterior beliefs of all GP experts about the patient’s
clinical status given her physiological data stream, where
the weights are computed based on the patient’s hospital
admission information (e.g. age, ICD-9 codes, etc), which we
estimate using (transductive) transfer learning.

Experiments were conducted using a dataset for a hetero-
geneous cohort of 6,321 patients who were admitted during
the years 2013-2016 to a general medicine floor in the
Ronald Reagan UCLA medical center, a tertiary medical
center. Results show that the proposed risk score consistently
outperforms the currently deployed clinical scores in terms of
timeliness and accuracy (i.e. the true positive rate (TPR) and
the positive predictive value (PPV)), in addition to state-of-
the-art machine learning algorithms that are based on sliding-
window regression. Our results show that the proposed risk
score boosts the AUC with 12% as compared to the Rothman
index (the current technology deployed in our medical center),
and can prompt alarms for ICU admission 12 hours before
clinicians (on average) for a PPV of 25% and TPR of 50%,
which provides the ward staff with a safety net for patient care
by giving them sufficient time to intervene at an earlier time in
order to prevent clinical deterioration. Moreover, the proposed
risk score reduces the number of false alarms per number of
true alarms for any setting of the TPR, which reduces the alarm
fatigue and allows for better hospital resource management.

B. Related Works

Hospitals have been recently investing in prognostic
risk scoring systems for critically ill patients in wards
[3]-[9]. However, recent systematic reviews have shown
that currently deployed expert-based risk scores, such as

the MEWS score [24], provide only modest contributions
to clinical outcomes [25]-[27]. To that end, a data-driven
risk score, named the Rothman index, has been developed
using regression analysis [5], and was shown to outperform
the MEWS score and its variants [9]. Nevertheless, the
Rothman index lacks a principled model for the hospitalized
patient’s physiological parameters, and is mainly constructed
using a “one-size-fits-all” approach that leaves no room
for personalized risk assessment that is tailored to the
individual patient. A comprehensive, tabulated review of
all the clinical scores used for ward patients is provided
in Appendix A of the online supporting document in
http://medianetlab.ee.ucla.edu/papers/Alaa_TBME_supp.pdf.

The problem of modeling multivariate physiological time
series has been recently investigated by the machine learning
community [2], [6], [10], [21], [22], [28]-[30]; some of
the previous works have also adopted multitask GP models
[6], [10], [21], [22], [28]. However, most of these works
have focused on a forecasting problem in which the goal
is to predict the future values of an observable bio-marker.
For instance, [28] focuses on predicting the PFVC clinical
marker (a measure of lung severity) for scleroderma patients,
[6], [10], [21], [22] focus on predicting the future values of
SOFA, APACHE and SAPS scores for ICU patients, and [30]
focuses on predicting the GFR bio-marker values for patients
with chronic kidney disease. Unfortunately, a major challenge
encountered in our setting is that patients in regular wards
have no such strongly indicative bio-markers; we face this
challenge by resorting to a latent class modeling approach, in
which different classes correspond to different severity states.
Our model adopts two latent classes, which allows the risk
scoring problem to be formulated as a sequential hypothesis
test [19]. Consequently, our multitask GP model serves as
a tool for computing the optimal test statistic, and not for
performing GP regression as it is the case in the forecasting
problems in [6], [10], [21], [22], [28]. To the best of our
knowledge, our model is the first to conceptualize real-time
risk scoring as a sequential testing procedure.

Our risk scoring model handles the heterogeneity of the
patients’ population via subtyping. Unlike previous works on
subtyping in longitudinal disease progression models [28],
[30], in which one set of subtypes is learned for the entire
population of “sick” patients, the nature of the critical care
setting (manifesting in our sequential testing framework)
entails the need for learning different sets of subtypes for
both clinical stability and deterioration. This imposes the
challenge of learning a separate set of subtypes for the
clinically deteriorating patients under class imbalance (ICU
admission rate is less than 10%); we face this challenge
via a novel learning algorithm that uses ideas from transfer
learning to transfer the knowledge learned from the clinical
stable population to the deteriorating population.

Most of the previous works on clinical risk prognosis used
clinical endpoints (ICU admission or discharge) as “surrogate
labels” for a patient’s clinical deterioration, and hence used
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those labels to train a supervised (regression) model using the
physiological data in a fixed-size time window before cen-
soring. The supervised models used in the literature included
logistic regression [31], [32] and SVMs [33]. We compare
the performance of our model with these methods in Section
IV. A detailed, tabulated comparisons with other risk scoring
methodologies is provided in Appendix A in the supporting
document. This paper builds on our previous work in [34]
by adding deterioration and stability subtypes, and conducting
experiments on a larger patient cohort. Our work has been
presented in part in [35]; this paper extends on the model
therein by incorporating model non-stationarity, developing
new learning algorithms, and including more experimental
details.

II. THE PHYSIOLOGICAL MODEL

In this section, we present a comprehensive model for the
patients’ physiological data and develop a rigorous formulation
for the risk scoring problem.

A. Modeling the Patients’ Risks and Clinical Status

Two types of information are associated with every patient
in the (surgical or medical) ward:

1-  Physiological information X (¢): We define
X(t) = [Xi(t),X2(t),...,Xp(t)]" as a D-dimensional
stochastic process representing the patient’s D physiological
streams (lab tests and vital signs) as a function of time.
The process X;(t) takes values from a space X;, and
X = A x Xy x ..., xXp. Vital signs and lab tests are
gathered at arbitrary time instances {tij}&%zl (where t =0
is the time at which the patient is admitted to the ward),
where M; is the total number of samples of vital sign (or lab
test) ¢ that where gathered during the patient’s stay in the
ward. Thus, the set of all observations of the physiological
data that the ward staff has for a specific patient is given
by {Xi(tij)}?:’%"zl, and we will refer to the realizations of
these variables as {x;;,t;; }i;.

2- Admission information Y: We define the S-dimensional
random vector Y as the patient’s static information obtained
at admission (e.g. age, gender, ICD9 code, etc). The
random vector Y is drawn from a space ), and we denote the
realizations of the patient’s static information as Y = y. Thus,
the set of all (static and time-varying) information associated
with a patient can be gathered in a set {y, {z;;,%;}i; }-

Let V € {0,1} be a binary latent variable that corre-
sponds to the patient’s true clinical status; O standing for
a stable clinical status, and 1 for a clinically deteriorating
status. Since physiological streams manifest the patients’
clinical statuses, it is natural to assume that the conditional
distributions of X°(t) = X(¢)|V =0 differ from that of
XY(t) = X(t)|V = 1. We assume that V' is drawn randomly
for every patient at admission time and stays fixed over the
patient’s stay in the ward, i.e. the value of V' is revealed at
the end of every physiological stream, where V' = 1 if the

patient is admitted to the ICU, and V = 0 if the patient
is discharged home. During the patient’s stay in the ward,
the ward staff members are confronted with two hypotheses:
the null hypothesis H,, corresponds to the hypothesis that the
patient is clinically stable, whereas the alternative hypothesis
‘H, corresponds to the hypothesis that the patient is clinically
deteriorating, i.e.

|

Thus, the prognosis problem is a sequential hypothesis test
[19], i.e. the clinicians need to reject one of the hypotheses at
some point of time after observing a series of physiological
measurements. Hence, following the seminal work of Wald in
[19], we view the patient’s risk score as the test statistic of
the sequential hypothesis test. That is, the patient’s risk score
at time ¢, which we denote as R(t) € [0, 1], is the posterior
probability of hypothesis 7{; given the observations {x;;, t;; <
t}i;, and we have that R(t) = P (Hy [{zij, tij < t}i;), ie.

S P ({wij, tij <t}ij [Hi) - P(Ha)
B = S oy B (G iy < thy [y) - P (L)

where P (H;) is the prior probability of a patient in the ward
being admitted to the ICU (i.e. the rate of ICU admissions).

0: H, (clinically stable patient),

1: H; (clinically deteriorating patient). o

2

B. Modeling the Physiological Signals

Since the vital signs and lab tests are gathered at arbitrary,
irregularly sampled time instances, it is convenient to adopt a
continuous-time model for the patients’ physiological stream
using GPs [21], [22], [36]. We model the D (potentially
correlated) physiological streams of a monitored patient
as a multitask GP defined over ¢ € R, . The model
parameters depend on the patient’s latent clinical status
V. Since clinically stable patients do not exhibit changes
in their clinical status, we adopt a stationary model for
X°(t). Contrarily, deteriorating patients pass through phases
of clinical acuity, which invokes the need for a non-
stationary model for X!(¢). In the following, we present the
physiological models for clinically stable and deteriorating
patients, which we will then use as a proxy for risk scoring
in the next Section.

Physiological Signals Model for Clinically Stable Patients

For clinically stable patients, i.e. V' = 0, we adopt a
multitask GP model for the physiological signal X°(t) as
follows )

Xo(t) ~ Q’P(mo(t), ko(i7j7t7t ))a 3)

where m,(t) R* — X is the mean function, and
ko(i,j,t,t) : X x Xj x RT x R — R, is the covariance
kernel. The mean function is assumed to be a constant vector,
ie. mo(t) = [ml,m2,...,mP]T, the entries of which repre-
sent the average value of the different physiological streams.
We assume that the covariance kernel matrix k, (4, j, ¢, tl) has
the following separable form [36]

ko(iy g, t,t) = B0 (i, 7) ko(t, 1), (4)



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. X, XXXX 2017 4

where 3, is a stationary correlation matrix that quantifies the
correlations between the various physiological streams. The
kernel function k,(¢,t) is squared-exponential kernel [21],
[37], [38], defined as
/ — L=t )2
ko(tt):wge 22%“75 t | 7 5)

where w, and /, are hyper-parameters: w? is the variance

hyper-parameter, and £, is the characteristic length-scale. The
parameter w, controls the dynamic range of the fluctuations of
X (t); the parameter ¢, controls the rate of such fluctuations.
Note that (4) implies that we assume that all the physiological
streams have the same temporal characteristics, i.e. the same
variance and characteristic length-scale.

Since the correlation matrix 3, needs to be positive semi-
definite, we adopt the “free-form” construction of the correla-
tion matrix via the Cholesky decomposition as follows

00,1 0 ce 0

T 00,2 00,3 SN 0
Eo = Lo Lo 3 Lo - . . . . 5
Oo,Dfm%»l 00,D7m+2 e OO,D (6)

where D = w [36]. Since the variance of each stream is
already captured by the entries of 3,, we assume that w, = 1
for all streams. Thus, the hyper-parameters that characterize a
multi-task GP GP(my(t), ko(i, j, t,t )) are £, and the entries
of L,, which we compactly write in a vector o, = [0, ;] ]D:l.

We summarize the parameters of the GP model capturing
the physiological streams of clinically stable patients via the

following parameter set

0, = {{mg}(g):l’ Co, UO}» (7

b4y | pyq hyper-parameters of

which aggregates the 5
the multi-task GP. We write X°(t) ~ GP(©®,) to denote
an instance of a physiological stream of a clinically stable

patient generated with a parameter set ©,,.

Physiological Signals Model for Clinically Deteriorating
Patients

For clinically deteriorating patients, i.e. patients with
V =1, we adopt a non-stationary model for X !(¢) specified
as follows

X'(t) ~ GP(©1), (8)

where © is the parameter set for the physiological streams
of deteriorating patients. Since deteriorating patients exhibit
changes in their clinical status (e.g. progression from a more
stable status to a less stable one), a stationary covariance
kernel, such as the one defined in (5), and a constant mean
function do not suffice to describe the physiological stream of
a deteriorating patient. This motivates a non-stationary model
for X1(t) that divides the time domain into a sequence of
epochs, each is of duration 77, and is associated with a distinct
constant mean function and a distinct squared-exponential
covariance kernel.

Let T = K - T; be the maximum duration for a
patient’s stay in the ward. That is, the patient passes
through K consecutive epochs, each of which has a
mean function and a covariance kernel parametrized by
er = {{nz‘ik}gzl, O o1k}, Yk € {1,2,.. K}
Since patients arrive at the hospital ward at random time
instances, at which the clinical status is unknown, we
define k € {1,2,...,K} as the unobservable, initial epoch
index, which we assume to be drawn from an unknown
distribution k& ~ fi.(k). The physiological measurements
gathered by the clinicians during the patient’s are governed
by a monotonically increasing sequence of epochs, i.e. the
clinicians observe physiological measurements drawn from a
process with the underlying epoch sequence {k,k+1,..., K}.
For instance, if K = 6 and the realization of %k is 3, then
the (deteriorating) patient’s physiological process X'(t) has
its parameters changing over time according to the epoch
sequence {3,4,5,6}. Note that the length of the patient’s stay
in the ward is given by (K — k + 1) - Ty, which is random
since k is a random variable.

We assume that the physiological measurements across
different epochs are independent, but measurements within
the same epoch are correlated. Thus, the vital signs and lab
tests are correlated within every interval in the set of intervals
{[0,T0), [Ty, 2Ty), ..., [(K — k) T1,(K —k +1)Ty)}, but are
uncorrelated across different time intervals. In other words,
the covariance kernel for the process X! () is given by

o [ S ) kit ), et € [t ),
ki(i,7,t,t ) - { 0, Otherwise

(€))

where [ti,t2) € {[0,T}),...,[(K —k)Ty,(K —k+1)T})},

and o
5 =t |l

kue(t,t) =wlye >T (10)

The parameters of the GP model for deteriorating patients can
be summarized via the following parameter set

O1 = {{m{, 11, lik, oLkties- (11)

The parameter set ®; encapsulates K (% +D+1

hyper-parameters that describe the process X'(¢). Note that
the model X! (¢) entails much more parameters than the model
X°(t), which poses a significant challenge in learning the
parameters of X!(¢). We address this challenge elaborately
in the next Section.

C. Modeling Patients’ Subtypes

The model presented so far is constructed in a “one-
size-fits-all” fashion. That is, the risk score computed in (2)
considers the vital signs and lab tests for the monitored patient,
without considering her baseline admission information (the
vector Y). The interpretation of the manifest variables
{xij,ti;}i; in terms of the risk for clinical deterioration may
differ depending on the patient’s age, gender, transfer status,
or clinical history. Thus, a risk score that is tailored to the
individual’s admission feature would ensure a higher level
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Fig. 1: Graphical model for the physiological signals.

of granularity in modeling the physiological signals, which
would lead to a more accurate prognosis.

In order to ensure that our risk score is “personalized”,
we model the heterogeneity of the patients’ population by
incorporating a subtype variable Z € Z = {1,2,...,G},
which indicates the patient’s latent phenotype which
determines her physiological behavior, where G is the
number of subtypes to which a patient may belong. That is,
every patient has her physiological behavior being determined
by both her clinical status and her latent subtype. We denote
risk scores that take the patient’s particular subtype into
account as “personalized risk scores”.

The influence of the patient’s subtype Z on the patient’s
physiological model is captured by the following relations

ZL1V|Y,VL1Y|Z, (12)

where | denotes conditional independence. The relations in
(12) imply that: (a) a patient’s subtype is independent of
her clinical status given her admission information, and (b)
a patient’s clinical status is independent of the admission
information given her subtype. That is, knowledge of the
patent’s admission information suffices to infer her subtype
(e.g. knowledge of age and gender, etc, is enough to know
the subtype to which a patient belongs irrespective of the
true clinical status), and knowledge of the patient’s subtype
is enough to infer the patient’s vulnerability irrespective to
the admission information. The first relation follows from the
fact that the patient’s subtype is an intrinsic feature of the
patient that is independent of her clinical acuity, whereas the
second relation follows from that fact that the information
contained in Y is a subset of the information contained in
the patient’s intrinsic subtype Z.

The patient’s subtype manifests in her physiological signals
by manipulating the parameter sets for the multitask GPs
representing both X °(¢) and X *(¢). In other words, the param-
eters of the multitask GP modeling the patient’s physiological
signal depends not only on her clinical status V/, but also on
her subtype Z. The parameter set for clinically deteriorating

patients is denoted as ®%, and the parameter set for stable
patients is denoted as ®Z, where Z = z is a realization for
the patient’s subtype. The construction of both parameter sets
follows the description provided in the previous subsection.
Therefore, the physiological signals for the patients in the ward

are generated as follows

X(t)|Z =2z ~GP(©2). (13)

Fig. 1 depicts a graphical model describing the generative
process for the patients’ physiological signals. The patient’s
subtype Z = z is hidden, and affects both her clinical
status V= v and the physiological behavior that
manifests in the vital signs and lab tests. The variable
V € {0,1} x 2,V = [V Z]T augments both the patient’s
subtype and clinical status; a realization of this variable V = v
determines the parameter set §|t = ©7Z, which is used to
generate a latent function-valued variable X (t) = z € RE”
A plate model is then used to describe the sequence of
measurements {z;;}; ; gathered by the clinicians at time
instances {t;;}; ;. The time instances {¢;;};; are assumed
to be exogenously determined by the ward staff and are
uninformative of the clinical status, hence they are modeled
as parent nodes in the graphical models. Observations are
influenced by the index of the first epoch, k, which is also
assumed to be exogenously determined by the patient’s arrival
to the ward. It can be seen that the probabilistic influences
among the variables V, Z and Y in the graphical model in
Fig. 1(c) capture the relations specified in (12).

Having defined the patients’ subtypes, we refine the defini-
tion of the (non-personalized) risk score R(t), and incorporate
the patient’s individual static features in a personalized risk
score R(t,y) as follows

R(t,y) =P (Hi {zij, tis}ig, Y =y)

=Y P(Hil{wij tis}ig, Z =2) - P(Z = 2]Y =)
ze€Z

=Y P(V =1z, ti}i;,05,07) - P(Z = 2]Y =),

z€EZ
(14)
where
P (V = ]. |{$ij7tij}i,j7 8(277 @T) =
P ({zij, tij iy [©7) - P(V =1|Z = z) (15)

Dveqoy PUzijtij}i 1©3) - P(V =v|Z = z)’

where we have assumed in (14) and (15) that the epoch index &
is observed and we dropped the conditioning on & for simplic-
ity of exposition. In the next Section, we develop an algorithm
that learns the patients’ physiological model from offline data,
and computes the monitored patients’ personalized risk scores
using (14) and (15).

III. A PERSONALIZED RISK SCORING ALGORITHM

In this Section, we propose an algorithm that learns the
physiological model presented in the previous Section from
offline data, and computes the risk score formulated in (14)
and (15) for newly hospitalized patients in real-time.
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A. Objectives

Given an offline training dataset D that comprises N
reference patients whose physiological measurements were
recorded in the electronic health record (EHR), we aim at
learning a personalized risk scoring model, i.e. learning the
parameters of the model presented in Section II, and applying
the learned risk model for newly hospitalized patients.

The training dataset D is represented as a collection of
tuples

{({xgm ) }Z’py(n)?v(n))}N

n=1 ’

where each element in D corresponds to a reference patient;
{m:), tl;l)} ;.7 is the set of vital signs and lab tests measure-
ments, y(”) is the admission information, and v(™ is the true
clinical status (i.e. patient is admitted to the ICU or discharged

home) of the n*" patient in D. For v € {0, 1}, let

= (9 ) 20 =),

where D, is the set of data points for clinically stable patients,
and D; is the set of data points for clinically deteriorating
patients, and N,, = |D,| is the size of the dataset D,,.

Our algorithm A operates in two modes: an offline mode
Aoy, in which a risk scoring model is learned from the offline
dataset D, and an online mode A,,,, in which a risk score is
sequentially computed for a newly hospitalized patient with a
sequence of physiological measurements {z;;,;;}; . i.e.

(©L,...,85,01,...,0¥) = A,;(D),

R(t7 y) = Aon({xija tlj S t}i,j7 ééa ceey éga é)i ey é)?)
That is, A,yy estimates the parameter set for
stable and  deteriorating  patients for all subtypes
(OL,...,0¢ 01,...,0f), whereas A,, implements

(14) and (15) to assign a risk score for the monitored patient
in real-time.

In order to evaluate the predictive power of the algorithm
A, we set a threshold » on the computed risk score R(t,y),
and allow the algorithm to prompt an alarm (i.e. declare the
hypothesis 1) whenever the risk score crosses that threshold.
This resembles the structure of the optimal sequential hypoth-
esis test, where the null hypothesis is rejected whenever the
test statistic crosses a predefined threshold [19]. We define T’
as the stopping time at which the risk score computed by the
algorithm A crosses the threshold 7, i.e.

Ts(n)

The performance of the algorithm A is evaluated in terms of
the positive predictive value (PPV), and the true positive rate
(TPR) defined as follows

P(Te(n) S Tend|H1)
IP(TS (77) < Tend‘Ho) + IP)(Ts (77) < CZ—‘emir?L{l)7

=inf{t € Ry : R(t,y) > n}.

PPV =

(16)

and

P(Ts(n) < Tena|H1)
P(T,(n) < Tena[Ha) + B(Tu(n) > TenalH1)’
where T.,q is the time at which observations of the patient’s
monitored physiological stream stops either because of an

ICU admission or discharge (i.e. for a clinically deteriorating
patient Tp,,g = (K — k + 1) - T).

TPR =

a7

B. Algorithm

In this section, we propose an implementation for the
algorithm A, that learns the parameters of the physiological
model presented in Section II from a dataset D, and an
implementation for the algorithm A,,, which infers the clinical
status and computes the risk score for a newly hospitalized
patient according to (14) and (15). The implementation of the
algorithms A, ;¢ and A, is confronted with the following
challenges:

1) The number of patient subtypes G is unknown, and the
subtype memberships of the reference patients is not
declared in D.

2) The relationship between the admission information Y
and the latent subtype Z is unknown and needs to be
learned from the data.

3) The physiological model for the clinically deteriorating
patients is non-stationary, and hence, for newly admitted
patients, we need to estimate the latent epoch index k
in real-time in order to synchronize the patient’s physio-
logical signal with our model, and properly compute the
patient’s risk score described by (14) and (15).

4) The physiological model for the clinically deteriorating
patients has many parameters (i.e. w + D+ 1)
parameters), but the number of clinically deteriorating
patients in the dataset D is relatively small (ICU
admission rate is usually less than 10%).

In the following, we provide an implementation for the
offline algorithm A,f¢ that addresses challenges (1-3), and
then we present an implementation for the online algorithm
A, that addresses challenge (4).

The offline algorithm A, ¢

The objective of the offline algorithm A,¢s is to learn
from D the number of subtypes G, the parameter set
(@L,...,0% 01,...,0F), and the probability of a patient’s
membership in each subtype given her admission information,
ie. P(Z = z|Y = y). In the rest of this Section, we use
the following notations T', = (®},...,0%) v € {0,1}, and
B:(y) =P(Z = 2|Y =y)..

Recall from (14) that the risk score R(t,y) can be written

as
= Z R.(t)

z€EZ

(18)

where

Rz(t):]P)(V:1‘{9313,751]}1,]7@3@?) (19)
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The formulation of the risk score R(t,y) in (18) explicates the
impact of the patient’s latent subtype on her risk assessment.
The score R(t,y) is a weighted average of the posterior
probabilities R.(t) = P(V =1[{x;j,ti;}i;, 0%, 0F), ie
the probabilities of the alternative hypothesis H; given the
evidential physiological data and the latent subtype being
7 = z, over all possible latent subtypes for the patient. The
weight 3, (y) associated with the term R,(¢) corresponds to
the probability that the patient with admission information
Y = y belongs to subtype Z = z. We denote R,(t) as the
“expert for subtype z”, whereas the weight ,(y) is denoted
as the “responsibility of expert z”. Therefore, computing the
risk score R(t,y) entails invoking a mixture of GP experts,
and assigning the mixture weights in accordance to the
experts’ responsibilities determined by 3, (y).

The algorithm A,;¢ operates in 3 steps. In step I,
we discover the experts, i.e. we apply the expectation-
maximization (EM) algorithm to the dataset D, in order to
estimate the latent patient subtypes and the physiological
model parameters for the clinically stable patients. We apply
the Bayesian Information Criterion (BIC) for model selection
in order to select the number of subtypes G. This ensures
statistical efficiency in learning the number of subtypes and
the model parameters since the physiological model for the
clinically stable patients in D, has only w +D+1
parameters. In step 2, we use a (transductive) transfer
learning approach to learn the experts’ responsibilities [3,(y)
as a function of the admission information. Finally, in step 3,
we use a transfer learning approach to learn the parameters
of the physiological model for the clinically deteriorating
patients through the dataset D; using the model learned
for the clinically stable patients from the dataset D,. In the
following, we specify the detailed steps of the algorithm A, .

Step 0. Align the temporal physiological streams in
the dataset D;: Before implementing the 3 steps of the
algorithm Ay, we need to ensure that the recorded (non-
stationary) physiological streams in Djare aligned with
respect to a common reference time in order to properly
estimate the GP parameters for every epoch k € {1,2,..., K}.
This is achieved by considering the ICU admission time
as a surrogate marker for the latent epoch index k. That
is, we consider that the samples in the last 7} period of
time in every physiological streams to be designated as
epoch K (i.e. the last epoch), and then we go backwards in
time and label the preceding epochs as K — 1, K — 2, etc.
This procedure is applied to all the physiological streams
of the reference patients in D;, and hence all the training
physiological streams become aligned in time which allows
for a straight-forward epoch-specific parameter estimation.
The epoch length 77, and the number of epochs K are
hyper-parameters that are optimized via cross-validation. The
distribution of the initial epoch index f(k) is a truncated
negative binomial distribution with support {1,..., K}, and
can be straightforwardly estimated given the patients’ length
of stay information.

Step 1. Discover the Experts through Clinically Stable
Patients: In this step, we learn both the number of subtypes
G (which is also the number of experts), as well as the
parameter sets I',. This is accomplished through an iterative
approach in which we use the expectation-maximization
(EM) algorithm for estimating the parameters in I', for given
values of (G, and then use the Bayesian information criterion
(BIC) to select the number of experts.

The detailed implementation of the EM algorithm is given
in lines 4-18 in Algorithm 1. The algorithm is executed on the
dataset D, by iterating over the values of G, with an initial
number of experts G = 1. For every M, we implement the
usual E-step and M-step of the EM-algorithm: starting from
an initial parametrization I',, in the p'" iteration of the EM-
algorithm, the auxiliary function Q(T',; T2~ 1) is computed as

QT2 ) =

where Z(™ is the latent subtype of the n'" entry of the
dataset D,. The parametrization is updated in the M-step
by maximizing Q(T',; T2~1) with respect to I', (closed-form
expressions are available for the jointly Gaussian data in D, as
per the GP model). The p*” iteration is concluded by updating
expert z’s responsibility towards the n*" patient in the dataset
D, as follows

Ellog(P(D,, {Z™}}2, |T,)) | Do, T5 7],

th

/B(TL) (Z(n) P ‘ {‘%,74;74)7 tl;)} i Fp)
et s ©5)
- (n) ,(n) N (20)
Zz =1 7T f({x’bj 7tzg }1 J ‘ @I) )
where 72 is the estimate for P(Z = z) in the p!" iteration,

and f(.) is the Gaussian distribution function. The term ﬁi?p)
represents the posterior probability of patient n’s membership
in subtype z given the realization of her physiological data
{wij,tij}; ;- The iterations of the EM-algorithm stop when
the claimed responsibilities of the G experts towards the
N, reference patients in D, converges to within a precision
parameter € (line 14).

After each instantiation of the EM-algorithm, we compare
the model with G experts to the previous model with G — 1
experts found in the previous iteration. Comparison is done
through the Bayes factor Bg -1 (computed in line 16 via
the BIC approximation), which is simply a ratio between
Bayesian criteria that trade-off the likelihood of the model
being correct with the model complexity (penalty for a model
with G experts is given by W in line 15, such a penalty
corresponds to the total number of hyper-parameters in the
model with G experts). We stop adding new experts when the
Bayes factor Bg g1 drops below a predefined threshold B.

Step 2. Recruit the Experts via (transductive) Transfer
Learning’: Having discovered the experts by learning the
parameter set I', = (@ ... ©%), we need to learn how
to associate different experts to the patients based on the
initial information we have about them, i.e. the admission

2Qur terminologies with respect to transfer learning paradigms follow those
in [39].
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Algorithm 1 The Offline Algorithm A,

1: Input: Dataset D, precision, ¢, threshold B.
2: Implement step 1 (Discover the experts):
3: Extract dataset D, of clinically stable patients with label
(n) =0
v .

4: Initialize G =1

5: repeat

6: p<+1

7. Initialize T? = {©2*}¢ ..

8 repeat

9: E-step: Compute Q(I',; T2~ 1).

10: M-step: (©2, {7P}¢_ ) = argmaxp, Q(T,; T2 1).
11: Q% <+ maxp, Q(T,; 271,

12: Update responsibilitie% using Bayes rule ,Bi’f,? =

w? f({2{ Y105 %)
SG w7, FHa Y00
13: p P p+ 1.
14: untllNGZz 1ZZ 1’5%1)—5’1) 1’<e
15 Uo=G (258 4 pi1)
. ~ _ exp(Qz—3¥clog(N))
16: Bgg-1= eXp(Q5 - 1¥e 1 10g(N,))
172 G+ G+1.
18: until Bg ¢c_1 < B
19: Implement step 2 (Recruit the experts):

20: Construct the dataset {y("),( YL) .. 7ﬁ("))}

21: Find linear regression coefficients for BZ% ) =
[w3,...,wE]Ty.

22: Implement step 3 (Transfer learning):

23: For every n € D; and z € {1,...,G}, sample a random
variable ¢, . ~ Bernoulli(3, (y™)).

24: For every expert z, construct a dataset Dy , = {neD:
Cn,z = 1}

25: Find the MLE estimates of I'; using the samples in the
corresponding datasets {Ds 1,...,D1.¢}.

N,

features (e.g. transfer status, age, gender, ethnicity, etc). In
other words, we aim to learn a mapping rule (,(y) : Y — Z.
The function f3,(y) reflects the extent to which we rely on
the different experts when scoring the risk of a patient with
admission information Y = y.

A transfer learning approach is used to learn the function
B.(y). That is, we use the estimates for the posterior g
obtained from step 1 (see line 12 in Algorithm 1) for every
patient n in D,, and then we label the dataset D, with
these posteriors, and transfer these labels to the domain of
admission features, thereby constructing a dataset of the

form {y(”)7 (BYL), cen (n))}

analysis to fit the function ﬁz

1.

. We use a linear regression
=1

(see lines 20-21 in Algorithm

Step 3. Discover the Experts of Clinically Deteriorating
Patients: The knowledge of the parameter set
Iy = (©},...,0F) needs to be gained from the dataset D;.
We use a self-taught transfer learning approach to transfer

Vital signs Lab tests Admission
Diastolic blood pressure Glucose Transfer Status
Eye opening Urea Nitrogen Gender
Glasgow coma scale score | White blood cell count Age
Heart rate Creatinine Transplant
Respiratory rate Hemoglobin Floor ID
Temperature Platelet Count ICD-9 codes
O3 Device Assistance Potassium Race
O Saturation Sodium Ethnicity
Best motor response Total CO2
Best verbal response Chloride
Systolic blood pressure

TABLE I: Physiological data and admission information associated
with the patient cohort under study.

the knowledge obtained using unsupervised learning from the
dataset D,, i.e. the domain of stable patients, to “label” the
dataset D; and learn the set of experts associated with the
clinically acute patients [39], [40].

Self-taught learning is implemented by exporting the
number of experts G that we estimated from D, directly to
the population of patients in D;, picking a subset of patients
in D; to estimate the parameter set ®F of expert z by
sampling patients from D; using their responsibility vectors
(line 23 in Algorithm 1).

The online algorithm A,

An aggregate risk score for every patient with admission
information ¥ = y is obtained by weighting the opinions
of the G experts with their responsibilities {3, (y)}$_ ;. The
risk score for a newly hospitalized patient 7 with admission
information Y = y at time ¢ is then given by

G
= Z ﬂz (y) R, (t)

Note that computing R, (t) is not possible unless we know
the latent epoch index % for the monitored patient. Since k

is a hidden variable, we estimate k and evaluate R,(¢) by
averaging over its posterior distribution, i.e.

R.(t) = B [P(V = 1[{wij, tij < t}ij, k, Lo, T'1)]

= Y P(V =1{wij tij < t}ij k. Do, T1) X
1<k<K
]P)(kHl'ijvtlj = t}zjarl)
(21

where P(V = 1[{zi;,t;j < t}ij, k,[p,T1) is evaluated via
Bayes rule as clarified in (15). Hence, the online algorithm
Ao, continuously estimates the latent epoch index k as more
physiological data is gathered, and synchronized the moni-
tored physiological stream with the learned (non-stationary)
GP model. Algorithm 2 shows the a pseudo-code for the
operations implemented in the real-time stage. We note that if
the current patient’s length of stay exceeded K Tj, we use
the deterioration model for the K'" epoch throughout her
remaining time in the ward.
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Algorithm 2 The Online Algorithm A,

1: Input: Physiological measurements {x;;,%;;}, ;, admis-
sion features Y = y, a set of experts’ parameters I', and
I;.

2: Estimate the experts’ responsibilities 3, (y).

3: Compute the posterior epoch index
P(k[{wij, tij < t}ij, I'1).

4: For every expert z, compute the risk score

R.(t) = Z P(V = 1{j, tij < t}ij, kT, T'1) X
1<k<K

P(k[{zij, tij < t}ij, T1).

distribution

5: Compute the final risk score as a mixture of the individual
experts’ risk assessments weighted by their individual
responsibilities toward the monitored patient

G
R(ta y) = Z B (y) R, (t)

IV. EXPERIMENTS AND RESULTS
A. Data Description

Experiments were conducted on a cohort of 6,321 pa-
tients who were hospitalized in a general medicine floor in
the Ronald Reagan UCLA medical center during the period
between March 3"¢ 2013, to February 4"¢ 2016 (excluding
patients who were initially admitted to the ICU and then trans-
ferred to the ward after stabilization since for those patients the
data were not recorded in the EHR). The patients’ population
is heterogeneous with a wide variety of diagnoses and ICD-9
codes: the patient’s cohort included an overall number of 1,643
ICD-9 codes; the most frequent of which corresponded to con-
ditions such as shortness of breath, hypertension, septicemia,
sepsis, fever, pneumonia and renal failure. The cohort included
patients who were not on immunosuppression and others
who were on immunosuppression, including patients that have
received solid organ transplantation. In addition, there were
some patients that had diagnoses of leukemia or lymphoma.
Some of these patients received stem cell transplantation
as part of their treatment. Because these patients receive
chemotherapy to significantly ablate their immune system
prior to stem cell transplantation, they are at an increased risk
of clinical deterioration. The vast heterogeneity of the patients’
cohort motivates the need for a “personalized” risk model, and
suggests the general applicability of the experimental results
presented in this Section.

Patients in the dataset D were monitored for 11 vital signs
(e.g. O5 saturation, heart rate, systolic blood pressure, etc)
and 10 lab tests (e.g. Glucose, white blood cell count, etc).
Hence, the dimension of the physiological stream for every
patient is D = 21. Table I lists all the vital signs and lab tests
included in the experiment, in addition to the set of admission
information Y that are used for personalizing the computed
risk scores. The ICD-9 code ranges were converted to a set
of 18 categorical values, where each value bundles a set of
ICD-9 codes for “related diseases”; such a ‘“‘categorization”

allows the algorithm to handle newly hospitalized patients
with rare ICD-9 codes that were not present in the dataset.
The sampling rate for the physiological streams {x;;,%;;}i
ranges from 1 hour to 4 hours, and the length of hospital
stay for the patients ranged from 2 to 2,762 hours. Correlated
feature selection (CFS) was used to select the physiological
streams that are relevant to predicting the endpoint outcomes
(i.e. ICU admission) [41]; the CFS algorithm selected 7 vital
signs (Diastolic blood pressure, eye opening, Glasgow coma
scale score, heart rate, temperature, Oy device assistance and
Oy saturation), and 3 lab tests (Glucose, Urea Nitrogen and
white blood cell count).

Throughout the experiments conducted in this Section, the
training and testing datasets are constructed as follows. The
training set comprises 5,130 patients who were admitted to
the ward in the period between March 2013 and July 2015.
Among those patients, the ICU admission rate was 8.34%.
The algorithms are trained via this dataset, and then tested on
a separate dataset that comprises the remaining 1,191 patients
who were admitted to the ward in the period between July
2015 and April 2016 (ICU admission rate is 8.13%). The
training set is split into a set of 4,130 patients for training,
and 1,000 patients for validation. The validation set is used
for feature selection and tuning 73 and K.

B. Subtype Discovery

When running the risk scoring algorithm on the 5,130
patients in the testing set, the algorithm was able to discover
6 patient subtypes (G = 6), and train the corresponding GP
experts. Setting the number of subtypes as G = 6 experts is
optimal given the size of the dataset D; the offline algorithm
Ao,y stops after computing the Bayes factor Bg 5.

Having discovered the latent patient subtypes, we investigate
how the hospital admission features Y are associated to the
patients’ subtypes, i.e. we are interested in understanding
which of the admission features are most representative of the
latent patient subtypes. Table II lists the admission features
ranked by their “importance” in deciding the responsibilities
of the 6 experts corresponding to the 6 subtypes. Since we
normalize all feature to the range [0,1], the importance, or
relevance, of an admission feature can be quantified by the
weight of that feature (wi,...,wg) in the learned linear
regression function (,(y) averaged over all subtypes (see
line 21 in Algorithm 1). As shown in Table II, stem cell
transplant turned out to be the feature that is most relevant
to the assignment of responsibilities among experts. This is
consistent with domain knowledge: patients receiving stem cell
transplantation are at a higher risk of deterioration due to their
severely compromised immune systems, thus it is extremely
important to understand their physiological state [42].

Surprisingly, gender turned out to be the third most relevant
feature for expert assignments. This means that vital signs and
lab tests for males and females should not be interpreted in the
same way when scoring the risk of clinical deterioration, i.e.
different GP experts needs to handle different genders (recall
the demonstration in Fig. 1). The fact that the transfer status
of a patient is an important admission factor (ranked fourth in
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Rank Admission feature Regression coefficient
1 Stem cell transplant 0.1091
2 Floor ID 0.0962
3 Gender 0.0828
4 Transfer status 0.0827
5 ICD-9 code 0.0358
6 Age 0.0109

TABLE II: Relevance of the patients’ admission features to the latent
subtype memberships.

the list) is consistent with prior studies that demonstrate that
patients transferred from outside facilities have a higher acuity
with increased mortality [43].

C. Prognosis and Early Warning Performance

We validated the utility of the proposed risk scoring model
by constructing an EWS that issues alarms for ICU admission
based on the real-time risk score (i.e. ICU alarms are issued
whenever the risk score R(t,y) crosses a threshold 7), and
evaluating the performance of the EWS in terms of the
PPV and the TPR as defined in (16) and (17). The accuracy
of the proposed risk model is compared with that of the
state-of-the-art risk scores (Rothman, MEWS, APACHE and
SOFA) by evaluating the Receiver Operating Characteristics
(ROC) curves in Fig 2a. The implementation of the MEWS
and Rothman indexes followed their standard methodologies
in [44] and [5], whereas the implementations of SOFA and
APACHE followed [45].

As shown in Fig. 2a, the proposed risk model with
G = 6 subtypes consistently outperforms all the other
risk scores for any setting of the TPR and PPV. The
proposed score offers gains of 12% with respect to the
(most competitive) Rothman score (p-value < 0.01). This
promising result shows the prognostic value of replacing
the currently deployed scores in wards with scores that
captures the patients’ heterogeneity, considers the temporal
aspects of the physiological data, and accounts for the
correlations among different physiological streams. The same
comparison is carried out in Fig. 2b, but in terms of the
TPR and the false positive rate (FPR) performances, and
it can be seen that the AUC of the proposed score (0.806)
outperforms that of the Rothman index (0.72) and all other
risk scoring methods. Moreover, as shown in Fig. 2c, the
proposed risk score also outperforms state-of-the-art machine
learning techniques (logistic regression, linear regression,
random forest, and LASSO); it provides an AUC gain of
around 10% with respect to these techniques (p-value < 0.01).

It is important to note that the proposed risk score
significantly reduces the false alarm rates as compared to
the state-of-the-art risk scores. This can be seen for the
numerical values in Table III and is also reflected in the
TPR/PPV performance comparison in Fig. 2a, where we can
see that for any fixed TPR, the proposed risk score achieves
a much higher PPV than the Rothman index, e.g. at a TPR

of 60%, the proposed score achieves a PPV of 30%, which
is double of that achieved by the Rothman index (15%).
This significant reduction in the false alarm rate can be
attributed to the fact that the proposed algorithm computes a
risk score based on a trajectory of measurements rather than
instantaneous ones. Fig. 3c illustrates this effect by depicting
a realization for the risk scores’ trajectory of a clinically
stable patient in the testing dataset. We can see that the
MEWS and Rothman indexes exhibit drastic fluctuations over
time as they only consider the most recent vital signs and
lab tests, which makes them easily triggered by instantaneous
measurements or transient phenomena. Our score offers a
smoother trajectory that is more resilient to false alarms since
it computes a posterior probability that is conditioned on the
entire physiological history.

Reductions in the false alarm rates are further demonstrated
in Table III, where we specify the number of false alarms
per one true alarm for both the proposed risk score and
the state-of-art scores at different settings of the TPR. At a
TPR of 50%, our risk score leads to only 2.16 false alarms
for every 1 true alarm, whereas the Rothman index lead to
4.56 false alarms per true alarm, i.e. the rate of the false
alarms caused by the Rothman index is more than double
of that caused by the proposed algorithm. Thus, our risk
score can ensure more confidence in its issued ICU alarms,
which would mitigate alarm fatigue and enhance a hospital’s
resource utilization [26], [46]. Table III shows that our risk
score offers a lower false alarm rate compared to all other
scores and benchmark algorithms for all settings of the TPR.

Fig. 3a illustrates the trade-off between the timeliness of
the ICU alarm and its accuracy for a fixed TPR of 50% (the
achieved gains hold for any setting of the TPR). In Fig. 3a,
we select an alarm threshold n that corresponds to a fixed
TPR of 50%, and then compute the PPV for the alarms issued
at different time horizons prior to ICU admission. We can
see that the proposed risk score consistently outperforms all
the other scores in terms of the timeliness of its ICU alarms
for all the PPV settings. For instance, for a PPV greater
than 25%, our score offers a 12-hour earlier predictions with
respect to the actual physician-determined ICU admission
event. This level of timeliness is not feasible for any of the
other risk scores. Combining the results shown in Fig. 3a and
Table III, one can see that the proposed risk score is able to
both warn the clinician earlier and provide a more confident
signal as compared to the state-of-the-art risk scores, thus
providing the ward staff with a safety net for patient care by
giving them sufficient time to intervene in order to prevent
clinical deterioration.

The value of personalization is depicted in Fig. 3b and Fig.
3c, where we plot the ROC and timeliness curves for our algo-
rithm once with one subtype (i.e. G = 1 and no personalization
is taken into account), and once with G = 6 subtypes. If we
were to take G = 1, our model would prompt ICU alarms
that warns the clinicians 5 hours earlier than the physicians’
determination. When we take G' = 6, our model prompts ICU
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TPR Proposed score (G = 6) | LR* | Logit. R.* LASSO RF* | MEWS SOFA APACHE | Rothman
40% 1.76 2.58 23 2.3 331 5.9 7.26 6.41 3.98
50% 2.16 4.46 3.95 3.44 4.62 7.13 7.77 7.13 4.56
60% 2.44 5.13 4.99 4.95 5.45 7.06 7.06 7.77 5.62
70% 3.15 6.09 6.25 6.09 6.41 8.8 8.52 8.62 6.35
80% 4.81 6.63 7.2 7.2 6.94 9.31 9.31 9.75 7.33

i —— Proposed risk score with G = 6 (AUC: 0.3605)
by MEWS (AUC: 0.1716)
H == SOFA (AUC: 0.1466)

TABLE III: Number of false alarms per one true alarm (* LR = Linear regression, Logit. R. = Logistic regression, and RF = Random forest)

! {}‘ Proposed score, G=6 (AUC. 0.361)
<= LR (AUC 0.2690)
.‘.- Logit R (AUC 0.2647)
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Fig. 2: (a) TPR and PPV performance comparisons (ROC curve) with respect to state-of-the-art risk scores. (b) TPR and FPR performance
comparisons (ROC curve) with respect to state-of-the-art risk scores. (c) TPR and PPV performance comparisons (ROC curve) with respect
to state-of-the-art machine learning techniques.
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Fig. 3: (a) Timeliness of the proposed risk score. (b) Impact of personalization on the timeliness of the ICU alarms. (c) Impact of
personalization on the ROC curve.

alarms 12 hours earlier than physician determination. Thus,
even the unpersonalized version of our model is significantly
quicker than the physician determination, but is sluggish in
comparison to the personalized one. A similar gain is attained
due to personalization in terms of the PPV. As shown in Fig.
3c, personalization leads to a 10% higher PPV at a TPR of
60% as compared to a non-personalized version of our model.

V. CONCLUSION

In this paper, we have developed a personalized risk scoring
algorithm for critically ill patients in wards that allows trans-
ferring deteriorating patients to the ICU in a timely manner.
The algorithm learns a granular risk scoring model that is
tailored to the individual patient’s traits by modeling the
patient’s physiological processes via a mixture of multitask
Gaussian Processes, the weights of which are determined by

the patient’s baseline admission information and the latent sub-
types discovered from the training data. We have demonstrated
the utility of the proposed risk scoring algorithm through a
set of experiments conducted on a heterogeneous cohort of
6,321 critically ill patients who were recently admitted to
Ronald Reagan UCLA medical center. The experiments have
shown that the proposed risk score significantly outperforms
the currently deployed risk scores, such as the Rothman index,
MEWS, APACHE and SOFA scores, in terms of timeliness,
true positive rate, and positive predictive value. The results

suggest the possibility of reducing the annual sub-acute care
mortality rates through precision medicine.
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APPENDIX A: LITERATURE REVIEW

Previous Works in the Medical Literature

Hospitals have been investigating and investing in prog-
nostic risk scoring systems that quantify and anticipate the
acuity of critically ill inpatients in real-time based on their
(temporally evolving) physiological signals in order to ensure
timely ICU transfer [3]-[9]. Prognosis in hospital wards is
feasible since unanticipated adverse events are often preceded
by disorders in a patient’s physiological parameters [11],
[12]. However, the subtlety of evidence for clinical deteri-
oration in the physiological parameters makes the problem
of constructing an “informative” risk score quite challenging:
overestimating a patient’s risk can lead to alarm fatigue
and inefficient utilization of clinical resources [44], whereas
underestimating her risk can undermine the effectiveness of
consequent therapeutic interventions [13], [47].

Recent systematic reviews have shown that currently de-
ployed expert-based risk scores, such as the MEWS score
[24], provide only modest contributions to clinical outcomes
[25]-[27]. Alternatives for expert-based risk scores can be
constructed by training a risk scoring model using the data
available in the electronic health records (EHR) [4]. Recently,
a data-driven risk score, named the Rothman index, has been
developed using regression analysis [5], and was shown to
outperform the MEWS score and its variants [9]. However,
this score lacks a principled model for the hospitalized pa-
tient’s physiological parameters, and is mainly constructed
using a “one-size-fits-all” approach that leaves no room for
personalized risk assessment that is tailored to the individual
patient. Personalized models that account for the patient’s
individual traits are anticipated to provide significant accuracy
and granularity in risk assessments [48].

Two broad categories of risk models and scores that
quantify a patient’s risk for an adverse event have been
developed in the medical literature. The first category
comprises early-warning scores (EWS), which hinge on
expert-based models for triggering transfer to ICU [24].
Notable examples of such scores are MEWS and its variant
VitalPAC [7]. These scores rely mainly on experts to specify
the risk factors and the risk scores associated with these
factors [44]. A major drawback of this class of scores is that
since the model construction is largely relying on experts,
the implied risk functions that map physiological parameters
to risk scores do not have any rigorous validation. Recent
systematic reviews have shown that EWS-based alarm systems
only marginally improve patient outcomes while substantially
increasing clinician and nursing workloads [25]-[27]. Other
expert-based prognostication scores that were constructed to
predict mortality in the ICU, such as SOFA and APACHE
scores, has been shown to provide a reasonable predictive
power when applied to predict deterioration for patients in
wards [45].

The second category of risk scores relies on more rigorous,
data-intensive regression models to derive and validate
risk scoring functions using the electronic medical record.
Examples for such risk scores include the regression-based

risk models developed by Kirkland et al. [4], and by Escobar
et al. [49]. Rothman et al. build a more comprehensive model
for computing risk scores on a continuous basis in order
to detect a declining trend in time [5], [9]. The risk score
computed therein, which is termed as the “Rothman index”,
quantifies the individual patient condition using 26 clinical
variables (vital signs, lab results, cardiac rthythms and nursing
assessments). Table I summarizes the state-of-the-art risk
scores used for critical care prognostication.

The Rothman index is the state-of-the-art risk scoring
technology for patients in wards: about 70 hospitals and
health-care facilities, including Houston Methodist hospital
in Texas, and Yale-New Haven hospital in Connecticut, are
currently deploying this technology [50]. While validation
of the Rothman index have shown its superiority to MEWS-
based models in terms of false alarm rates [9], the risk
scoring scheme used for computing the Rothman index
adopts various simplifying assumptions. For instance, the risk
score computed for the patient at every point of time relies
on instantaneous measurements, and ignores the history of
previous vital sign measurements (see Equation (1) in [5]).
Moreover, correlations among vital signs are ignored, which
leads to double counting of risk factors. Finally, the Rothman
scoring model is fitted to provide a reasonable “average”
predictive power for the whole population of patients, but
does not offer “personalized” risk assessments for individual
patients, i.e. it ignores baseline and demographic information
available about the patient at admission time. Our risk scoring
model addresses all these limitations, and hence provides a
significant gain in the predictive power as compared to the
Rothman index as we show in Section IV.

Previous Works in the Machine Learning Literature

The problem of modeling multivariate physiological time
series has been recently investigated by the machine learning
community [2], [6], [10], [21], [22], [28]-[30], [59], [60];
some of the previous works have also adopted multitask
GP models [6], [10], [21], [22], [28]. However, most of
these works have focused on a forecasting problem in which
the goal is to predict the future values of an observable
bio-marker. For instance, [28] focuses on predicting the
PFVC clinical marker (a measure of lung severity) for
scleroderma patients, [6], [10], [21], [22] focus on predicting
the future values of SOFA, APACHE and SAPS scores
for ICU patients, and [30] focuses on predicting the GFR
bio-marker values for patients with chronic kidney disease.
Unfortunately, a major challenge encountered in our setting
is that patients in regular wards have no such strongly
indicative bio-markers; we face this challenge by resorting to
a latent class modeling approach, in which different classes
correspond to different severity states. Our model adopts two
latent classes, which allows the risk scoring problem to be
formulated as a sequential hypothesis test [19]. Consequently,
our multitask GP model serves as a tool for computing the
optimal test statistic, and not for performing GP regression
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Reference

Risk scores

Details

Limitations

(2], [71. [24],
[44], [511-[53]

[45], [54]-[56]

[45], [57], [58]

[51, [9]

MEWS, VIEWS and
TREWS

SOFA

APACHE II and III

Rothman index

Expert-based risk assessment methodologies
(also known as “track and trigger” systems)

A combination of organ dysfunction scores
for respiratory, coagulation, liver, cardiovascular
and renal systems. Originally developed for pre-
dicting mortality in ICU patients, but was shown
in [45] to function as a prognostication tool for
non-ICU ward patients.

A disease severity score used for ICU patients
(usually applied within 24 hours of admission
of a patient to the ICU [57]). It has been shown
in [45] that it can be used for prognostication in
regular wards.

A regression-based data-driven model that uti-
lizes physiological data to predict mortality, 30-

o Neither personalized nor data-driven, does
not take advantage of the EHR.

e Modest performance reported by recent sys-
tematic reviews in [25]-[27].

o Not personalized, i.e. uses the same scoring
scheme for all patients (see Table 3. in [54]).

e Does not consider correlations between or-
gan dysfunction scores and endpoint out-
comes.

o Predictions can corporate the mean statistics
of the computed score over time but does
not consider the full temporal trajectory.

e Does not consider the temporal trajectory of
score evaluations during the patients stay in
ICU (or in the ward).

e Not personalized. Uses vital signs and

days readmission, and ICU admissions.

lab tests to construct a “one-size-fits” all
population-level model.

o Ignores correlations between vital signs, and
hence may double-count risk factors (see Eq.
(1) in [S]).

e Uses the instantaneous vital signs and lab
tests measurements, and ignores the physio-
logical stream trajectory.

TABLE IV: Summary of the state-of-the-art critical care risk scores.

as it is the case in the forecasting problems in [6], [10], [21],
[22], [28]. To the best of our knowledge, our model is the
first to conceptualize real-time risk scoring as a sequential
testing procedure.

Our risk scoring model handles the heterogeneity of the
patients’ population via subtyping. Unlike previous works on
subtyping in longitudinal disease progression models [28],
[30], in which one set of subtypes is learned for the entire
population of “sick” patients, the nature of the critical care
setting (manifesting in our sequential testing framework)
entails the need for learning different sets of subtypes for
both clinical stability and deterioration. This imposes the
challenge of learning a separate set of subtypes for the
clinically deteriorating patients under class imbalance (ICU
admission rate is less than 10%); we face this challenge
via a novel learning algorithm that uses ideas from transfer
learning to transfer the knowledge learned from the clinical
stable population to the deteriorating population.

Most of the previous works on clinical risk prognosis used
clinical endpoints (ICU admission or discharge) as “surrogate
labels” for a patient’s clinical deterioration, and hence used
those labels to train a supervised (regression) model using
the physiological data in a fixed-size time window before
censoring. The supervised models used in the literature

included logistic regression [31], [32] and SVMs [33]. We
compare the performance of our model with these methods
in Section IV. A detailed, tabulated comparisons with other
risk scoring methodologies is provided in Appendix A in the
supporting document.

Various other important tools for risk prognosis that do
not rely on GP models have been recently developed. In
[2] and [29], a Cox regression-based model was used to
develop a sepsis shock severity score that can handle data
streams that are censored due to interventions. However, this
approach does not account for personalization in its severity
assessments, and relies heavily on the existence of ordered
pairs of comparisons for the extent of disease severity at
different times, which may not always be available and cannot
be practically obtained from experts. Our model does not
suffer from such limitations: it does not rely on proportional
hazard estimates, and hence does not require ordered pairs
of disease severity temporal comparisons, and can be trained
using the raw physiological stream records that are normally
fed into the EHR during the patients’ stay in the ward.

In [61] and [62], personalized risk factors are computed for a
new patient by constructing a dataset of K ‘““similar patients” in
the training data, and train a predictive model for that patient.
This approach would be computationally very expensive when
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applied in real-time for patients in a ward since it requires re-
training a model for every new patient, and more importantly,
it does not recognize the extent of heterogeneity of the patients,
i.e. the constructed dataset has a fixed size of K irrespective
of the underlying patients’ physiological heterogeneity. Hence,
such methods may incur efficiency loss if K is underestimated,
and may perform unnecessary computations if the underlying
population is already homogeneous. Our model overcomes
this problem by learning the number of latent subtypes from
the data, and hence it can adapt to both homogeneous and
heterogeneous patient populations.

Table V presents a detailed comparisons with state-of-the-
art risk scoring methodologies, highlighting the limitations of
these methods that were addressed by out model.

APPENDIX B: DATA DESCRIPTION
The Patient Cohort and ICD-9 Codes

Experiments were conducted on a cohort of 6,321 pa-
tients who were hospitalized in a general medicine floor in
the Ronald Reagan UCLA medical center during the period
between March 37¢ 2013, to February 47% 2016 (excluding
patients who were initially admitted to the ICU and then trans-
ferred to the ward after stabilization since for those patients the
data were not recorded in the EHR). The patients’ population
is heterogeneous with a wide variety of diagnoses and ICD-9
codes: the patient’s cohort included an overall number of 1,643
ICD-9 codes; the most frequent of which corresponded to con-
ditions such as shortness of breath, hypertension, septicemia,
sepsis, fever, pneumonia and renal failure. The distribution of
the ICD-9 codes associated with the patients in the cohort is
illustrated in Fig. 5 and Table VI. The cohort included patients
who were not on immunosuppression and others who were
on immunosuppression, including patients that have received
solid organ transplantation. In addition, there were some
patients that had diagnoses of leukemia or lymphoma. Some
of these patients received stem cell transplantation as part of
their treatment. Because these patients receive chemotherapy
to significantly ablate their immune system prior to stem cell
transplantation, they are at an increased risk of clinical dete-
rioration. Of the 6,321 patients (the dataset D), 524 patients
experienced clinical deterioration and were admitted to the
ICU (the dataset D;), and 5,788 patients were discharged
home (the dataset D,). Thus, the ICU admission rate is 8.30%.
The vast heterogeneity of the patients’ cohort motivates the
need for a “personalized” risk model, and suggests the general
applicability of the experimental results presented in the paper.

Patients in the dataset D were monitored for 11 vital signs
(e.g. O4 saturation, heart rate, systolic blood pressure, etc) and
10 Iab tests (e.g. Glucose, white blood cell count, etc). Hence,
the dimension of the physiological stream for every patient
is D = 21. Each physiological stream is a temporal, irregu-
larly sampled time series, which resemble the data structure
depicted in Fig. 4. The ICD-9 code ranges were converted to
a set of 18 categorical values, where each value bundles a set
of ICD-9 codes for “related diseases”; such a “categorization”
allows the algorithm to handle newly hospitalized patients with
rare ICD-9 codes that were not present in the dataset. The
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Fig. 4: An exemplary physiological stream for a patient
hospitalized in a regular ward.

ICD-9 ranges used for categorization are shown in Table VII.
The sampling rate for the physiological streams {x;;,t;;}i ;
ranges from 1 hour to 4 hours, and the length of hospital
stay for the patients ranged from 2 to 2,762 hours. Correlated
feature selection (CFS) was used to select the physiological
streams that are relevant to predicting the endpoint outcomes
(i.e. ICU admission); the CFS algorithm selected 7 vital signs
(Diastolic blood pressure, eye opening, Glasgow coma scale
score, heart rate, temperature, O- device assistance and Os
saturation), and 3 lab tests (Glucose, Urea Nitrogen and white
blood cell count).

For all the experiments conducted in the paper, the training
and testing datasets are constructed as follows. The training
set comprises 5,130 patients who were admitted to the ward in
the period between March 2013 and July 2015. Among those
patients, the ICU admission rate was 8.34%. The algorithms
are trained via this dataset, and then tested on a separate
dataset that comprises the remaining 1,191 patients who were
admitted to the ward in the period between July 2015 and
April 2016.

In Figure 6 we display a snapshot for the temporal risk
score trajectories computed by various risk scoring methods
for one clinically stable patient, and one clinically deteriorating
patient. All risk scores are normalized such that their optimal
alarm threshold is fixed at 0.7. For the clinically stable patient,
the proposed score as a function of time displays a higher
level of smoothness as opposed to the MEWS and Rothman
scores which falsely alarm for an ICU admission for that
patient because of their drastic fluctuations. For the clinically
deteriorating patient, the proposed score is able to track the
trend of the patient’s clinical deterioration, and hit the alarm
threshold quicker than the Rothman index, whereas the MEWS
score even fails to identify the patients clinical deterioration.
In this case, the patient’s clinical status starts to progressively
worsen approximately 250 hours prior to the emergent ICU
transfer. Our risk model demonstrates a steady increase in risk
of clinical deterioration until it crosses the threshold where
a warning would be sent to the clinician taking care of the
patient. Even after that point, the risk model continues to
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Reference Method Details Limitations
[6], [10], | Multitask GPs Model physiological time series data with a
[21], [22] Multitask GP likelihood o Does not capture non-stationarity.

e Does not account for latent patient sub-
types.

o Estimate observable severity score (which is
not available for patients in wards).

[28], [30] GPs for disease pro- | Model long-term longitudinal disease progres-
gression models sion (via severity scores) using subtypes and GP o Does not capture non-stationarity.
regression for the severity scores o Uses the same set of sub-types for the entire
population.

o Estimate observable severity score (which is
not available for patients in wards).

e Does not fit for distinguishing between pa-
tient latent classes of patients; models only
the physiological trajectory of a sick patient.

[31]-[33] Sliding-window Use the clinical endpoints (ICU admission or
regression discharge) as surrogate labels for a patient’s clin- e Does not capture non-stationarity.
ical deterioration, and hence used those labels to o No time-series model: does not exploit the
train a supervised (regression) model using the information conveyed in different adjacent
physiological data in a fixed-size time window sliding window.
before censoring
[2], [29] Proportional Hazard | Cox regression-based model used to develop a
Models sepsis shock severity score that can handle data o Does not capture non-stationarity.
streams that are censored due to interventions e Relies on the existence of ordered pairs
of comparisons for the extent of disease
severity at different times (not available for
ward patients.

e Does not incorporate static information or

patient subtypes.

TABLE V: Summary of the state-of-the-art risk scoring methodologies.
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Fig. 5: Distribution of the ICD-9 codes in the patient cohort.

cross the threshold until the patient finally decompensates to
the point that the clinician makes the decision to transfer
to the ICU. It is worth mentioning that many patients in
the cohort under study were receiving chemotherapy or stem
cell transplantation, and hence their immune systems often do
not recover for several days during which time they are at
increased risk of infection. The fact that our risk model can
predict several days prior to the actual clinical deterioration
event provides hope that an earlier intervention can be pro-
vided to reverse the course of decompensation.

APPENDIX C: ALGORITHMIC DETAILS
The EM Algorithm

We show the E and M steps for the EM algorithm (Al-
gorithm 1) for the clinically stable patients. The same steps
are conducted for the deteriorating patients but separately for
every epoch.

We start by writing the proximal likelihood function as
follows:

QLo T571) = Ellog(P(Do, {Z™} 32, | o)) | Do, 571,
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Snapshot for the real-time risk scores of a clinically stable patient

°
®
T

o
N

Normalized risk scale
o
S

0
-1400

‘ ‘ ‘ ‘ == Developed risk model
06 1 False alarm by MEWS and — Rothman index
' Rothman index —— MEWS
il \| l
“ ﬂ ||” H Vi r '1 TV -
' SV AAA u

(vl M' } ki "Nw’ rnmu iy mhvm u whl I‘ﬂ la
*1200 *1000 *800 *6(‘)0 *400 *200 0

Time preceeding the clinican’s decision for discharging the patient (hours)

Snapshot for the real-time risk scores of a chnlcally deterloratlng patient _ . ---"

1

i

Normalized risk scale

- -
0.81

0.6

0.4

Alann by the

Rothman index
developed risk I

02}
alarm

-400

Time preceeding ICU transfer 7, (hours)

0
-800 -600 -500 -300 -200

model

<0 . L L L
-300 -250 -200 -150 -100 -50 0

Fig. 6: Snapshots for real-time risk scores computed for two typical patients.

TABLE VI: ICD-9 codes in the patient cohort under study.

| ICD-9 code | Diagnosis | % Freq. |
(786.05) Shortness of Breath 7%
(401.9) Hypertension 6%
(38.9) Septicemia 5%
(995.91) Sepsis 5%
(780.6) Fever 5%
(486) Pneumonia 5%
(584.9) Renal failure 5%
(599) Urethra and urinary attack 5%
(780.97) Altered mental status 4%
(285.9) Anemia 4%
(786.5) Chest pain 4%
(585) Chronic renal failure 4%
(780.79) Malaise and fatigue 3%
(578) Gastrointestinal hemorrhage 3%
(428) Heart failure 3%
(427.31) Atrial fibrillation 3%
(787.01) Nausea 3%
— Other 22.5%
where Z(™ is the latent subtype of the n'" entry of the

dataset D,. The parametrization is updated in the M-step
by maximizing Q(T',; T2~1) with respect to ', (closed-form
expressions are available for the jointly Gaussian data in D, as
per the GP model). The p*” iteration is concluded by updating
expert z’s responsibility towards the n*" patient in the dataset
D, as follows

B =B(Z™ =2 | {1 }i,5.18)

w2 f({al 1Y, 5| er)

v 'y

= G ,z/ )
SO 7 {4} 8

where 72 is the estimate for P(Z = z) in the p'" iteration,
and f(.) is the Gaussian distribution function. The term Bgﬁ,)
represents the posterior probability of patient n’s membership
in subtype z given the realization of her physiological data

{zij,tijtig

Given the above, we can rewrite the proximal likelihood
function as follows

Q(Lo; T57") = E[log(P (Dm{Z(n)}rJ:[;l|FO))|DO7F€_1]
— Elog( [T Uy 1)15. 2% 1, 127
n=1
No
= > Eflog(P({e t;7}i5, 2 [To)) | T2
n=1
N,
= 3 2ot 1 106).
where the expression for the Gaussian distribution
f{=z E:),t” }ij|©Z) can be easily formulated by

constructing the corresponding covariance matrix.

Similar to conventional Gaussian mixture models, the M-
step proceeds as follows:

1 e
=N Zf”if‘p)

Zn 152 Zx

mg Pt 1) = ;

Zn:l ﬁz;]’

where mZPT1(¢, j) is the constant mean function for the j*"
physiological stream in subtype z. Our adoption of a constant
mean function allows us to use the direct weighted sample
mean as the updated mean function in each EM iteration.
The covariance parameters 3 and ¢ are estimated separately
conditioned on every subtype using the gradient method in
[36] (an online MATLAB package for hyper-parameter tuning
is provided by the authors), this yields a set of subtype-specific
estimates E” and K" for every patient’s time series, which are
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TABLE VII: ICD-9 codes in the patient cohort under study.

| ICD-9 code | Category | Categorical value |
001-139 Infectious and parasitic diseases 1
140-239 Neoplasms 2
240-279 Endocrine, nutritional and metabolic diseases, and immunity disorders 3
280-289 Blood diseases and blood-forming organs 4
90-319 Mental disorders 5
320-359 Nervous system diseases 6
360-389 Sense organs diseases 7
390-459 Circulatory system diseases 8
460-519 Respiratory system diseases 9
520-579 Digestive system diseases 10
580-629 Genitourinary system diseases 11
630-679 Pregnancy, childbirth, and the puerperium complications 12
680-709 Skin and subcutaneous tissue diseases 13
710-739 Musculoskeletal system and connective tissue diseases 14
740-759 Congenital anomalies 15
760-779 Conditions originating in perinatal period 16
780-799 Symptoms, signs, and ill-defined conditions 17
800-999 Injury and poisoning 18

used to update the covariance hyper-parameters as follows:

N, (’IL) A’I’L
éz.,erl _ Zn:l vagz
: =

No p(n)

Zn:l zZ,p

N, n) &

22’p+1 _ Zn:l /Bzvp E?

o - No  p(n)

Zn:l BZ;I]
Depending on the problem and the size of the dataset, this
process can be computationally expensive, in which case the

EM algorithm can be terminated after a predefined number of
iterations.

Computation of P(k|{xi;, tij <t}ij,T1)
We compute P(I%\{xij, ti; < t}ij,I'1) recursively every T}

hours in a similar manner to the forward filtering algorithm
used for inference in Hidden Markov Models; forward mes-
sages are fixed over segments of length 77. We define the
Sforward message a(ht) as follows

ar(hi) = P(hg, {zij, (k = 1) Ty < tiy < kTi}ig,Th),

where hy is the latent epoch index, and a,(hy = k) =
f(hg = k). The forward messages can be computed using
the following dynamic programming recursion

Oék(hk) = P({l‘ij, (k — 1) T1 S ti]‘ S k‘Tl}ij | hk,Fl) X
P(hyg|hg—1 = h — 1) a1 (hg—1).

Note that the valid values of hy, are restricted such that h; €
{K —k+1,...,K}. The posterior distribution of the latent
epoch index is easily evaluated using Bayes rule as follows
Qe (hk)

ZhK:K—k-+1 ak(h).

P(k | {wij, tij <}, T1) =

APPENDIX D: DETAILS OF THE BENCHMARK ALGORITHMS

« Feature Selection: The correlated feature selection (CFS)
algorithm was used to select the relevant features for
all the algorithms [41]. The same relevant features were
used for all the benchmarks. All excluded features were

realized to be highly irrelevant by virtue of their CFS
relevance scores. The CFS selected 7 vital signs (Dias-
tolic blood pressure, eye opening, Glasgow coma scale
score, heart rate, temperature, O- device assistance and
O- saturation), and 3 lab tests (Glucose, Urea Nitrogen
and white blood cell count). These features, augmented
with all the static admission information were used to
train the benchmarks.

o Validation: We divided the data into a training set of
4,130 patients and a validation set of 1,000 patients.
The same splits were used for all the benchmarks. The
validation set was used to tune the hyper-parameters of
each algorithm by optimizing its AUC.

o Feature Extraction: In order to ensure that the infor-
mation in the clinical endpoints are utilized properly by
all the sliding-window predictors, we trained every pre-
dictor by constructing a training dataset that comprises:
(1) the physiological data gathered within a temporal
window before the terminating event (ICU admission
or patient discharge), and using the clinical endpoints
as the labels, (2) summary statistics of the entire time
series episode (means, standard deviations, skewness,
kurtosis, maximum and minimum values), and (3) the
static features. This creates a fixed length training set to
train the model. In real-time, a sliding-window is used
to extract sequential data from the running time series,
augments it with the summary statistics up to the current
time and the static features, and a risk score is used as
a sliding-window regression outcome. The size of this
window is a hyper-parameter that is tuned separately for
every predictor.

APPENDIX E: MODELING RATIONALE, ASSUMPTIONS AND
SOME COMMENTS

Connection to Latent Variable Models

A latent variable model with state transitions (such as the
Markov model depicted in Figure 7) is indeed a very natural
approach to model the patients’ clinical states. We note that our
model is a latent variable model; one can think of our model as
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Fig. 7: A latent variable model for the clinical state.

a state model with 2 latent absorbing states (this corresponds
to the model in Figure 7 but with only states 1 and N), in
which risk scoring boils down to testing the true hypothesis
about the identity of the hidden absorbing state that generates
a patient’s physiological trajectory. Thus, our theoretical for-
mulation of the problem as a sequential hypothesis test with
an uncertain time horizon is equivalent to a limiting case of
real-time filtering of a state-space model in which we have
only two states. We note that both types of models capture
non-stationarity: in our model, the “fixed” latent states has
non-stationary “emission distribution”, whereas in state-space
models, the states have a stationary emission distribution and
non-stationarity is captured by “state-switching” over time. We
have tried both types of models as conceptual apparatuses
for risk scoring, and we decided to go with the sequential
hypothesis testing framework for the following reason. A latent
variable model with more than 2 states will entail the need
for inferring the hidden state trajectories for every patient’
physiological stream. Since the ICU data is not labeled by
clinical state at any point other than the endpoint of ICU
admission or deterioration, one would need an unsupervised
algorithm to learn these hidden clinical state representations.
This means that in addition to the patient subtype variables
which are hidden, we will also have a hidden state trajectory
for every patient. This significantly complicates the learning
problem, and the usage of the EM algorithm for learning such
a model may converge to a considerably bad local optimum.
We believe that it is much more reasonable to reduce the
number of hidden variables in the model in order to ensure
robustness and consistency of different versions of the model
that would be learned whenever the EHR data is updated.

The Conception of Subtyping

Figure 8 depicts what we believe to be the most accurate
and expressive conception of patient subtypes; such a concep-
tion has been developed under the guidance of our clinical
collaborator. To illustrate our conception of subtyping, let us
assume that we only have one static feature, say the patient’s
ICD-9 code, and there are two possible types of patients: type
A and type B. If the ICD-9 code corresponds to a blood
cancer (e.g. Leukemia), then the patient is allocated to type A,
whereas if the ICD-9 code corresponds to Pneumonia, then the
patient is allocated to type B. Both types of patients have very
different stability patterns since their different illnesses (or
even different gender and ethnicity) dictate different nominal
values for their stable physiological data. Both patients also
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Fig. 8: Configuration of clinical stability and deterioration
patterns.

have different “possible” patterns of deterioration, depending
on the nature of the adverse event they may encounter. Type
A patients are more likely to experience Leukemia-related
adverse events (e.g. adverse cytogenetics outcomes), whereas
type B patients are more likely to experience respiratory-
related adverse events (e.g. respiratory arrests); and hence,
conditioned on the patients’ diagnoses, they have very different
deterioration patterns.

The model described above assumes that the patient’s
subtype is fully determined by her static admission features,
and then conditioned on her subtype, there is one nominal
stability pattern and multiple possible deterioration patters.
Following this model, we can use the same z-classifier network
to allocate patients to subtypes, and then apply anM-ary
sequential hypothesis test to test whether the patient is stable,
or experiencing 1 out of M —1 possible deterioration patterns.
Since we had no labels that designate the different adverse
events in the dataset, our model is an approximate version of
the one in Figure 8, in which we treat all deterioration pattern
as coming from one, more dispersed distribution (i.e. this
reflects in the form of a larger variance in the GP parameters),
but this “average” model sufficiently differs from the stability
model and hence a simple binary sequential test is sufficient
for risk scoring. Our usage of the same z-classifier network
for stable and deteriorating groups is motivated by the fact that
even if the patients’ deterioration patterns are more diverse and
could be clustered into more “deterioration subtypes”, those
finer “deterioration subtypes” are not logically independent of
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the “stability subtypes”, but they are rather subsets of them
(as conceptualized in Figure 8). The only approximation we
do here is that we collapse all deterioration patterns within a
subtype into one representative model, and the motive behind
such an approximation is the lack of data on what adverse
event is associated with every patient, and unsupervised model
for further clustering the deteriorating cohort seems infeasible
due to the scarcity of data in that cohort. We also note that
grouping models of stability and deterioration together into
logically related subtypes has also an advantage in terms of
medical interpretability, which would be lost if we have two
different groups of clusters that are conditioned on the patient’s
(unseen) clinical state.

We also note that our sub-typing model is not only found to
be more plausible from the clinical perspective, but it is more
statistically efficient as well. That is, since the ICU admission
rate is only (less than) 10%, if we attempt to learn a disjoint
group of sub-types (a different z-classifier network) for the
deteriorating group, we will have much less data and we will
be required to learn more sub-types than the 6 discovered from
the stable patients (since as we argued earlier, there are more
patterns of deterioration than for stability. Selecting a separate
deterioration sub-type model using Bayes factors yields only
4 clusters!). By “transferring” the knowledge gained from
the clinically stable cohort to the clinically deteriorating one
(in terms of subtype definitions), we are able to re-sample
a reasonably large dataset from the deteriorating cohort for
every sub-type and hence accurately learn the deterioration
model parameters (step 23 in Algorithm 1), without needing to
bear the burden of jointly discover the sub-typing configuration
already learned from the stable patient. Our ability to transfer
the sub-typing knowledge from stable to deteriorating patients
hinges on the logical association between the two groups; such
a logical association assumption is believed by our medical
collaborator to be clinically sound.

Multi-task Gaussian Processes

It is important to note that multi-task Gaussian processes
with an intrinsic correlation model for the co-variance structure
entails the assumption of a common temporal length-scale
for all the physiological stream. This is does not reflect the
differences in the rate of fluctuations of the different streams;
for instance, heart rate changes much faster than a signal like
creatinine level. We have initially tried to construct a kernel
function that captures heterogeneous length-scales by using
a linear corregionalization model that adds multiple kernels
with diverse length scale, but this led to an unnecessarily
much more complicated model with many more parameters
and a less tractable likelihood function. Our choice for a
multitask Gaussian process is justified by the fact that we are
not interested in finding a good fit for the physiological data,
but we are rather interested in capturing the aspects of the
physiological streams that distinguish stable and deteriorating
patients. The correlation structure significantly differ between
stable and deterioration patients (for instance, respiratory rate
and heart rate are much less correlated for deteriorating
patients at different epochs as compared to stable patients.),

whereas the length-scale parameter does not differ much for
the two models. To demonstrate the difference between the
correlation structures of the stable and deteriorating patients,
see below the correlation matrices for the stable patient’s
model, and the deteriorating patients’ model for the K*" epoch
for the physiological streams (diastolic blood pressure, heart
rate, respiratory rate, SpO2, Glucose, urea nitrogen):

138 20 2 1 7 0

20 237 4 -1 12 -—12
2 4 6 0 1 0
o 1 -1 0 4 -1 -1/
7 12 1 -1 315 -1
0o -12 0 -1 -1 20
259 43 -3 9 58 —42
43 18 3 -2 28 -—18
S = -3 3 12 -1 7 7
' 9 -2 -1 61 —-11 39|’
—-58 =28 7 =11 958 175
—42 -18 7 39 175 885

where the correlation coefficients are rounded to the nearest
integer. As can be seen in X, and X g, not only that
the extent of correlation between the different physiological
variables differ under the two hypothesis, but the nature of cor-
relations differ as well (i.e. some physiological measurements
are positively correlated for stable patients and negatively
correlated for deteriorating ones). Hence, in terms of the
accuracy of the sequential hypothesis test, we much better
off by considering the distinguishing inter-stream correlation
structures than when ignoring correlations and consider the
non-distinguishing stream specific length-scales.

The Graphical Model

The conditional independence assumptions in eq. (13) can
be interpreted as follows: conditioned on the patient’s static
features, the clinical state is independent of the subtype, and
conditioned on the subtype, the clinical state is independent
on the static features. This means that one can generate
samples from our model by drawing a clinical state from the
prior distribution, and then drawing a static feature instance
(independent of the clinical state), and then drawing a sub-type
indicator variable conditioned on that instance. The reason
that we assumed that the clinical state is independent on the
patient’s subtype (and static feature) is that the ICU admission
rate is very balanced across all the patient groups in Table VII
(and consequently the ICU admission rate is balanced across
all the 6 discovered subtypes). This encourages adopting the
simplifying assumption of the clinical state being independent
of the sub-type, which further simplifies the real-time compu-
tation of the Bayesian posterior probability.

Length of Stay Exceeding KT}

Most patients in the data set have hospitalization times that
do not exceed the length K T7. If the patient’s length of stay
exceeds K T4, the model corresponding to hypothesis Hi is
assumed to be trapped in the last epoch, i.e. the physiological
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streams become stationary after this point. Patients who have
very long stays in the ward and never admitted to the ICU
are overwhelmingly more likely to be stable and undergoing a
routine hospitalization procedure; for these patients one can
safely assume a stationary model for deterioration without
losing predictive power.

Impact of Temporal Alignment and Length of Stay on Training
Data

The temporal alignment via the clinical endpoints is indeed
a source of imbalance in the number of data points available
for training every epoch. Fortunately, as shown in Figure 9
the consequences of this imbalance affects the earlier epochs
but does not affect the latest epochs, which are much more
crucial since they are closer to the clinical deterioration onset.
The impact of the availability of few data points for earlier
epochs is that it leads to higher false alarm rates, but it does
not affect the detection probability in any way. We also note
that even for the earlier epochs for which less data points
are available, there is enough temporal data within the same
patient’s temporal stream to obtain a decent estimate for the
GP hyper-parameters. We truncated the physiological stream
lengths to exclude epoch numbers that would have fewer than
5 patients (every epoch for a single patient still have hundreds
of temporal data points, which allows for a decent estimate
for the length scale and mean parameters).

The Usage of Fixed Epoch Lengths

One can think of our model as a semi-Markov model
with restricted left-to-right transitions among two groups of
disconnected states as shown in Figure 10, and with the epoch
intervals being the states’ sojourn times. In this case, 7} (and
T,) are random and drawn from a pre-defined distribution.
We have initially modeled 7} as a random variable drawn
from an epoch-specific Gamma distribution, and we used the
non-parametric E-divisive change-point detection algorithm to
estimate the epoch length distributions. This turned out not be
useful for the following reasons:

o This distributions for the different epochs’ lengths were
quite similar.

o The estimated Gamma distributions had a significantly
large shape parameter, which implies a small value for
the variance.

Updating the posterior probabilities while considering random
epoch lengths did not provide us with statistically significant
AUC gains. For this reason, we adopted a simpler model in
which the epoch lengths are modeled as a degenerate random
variable that only differs between stable and deteriorating
patients.
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