
Low Power and Scalable Many-Core Architecture
for Big-Data Stream Computing

Karim Kanoun†, Martino Ruggiero†, David Atienza†, and Mihaela van der Schaar?
† Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. ? University of California, Los Angeles
(UCLA), U.S.A. email: {karim.kanoun, martino.ruggiero, david.atienza}@epfl.ch, mihaela@ee.ucla.edu.

Abstract—In the last years the process of examining large
amounts of different types of data, or Big-Data, in an effort to
uncover hidden patterns or unknown correlations has become
a major need in our society. In this context, stream mining
applications are now widely used in several domains such as
financial analysis, video annotation, surveillance, medical services,
traffic prediction, etc. In order to cope with the Big-Data stream
input and its high variability, modern stream mining applications
implement systems with heterogeneous classifiers and adapt
online to its input data stream characteristics variation. Moreover,
unlike existing architectures for video processing and compression
applications, where the processing units are reconfigurable in
terms of parameters and possibly even functions as the input data
is changing, in Big-Data stream mining applications the complete
computing pipeline is changing, as entirely new classifiers and
processing functions are invoked depending on the input stream.
As a result, new approaches of reconfigurable hardware platform
architectures are needed to handle Big-Data streams. However,
hardware solutions that have been proposed so far for stream
mining applications either target high performance computing
without any power consideration (i.e., limiting their applicability
in small-scale computing infrastructures or current embedded
systems), or they are simply dedicated to a specific learning
algorithm (i.e., limited to run with a single type of classifiers).
Therefore, in this paper we propose a novel low-power many-
core architecture for stream mining applications that is able
to cope with the dynamic data-driven nature of stream mining
applications while consuming limited power. Our exploration
indicates that this new proposed architecture is able to adapt
to different classifiers complexities thanks to its multiple scalable
vector processing units and their re-configurability feature at run-
time. Moreover, our platform architecture includes a memory
hierarchy optimized for Big-Data streaming and implements
modern fine-grained power management techniques over all
the different types of cores allowing then minimum energy
consumption for each type of executed classifier.

I. INTRODUCTION

Emerging Big-Data stream computing applications, such
as, stream mining applications (e.g., social media analysis,
financial analysis, video annotation, surveillance, medical ser-
vices and traffic prediction domains) have stringent delay
constraints, dynamic data-driven topology graphs of classifiers,
stochastic input data stream characteristics and are highly
demanding in terms of parallel data computation.

Stream mining applications [20] are used to classify a
high input of data stream and are in general modeled with

This work was supported in part by a Joint Research Grant for ESL-
EPFL by CSEM, and the BodyPoweredSenSE (no. 20NA21 143069) RTD
projects evaluated by the Swiss NSF and funded by Nano-Tera.ch with Swiss
Confederation financing and in part by US Air Force Office of Scientific
Research under the DDDAS Program.

a Directed-Acyclic-Graph (DAG) where each node denotes a
task (e.g., classifier, features-extraction task), each edge from
node j to node k indicates that task k execution depends on
task j execution output. Fig. 1 illustrates an example of Big-
Data processing in the context of large-scale healthcare data
analytics [22]. It shows how the data collected from medical
devices are categorized by means of features identification and
selection, and multiple types of classifiers are applied to make
the final predictions and define the actions to be performed.
Unlike traditional tasks, a stream processing task is open-ended
as it can continue to execute as long as input data stream are
available. Each task can be seen as a pipeline stage that extracts
valuable information from the stream input in real time and
propagate to the following one.

In order to cope with the Big-Data stream appli-
cation model, several hardware and software approaches
[1][2][4][6][7][9][10][11][12] have been proposed to increase
the performance of Big-Data streaming applications execu-
tion. All these solutions have focused on either optimizing
a specific classifier (e.g., Support Vector Machines or SVM)
to an existing hardware solution (e.g., Graphics Processing
Unit or GPU [10] and Cell Broadband Engine [9]) where
several optimizations are applied on the application layer in
order to take advantage of the available vector units, or the
other way around where hardware-accelerators are designed to
accelerate the execution of specific classifiers [11][12]. While
these approaches showed promising results, solutions based on
GPU and high performance processor target high performance
computing without any power consideration.

Moreover, these solutions work very well if the topology of
the classifiers used in the stream mining application is already
known in advance and the type of input data stream does not
change over the time. However, modern stream mining appli-
cations implement systems with heterogeneous classifiers and
adapt online to its input data stream characteristics variation.
For instance, in [8], an online learning algorithm is proposed
to optimize the classifiers chain for Big-Data stream mining
problems. The optimal classifiers topology is then selected
online on the fly with respect to the non-stationary input stream
which is unknown at run-time. Thus, the complete computing
pipeline changes dynamically to adapt to the input stream [8].
New classifiers and processing functions are then invoked.
None of the proposed platform solutions so far have considered
this additional layer that can control the classifiers graph on
the fly and adapt the classifiers pipeline to the type of data.

As a result, in this paper, we propose a novel low-power
many-core architecture for modern Big-Data stream mining
applications that is able to cope with the dynamic nature of

Start Cohort
Construction

Feature Construction
Medication

Feature Construction
Symptom

Feature Construction
Lab

Feature Construction
Diagnosis

Feature Construction
Merge

Cross Validation

Feature Selection
FisherScore

Feature Selection
InfoGain

Feature Selection
InfoGain

Classification - RandomForest

Classification - LogRegression

Classification - NaiveBayes

Classification - RandomForest

Classification - LogRegression

Classification - NaiveBayes

Classification - RandomForest

Classification - LogRegression

Classification - NaiveBayes

Output

Output

Output

Output

Output

Output

Output

Output

Output

Feature Selection
FisherScore

Fig. 1. Big-Data stream computing applications: example of Big-Data processing in the context of large-scale healthcare data analytics [22]

the input data stream while consuming limited power. The key
contributions of this work are as follows:
• Our solution integrates low-power, scalable and reconfig-

urable cores able to adapt to the characteristic of each classifier.
• Memory hierarchy optimized to manage multiple concur-

rent Big-Data stream and able to adapt to the dynamic data-
driven nature of modern stream mining applications.

Our results for machine learning algorithms running in par-
allels demonstrate that our memory hierarchy solution allows
to significantly reduce the data memory access conflicts even
for a high number of active cores in the same cluster.

The remainder of this paper is organized as follows. In
Section II, we describe the limitations of current platforms
dedicated to Big-Data streaming applications. In Section III,
we describe our proposed low-power many-core architecture.
In Section IV, we explain how modern stream mining applica-
tions with highly variable stream input can exploit the different
features provided by our proposed platform. In Section V, we
present our experimental results. Finally, we summarize the
main conclusions in Section VI.

II. RELATED WORK

A. General stream processors
Several stream processor architectures [3], such as Imagine

[1], Merrimac [2] and Storm [4] have been proposed for
streaming applications with large amount of parallel compu-
tations. These cores share the same generic stream processor
architecture where the functional units are distributed in ALU
clusters and the memory hierarchy is partitioned into three
levels. The Local Register File (LRF) is the first level used
for local data communication and fast access of temporary
data by the functional units. Then, the second level Stream
Register File (SRF) is used to store streams and transfer data
between the LRFs of major components. Finally the off-chip
memory is used for global data. Stream processors are used
as co-processors, where the scalar code is executed on a host
processor and only the kernel is mapped to the ALU of a
streaming processor. A more advanced processors have been
also used for stream processing, the Cell Broadband Engine
(Cell BE) [13], a multicore platform developed by IBM, Sony
and Toshiba, was also used for stream processing. Cell BE
integrates 8 SPEs (Synergistic Processing Elements) connected
by a bidirectional ring bus and controlled by one PPE (Power
Processing Element). Unlike the clusters of stream processor,
each SPE may run a different kernel. Finally, a recent work
in [7], integrating an Atom processor coupled to an ION GPU
and a FPGA accelerator, studied an energy-efficient system for
embedded learning and classification application.

B. Acceleration of machine learning applications
We describe existing work realized to accelerate the execu-

tion of machine learning applications in two categories. In the

first set of existing work, classifiers were optimized in order to
take advantage of either the stream processors, the Cell Broad-
band Engine or the GPU unit. In [10], the authors presented a
fast, parallel, large-scale, high-level semantic concept detector
that leverages the GPU for image/video retrieval and content
analysis. In [9], an optimized version of the SVM classifier has
been proposed for the Cell processor architecture. In contrast
to these software-based optimization approaches, in the second
set of existing work, it is the other way around where a
VLSI implementation of new designed hardware on FPGA are
proposed in order to accelerate the execution of the targeted
classifier. In [12], a VLSI implementation of the real-time
learning and recognition system based on adaptive K-Means
learning algorithm has been implemented on FPGA. In [11],
the authors proposed an optimized hardware architecture that
performs object detection using Support Vector Machines. Fi-
nally, a novel many-core solution, called SmyleVideo [6], has
been also proposed for video mining applications. SmyleVideo
was architected as clustered heterogeneous cores optimized for
video applications while the software layer was architected as a
distributed processing model based on Kahn Process Network.

We contend that most of the proposed solutions addressed
the problem of optimizing the execution of specific classifiers
by either optimizing the application layer or adding new
hardware accelerators. However, regarding the targeted type
of data, in existing solutions the data was considered Big only
in terms of its volume. However, in modern stream mining
applications, data is Big because it also changes continuously
over time. Big-Data are then accumulated in time and changes
in a non-stationary way. Thus, existing solutions are not able
to cope with modern stream mining applications where the
optimal classifiers topology configuration is selected online on
the fly and the complete computing pipeline is changing, as
entirely new type of classifiers can be invoked to adapt to the
variation of the input data which is unknown at tun-time [8].
III. PROPOSED LOW-POWER MANY-CORE ARCHITECTURE

A. Overview

Our proposed low-power many-core architecture is com-
posed of clusters connected with a Network on Chip (NoC)
[21]. Each cluster is composed of M cores and an optimized
memory hierarchy for Big-Data streaming applications. In our
platform, we propose to use the icyflex4 core [5], a low-
power core that can adapt to different algorithms thanks to
its reconfigurable capabilities. Moreover, the icyflex4 provides
2 dedicated 512-bit ports for data. Thus, we propose to use
one port for the stream reference and the application local
data with a multi-level memory architecture with both private
and shared cache, while the second port is used to pass the
data between the cores through multiple First In First Out
(FIFO) buffers using also a multi-level memory architecture
with both private and shared memory and Direct Memory

 IcyFlex4
FPU

IcyFlex4
FPU

IcyFlex4
FPU

Multi-bank data memory (used for the input stream reference and local data)

Multi-bank memory (used to store additional FIFO buffers)

x
y

Interconnect

Bank 1

. . .

. . .
Core 1 Core 2 Core M

Bank 2 Bank N

Bank 1 Bank 2 Bank 3 Bank L

Interconnect

. . .

. . .

Instr.
cache

N
et

w
or

k
 In

te
rf

ac
e

M
ul

ti
C

ha
nn

el

D
M

A

Sy
nc

hr
on

iz
er

Cluster Cluster Cluster

Cluster Memory Cluster

Private
data cache

Private
data cache

Private
data cache

Private
FIFO

Buffers
DMA DMA DMA

Semaphore

Instr.
cache

Instr.
cache

Private
FIFO

Buffers

Private
FIFO

Buffers

N
oC

Fig. 2. The proposed low-power many-core architecture

Access (DMA) units. Each core has its own private instruction
memory. Fig. 2 illustrates the proposed many-core solution
for Big-Data stream computing. In this architecture, the cores
operate as pipeline stages at the classifiers or feature-extraction
level for stream mining applications and at the tasks level
for general streaming applications. Thus, depending on the
complexity of the application and the available resources, a
core can execute one or more classifiers (or feature extraction
algorithm). All these decisions are made by a scheduler at a
higher layer. The producer consumer mechanism is handled
through multiple FIFO buffers stored in the private and shared
multi-bank memory accessed via the second data bus.

We discuss the architecture features of icyflex4 core and
the memory hierarchy of the proposed platform in detail in
the next two Sections. Then, we explain the reconfigurability
feature of icyflex4 core and the relation between the FIFO
buffers, the proposed memory hierarchy and the dependencies
between the different tasks in Section IV.
B. Reconfigurable low-power icyflex4 core

The icyflex4 core [5] is a low-power DSP core with a Vec-
tor Processing Unit (VPU) composed of 8 slices. The datapath
of a single slice contains sixteen 64-bit registers and eight 64-
bit accumulators. A quad 16-bit multiplier and a recombination
unit can perform a complex 16x16 bit multiplication or a
scalar 32x32 bit multiplication at each cycle. The VPU slice
additionally contains a 64-bit arithmetic and logic unit (ALU),
a 64-bit barrel shifter and a 64-bit move unit, each able to
compute up to four 16-bit operations per cycle. The data move
unit (DMU) contains two addressing units which drive two
dedicated data busses called X and Y with up to 512-bit data
access each, allowing then higher throughput. The DPU and
the VPU are reconfigurable at run time by means of the pre-
configured addressing modes and the micro-operation (MOP)
mechanism. In fact, the user is thus able to generate completely
new complex instructions exploiting very efficiently all the
computational units present in the VPU and in the DMU.
This feature can be used to adapt each core to its mapped
classifier/feature-extraction algorithm in order to minimize the
clock cycles and power consumption. Moreover, the icyflex4

integrates several dynamic power management features such
as DVFS or switching off unused computational units. Finally,
while the icyflex4 core supports fixed-point operations, it
also allows to connect a Floating Point Unit (FPU) as a co-
processor. Thus a connected FPU unit can be switched on and
off on demand depending on the mapped application.

C. Memory hierarchy dedicated for streaming applications on
many-core platforms

In a streaming application, each task works on 3 types of
data, namely, its private set of data, the stream input reference
and the data provided through the other connected tasks. Thus,
in our solution, we propose to separate the local task data and
the stream reference from the data coming from connected
tasks by using the two data memory ports of the icyflex4 core
connected to two different memory hierarchies. Each of these
two memory hierarchies is optimized for its mapped data type.

We connect the first data-memory port to a multi-level
memory architecture with both private and multi-bank shared
cache. These memory banks are dedicated to the input stream
reference and the local data of each task. By adding an L1
private data cache for each core, this can significantly minimize
the access conflicts to shared memory as each core will work
most of the time with its private cache. Moreover, there is no
need for a cache coherency protocol. This is guaranteed by
the application model where the edges connecting the node of
the graph model the only shared data in the application. In the
next paragraph, we describe how we handle separately these
shared data between the cores.

In our proposed architecture, we propose to pass these
shared data through dedicated FIFO buffers managed with a
separated memory hierarchy through the second data memory
port available in the icyflex4 core. Our second multi-level
memory architecture is composed of private memories, shared
multi-bank memory, DMA and a semaphore unit. The private
memories are used as a private FIFO buffers and the com-
munication between the cores is realized through a producer
consumer mechanism (e.g., push or pull request) [14]. In the
following, we explain the main reasons and benefits behind our
choice of having private and shared data memory to manage
the FIFO buffers. First, using only private data memory adds
restriction on the size and the number of FIFO buffers per core
while the FIFO buffers requirement for each core is different
and vary at run-time in modern stream mining applications
[8]. Therefore, using a second memory shared between the
cores gives then more flexibility to partition at run-time the
memory among the cores. Second, using only shared memory
creates significant memory access conflicts as several cores
may access the same memory bank at the same time, thus using
a private memory to pull with DMA the required prepared
data from either the other private memory or the shared one
for the next execution is more efficient. Third, by using both
private and shared memory, this will not only provide higher
flexibility and performance but it will be also efficient in terms
of energy consumption. In fact, by optimizing the distribution
of the FIFO buffers among the available memories, the unused
shared memory banks can be switched off to save energy.

Finally, by separating the memory access between the input
stream reference, the local task data and the FIFO buffers, this
removes the need of cache coherency protocol and minimizes

the access delay and latency to data memory allowing then
higher throughput. Moreover, by accessing both data memory
hierarchies in parallel, kernels loops using both type of data
as input can run more efficiently.

IV. EXPLOITING THE PROPOSED ARCHITECTURE FOR
BIG-DATA STREAM MINING

In this section, we explain the different mechanisms and
techniques that our proposed low-power many-core architec-
ture can offer to Big-Data streaming applications. We first
describe how the icyflex4 core can be reconfigured to the
characteristics of its mapped tasks. Then, we explain how the
FIFO buffers are mapped to the proposed memory hierarchy
of many-core platform. Finally, we formulate the problem of
energy-efficient scheduling algorithm of streaming applications
for the proposed platform. The overall mapping flow of an
application is illustrated in Fig. 3.

A. Optimizing the IcycFlex4 for each mapped task

As already described in Section III-B, the slices of the
Vector Processing Unit (VPU) integrate several computational
units. The datapath configuration defining the instruction be-
haviour in these slices is specified in one of the eight available
micro-operation registers. Configuring a new micro-operation
can be done in only two cycles. The micro-operation instruc-
tion can be invoked by specifying one of the configured micro-
operation registers and additional parameter (register indexes,
immediate values, etc.). Therefore, a programmer can create
new instructions targeting specific datapaths to accelerate the
execution of its application kernel.

We propose to exploit the computational units available
in each slice in two different ways: the standard method
implements micro-operations that target multiple operations
at the same time and which use data related to the same
iteration of the kernel loop. However, in some cases where the
operations (e.g, subtraction and multiplication) inputs depends
on each other, the exploitation of the VPU unit using this
first method can be limited. For instance if operation B (e.g.,
multiplication) input uses the results of a subtraction realized in
operation A, it will not be possible to execute both operations
in parallel. Thus a more advanced technique to exploit the
VPU slices is to use the computational units of a same slice
as a pipeline stages where the same micro-operation instruction
processes different operations from multiple iterations at the
same time. For instance, if an iteration inside a kernel includes
two operations where operation B inputs uses operation A
output, the two operations can be pipelined thanks to the
computational units that can run in parallel inside the same
slice. In fact, the micro-operation register can be configured in
a way that it executes in parallel operation A with iteration i
inputs and operation B with iteration i− 1 inputs.

B. Data mapping to many-core memory hierarchy

In this section, we first describe how a streaming applica-
tion can be efficiently mapped in the memory hierarchy that we
are proposing. Then, we explain how modern streaming mining
applications that adapt on the fly to the type of the input stream
can take advantage of the proposed memory hierarchy.

We model each edge in a task-graph of an application with
two buffers. The first buffer is stored in the private memory of

Dynamic Power
management

Scheduler

Flexible memory
hierarchy

Reconfigurable
cores

FIFO buffers
management

Core
 selections

Freq. selection
Core activation

Hardware (proposed many-core platform)

Big-Data streaming application

Fig. 3. Exploiting the proposed architecture for Big-Data stream application
through a many-core energy-efficient scheduler

the core that is generating the data while the second buffer
is stored in the private memory of the core that reads the
data. The data are transferred from first buffer to the second
one using DMA. Semaphores are used for synchronization.
In streaming applications, we can identify two typical cases
where a task may have either multiple outgoing edges (e.g.,
Fig. 4 (a)) or multiple incoming edges (e.g., Fig. 4 (b)). In
the first case, the producer writes in the buffer stored in
its private memory and the connected tasks pull the data to
their private FIFO buffers using DMA. This is illustrated in
Fig. 4 (c), where one buffer is used to feed multiple buffers.
Unlike the Kahn Process Network (KPN) model [14] which
allows only one consumer and one producer per FIFO, our
model allows multiple consumers for the same buffer. Then,
in the second case, the multiple ingoing edges are translated
to multiple buffers stored in the same private memory unit of
the concerned core. We illustrate this case with an example in
Fig. 4 (d).

If all the required FIFO buffers are fixed and can fit in
the available private memories, the shared memory is then
not needed and can be switched off to save energy. However,
depending on the input stream, some buffers are more used
then the others. The buffers differ then by how frequent
they are accessed by producers/consumers and the minimum
required size. Moreover, due to the dynamic data-driven nature
of stream mining applications and the highly variable stream
input, these two buffer characteristics vary continuously at run
time. Thus, using only private memories may not give enough
flexibility to the programmer to handle all these dynamics. The

(a)

Features
extraction

Classifier Classifier Classifier

FIFO

FIFO FIFO FIFO

Core 2 Core 3 Core 4

Core 1
Features

extraction

Core 1
Features

extraction

Core 2

FIFO FIFO

FIFO

FIFO

Classifier
Core 3

DMA DMA

D
M

A

DMA

DM
A

Features
extraction

Classifier Classifier Classifier

Features
extraction

Features
extraction

Classifier
(b)

(c) (d)

Input stream 1 Input stream 2 Input stream

Fig. 4. Example of FIFO buffers mapping: (a, c) tasks with multiple outgoing
edges. (b, d) Tasks with multiple ingoing edges

shared memory can be used as a FIFO buffers repository to
all the cores and extends the space available in the private
memory. The shared memory can be also used to minimize
the number of DMA access to the producer buffer where only
one DMA transfer is needed to copy the generated data from
the private to the shared memory and the consumers will then
fill their FIFO buffers by accessing the shared memory.

An efficient online mapping of the FIFO buffers to the
different memory banks is then very important. For instance,
a highly used buffer can be either kept in the private memory
or to a dedicated memory bank in the shared memory, while
buffers that are used less frequently can be populated in the
same memory bank.

C. Power management scheme

As explained in previous sections, the proposed architec-
ture offers several features that allow the platform to scale to
the requirement of the mapped streaming application with the
minimum energy consumption. An energy-efficient scheduler
can efficiently exploit these control knobs when mapping
an application to the proposed platform. Therefore, in the
following we model our platform and the targeted application.
Then, we formulate the problem of energy-efficient scheduling
of streaming applications for the proposed many-core platform.
Fig. 3 illustrates the different features that can be efficiently ex-
ploited by a scheduler to map the application tasks. Numerous
related works on scheduling streaming applications on many-
core platform have been proposed in the literature. However,
the development of energy-efficient scheduler optimized for
our platform is out of the scope of this paper and a solution
for this problem is left for a future work.

Our proposed many-core platform is composed of C clus-
ters. Each cluster includes M cores, M private memories with
size spm, a shared multi-bank memory with size ssh = N ∗ sb
with N the number of banks and sb the size of the bank. For
the memory related to stream reference and local data, a delay
of dc is taken into account to fill the cache when a new task
is mapped to the core. The major sources of power dissipation
from each core can be broken down into dynamic power Pdyn

and leakage power Pleak. The dynamic power consumption
can be controlled by the selected frequency and the supply
voltage (e.g., using DVFS) while the leakage power can be
minimized with power gating techniques (e.g., using DPM).
Each cluster can operate at a different frequency fi ∈ z,
where z denotes the set of available operating frequencies and
fi < fi+1. Finally, each core has 2 different modes namely,
active and sleep modes. In the active mode, the core runs
normally (i.e., full leakage power consumption) while in the
sleep mode the core is power gated (i.e., inactive with reduced
leakage power consumption). Each time a core is switched to
sleep mode, it requires Xswitch clock cycles to wake up and
switch to active mode. We illustrate the main features provided
by our platform model in the lower part of Fig. 3.

We model Big-Data streaming application as a DAG G =<
N , E > of dependent tasks tj with non-deterministic workload
wj and soft deadlines. N is the node set containing all the
tasks. E is the edge set, which models the dependencies among
the tasks. Each node in the DAG denotes a task tj . ekj denotes
that there is a directed edge from tj to tk indicating that task
k depends on task j. Each task can be seen as a pipeline stage

that extracts valuable information from the stream input in real
time. A stream processing task is open-ended as it can continue
to execute as long as input stream data are available. However,
In modern stream mining applications, the topology of the
graph is determined online based on the variation of the type
of the input stream. Moreover, these applications implement
different operating points on its classifiers to control which
part of data stream to process from the full available stream.
This will have impact on the size of the FIFO buffers which
need then to be adapted on the fly with respect to the online
selected operating points.

Given the proposed platform and application model, the
goal of an energy-efficient scheduler is to efficiently map
the tasks to the available M cores and N clusters with
their corresponding DVFS values and to switch unused cores
to sleep mode to save energy consumption. Moreover, the
scheduler is responsible for determining the right FIFO buffer
size of each edge in the task graph with respect to the
application requirement and the available private memory size
spm and shared memory size ssm. In case the private memory
is not sufficient, a scheduler should then efficiently partition
the shared memory space among the required FIFO buffers
and minimize the number of active memory banks to reduce
the energy consumption. The scheduler is also responsible
for continuously adapting the FIFO buffers repartition in the
memory with respect to the stream input variation and the
decision made at the application level (e.g., load shedding and
classifiers operating points). Finally, a modification of the task
graph at run time requires a new mapping of the tasks to the
cores. Available scheduler actions are illustrated in Fig. 3 with
the arrows from the scheduler to the hardware layer

V. EXPERIMENTAL RESULTS

We demonstrate the advantages of our proposed low power
many-core platform for stream computing applications on a
set of experimental benchmarks related to stream mining and
machine learning applications. In our experiments, we mainly
focus on the memory hierarchy responsible for passing the
data. The exploitation of the reconfigurability feature of the
icyflex4 processor is out of the scope of this paper.

To simulate the proposed memory hierarchy, we use
the VirtualSOC simulator [15], which is a complete Sys-
temC simulation environment for MPSoC architectural design
and exploration. VirtualSOC provides cycle-accurate and bus
signal-accurate simulation of many-core platform. The default
configuration of VirtualSOC simulates the P2012 platform
architecture [16] where a multi-bank data memory is shared
between all the cores in a cluster. We have first modified
VirtualSOC to include a memory hierarchy with two data ports
as the icyflex4 architecture requires. Then, we modified the
simulated memory hierarchy in order to simulate four types
of configurations: (a) All data and buffers are stored in the
same shared memory, (b) the FIFO buffers are stored in a
shared memory separately from the input stream and local data,
(c) interleaved memory with 16 banks and (d) our proposed
memory hierarchy where the FIFO buffer content is pulled to
each of the private data memory and the stream input is stored
in a second private data memory with the local data.

For the application layer, we simulate the case of Fig.
4(a)(c). This type of task-graph topology is typical in many

37%	 38%	

69%	 70%	 80%	 78%	

2%	
19%	

8%	

46%	 48%	

66%	

1%	 1%	 6%	 3%	
20%	

6%	 0%	 0%	 0%	 0%	 0%	 0%	
0%	

30%	

60%	

KNN Decision Tree KNN Decision Tree KNN Decision Tree
8 cores (5 KNN + 3 Decision Tree) 12 cores (9 KNN + 3 Decision Tree) 16 cores (13 KNN + 3 Decsion Tree)

Pe
rc

en
ta

ge
 o

f c
on

fli
ct

s
 (d

at
a

ac
ce

ss
)

(a) Same memory (local, stream and buffer) (b) 2 separated memories (c) Interleaved memory (16 banks) (d) Private memories

Fig. 5. Percentage of data memory access conflicts per core with respect to the number of cores, the deployed memory hierarchy and the mapped application

machine learning algorithms. For instance, in ensemble learn-
ing [18], a strong classifier is build based on a combination
of several classifiers through a weighted voting procedure. In
Adaboost [17], multiple weak learners are applied on the same
set of features. They are weak learners in the sense that a single
one will not do the job. In our benchmark, we use bagged
K-Nearest Neighbour and bagged decision tree classifiers for
hand written digit recognition. Bagged classifiers technique is
a bootstrap ensemble method where each classifier is trained
on a random subset of the training data and the final decision is
made with majority voting. We use the MNIST database [19]
of images of handwritten digits. The memory access pattern
of KNN and decision tree are completely different. In fact,
KNN accesses more frequently both data memory compared
to the decision tree algorithm which accesses more its local
data where the tree is stored. In KNN, all the features (i.e.,
pixels) of an image are used, while in the decision tree only
a small subset is selected by its nodes to classify the image.

In all our experiments, we allocate 3 cores for 3 different
decision tree classifiers and we allocate the remaining cores
to KNN classifiers in order to simulate Big-Data application.
Fig. 5 illustrates the results obtained with respect to the number
of cores, the type of the executed classifier and the deployed
memory hierarchy. The results show that for a low number of
cores (i.e., standard multi-core platform with up to 8 cores),
separating the FIFO buffers from other data input is already
enough to drop the data memory access conflicts from 37%
to 2%. However, for the case of many-core platforms (e.g.,
12 or 16 cores), separating both memories is not enough to
avoid access conflicts. For instance, in the case of 16 cores,
the access conflicts can go up to 48% for KNN and 66% for
the decision tree. By using interleaved memory with 16 banks,
the memory access conflicts is significantly reduced. However
it still has a high percentage for platform with 16 cores (up
to 20% for cores running a KNN classifier). Thus, the use of
private memories as proposed by our memory hierarchy is then
mandatory for many-core platform running Big-Data streaming
applications. Moreover, by separating the FIFO buffer from the
local data memory, the DMA transfers can be scheduled while
the application is processing its local data. For instance in
KNN, the DMA can be activated to transfer data buffer while
the application is sorting the K nearest neighbours which are
stored in its local data. Thus, the DMA latency can be hidden.

VI. CONCLUSION

In this paper, we have proposed a novel low-power many-
core architecture for Big-Data stream computing. The key
contributions of this work were as follows: (i) Our solution
integrates low-power, scalable and reconfigurable cores that
can adapt to the characteristic of each classifier. (ii) Memory
hierarchy optimized for Big-Data stream and able to adapt
to the dynamic data-driven nature of modern stream mining

applications. Our results for machine learning algorithms have
demonstrated that our solution allows to significantly reduce
the data memory access conflicts even for a high number of
cores in the cluster.

REFERENCES

[1] U. J. Kapasi, et al., “The imagine stream processor,” in ICCD, 2002.
[2] W. J. Dally, et al., “Merrimac: Supercomputing with Streams, in SC,

2003.
[3] C. Kyrkou, “Stream Processors and GPUs: Architectures for High

Performance Computing,” Survey on Stream Processor and Graphics
Processing Units.

[4] SPI, “Stream Processing: Enabling the new generation of easy to use,
high-performance DSPs, White Paper, June 2008.

[5] J.-L. Nagel, et al.,“The icyflex4 Processor, a Scalable DSP Architecture,
CSEM Scientific and Technical Report 2009

[6] Y. Matsumoto, et al., “Manycore processor for video mining applica-
tions,” in Proc. ASP-DAC, 2013.

[7] A. Majumdar, et al., “An Energy-Efficient Heterogeneous System for
Embedded Learning and Classification,” in IEEE ESL, vol. 3, no. 1, pp.
42–45, March 2011.

[8] J. Xu, et al., “Learning optimal classifier chains for real-time Big-Data
mining,” in Proc. Annual Allerton Conference, 2013.

[9] M. Marzolla, “Letters: Fast training of support vector machines on the
Cell processor,” Neurocomputing vol.74, no. 17, pp. 3700–3707, October
2011.

[10] M. Diao, et al., “Large-Scale Semantic Concept Detection on Manycore
Platforms for Multimedia Mining,” in Proc. IPDPS, 2011.

[11] C. Kyrkou, et al., “A Parallel Hardware Architecture for Real-Time
Object Detection with Support Vector Machines,” in IEEE TC, vol. 61,
no. 6, pp. 831–842, June 2012.

[12] Z. Hou, et al., “Real-Time Very Large-Scale Integration Recognition
System with an On-Chip Adaptive K-Means Learning Algorithm, Jpn.
J. Appl. Phys., vol. 52, 04CE11, Apr. 2013.

[13] J. A. Kahle, et al., “Introduction to the cell multiprocessor,” in IBM J.
Res. Dev., vol. 49, no. 4/5, pp. 589–604, July 2005.

[14] D. Nadezhkin, et al., “Realizing FIFO Communication When Mapping
Kahn Process Networks onto the Cell,” in Proc. SAMOS 2009.

[15] D. Bortolotti, et al., “VirtualSoC: A Full-System Simulation Environ-
ment for Massively Parallel Heterogeneous System-on-Chip,” in Proc.
IPDPS 2013.

[16] D. Melpignano, et al., “Platform 2012, a many-core computing accel-
erator for embedded SoCs: Performance evaluation of visual analytics
applications,” in Proc. DAC, 2012.

[17] Y. Freund, et al., “A decision-theoretic generalization of on-line learning
and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp.
119–139, August 1997.

[18] D. Opitz, et al., “Popular Ensemble Methods: An Empirical Study,” in
JAIR, vol. 11, pp. 169–198, 1999.

[19] Y. LeCun, et al., “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/.

[20] R. Ducasse, et al., “Adaptive Topologic Optimization for Large-Scale
Stream Mining” in IEEE JSTSP, vol. 4, no. 3, pp. 620–636, June 2010.

[21] S. Kumar, et al., ”A network on chip architecture and design method-
ology,” in Proc. ISVLSI, 2002.

[22] J. Sun, et al., “ Big data analytics for healthcare,” in Proc. SIGKDD,
2013. Slides: http://dmkd.cs.wayne.edu/TUTORIAL/Healthcare/

