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Abstract: Coupled hidden Markov models (HMMs) are designed to capture
the structure of multivariate time series whose underlying latent state variables
interact, but do not evolve synchronously. Here we extend coupled HMMs to
allow for covariates in the observed time series, which leads to the class of coupled
Markov-switching regression models. The method is applied to electronic health
record data of 702 patients from an intensive care unit at the UCLA, where
the aim is to gain a better understanding of the course of a disease as well as
early-warning signs of potentially critical developments.
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1 Introduction

Hidden Markov models (HMMs) are time series models which assume the
observations to depend on an underlying unobserved Markov chain with
finitely many states. They have been applied in many different areas, e.g.
speech recognition, finance, medicine, and ecology (for an overview, see
Zucchini et al., 2016). In the case of multivariate time series, within a basic
HMM formulation, the variables would be expected to evolve synchronously
in the sense that they are driven by the same underlying state sequence.
However, in some applications, e.g. in medicine, the observed variables do
not necessarily evolve in lockstep, although they may be correlated. For ex-
ample, a substantial change in a patient’s rate of breathing may or may not
be accompanied by immediate visible changes in other vital signs. Coupled
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hidden Markov models (CHMMs) overcome this limitation by assuming
separate but correlated state sequences to underlie the different variables
observed, hence “coupling” the state processes of multiple HMMs (Brand,
1997).
However, the observations often depend not only on the underlying state,
but also on external factors, e.g. the blood pressure of a patient might
depend on its general health state as well as certain medications. Therefore,
we extend CHMMs to allow for covariates in the observation processes,
which leads to the flexible class of coupled Markov-switching regression
models (CMSR). We apply this method to electronic health record data
collected for 702 patients within the medical intensive care unit at the
University of California in Los Angeles (UCLA).

2 Coupled Markov-switching regression models

2.1 Basic formulation of coupled hidden Markov models

We consider an M -dimensional observed time series of length T , denoted by
{Yt}Tt=1, with Yt = (Y1,t, . . . , YM,t). A CHMM for {Yt} involves M state
sequences, summarized in the vector {St}Tt=1, with St = (S1,t, . . . , SM,t),
where Sm,t ∈ {1, . . . , Nm}. The dependence structure of a CHMM with
two underlying state processes is displayed in Figure 1.
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Figure 1: Basic structure of a HMM
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FIGURE 1. Basic structure of a CHMM with two underlying Markov chains.

Similar to HMMs, given the state sequences, the distribution of Ym,t is
fully determined by the current state Sm,t of its associated state sequence.
However, for each state sequence, the future state Sm,t+1 depends not only
on its current state Sm,t — as would be the case if we were to consider M
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separate HMMs — but on the current states of all M state sequences:

Pr(Sm,t+1|S1, . . . ,St) = Pr(Sm,t+1|St) 6= Pr(Sm,t+1|Sm,t).

For simplicity of notation, from now on we assume that the number of states
is the same for each state sequence, i.e. Nm = N for all m. A CHMM can
be written as an HMM with an NM × NM transition probability matrix
Γ = (γij), i, j = 1, . . . , NM , with each state representing an M–tuple corre-
sponding to the possible states of {St}. The state space thus is simply the
Cartesian product of the M individual state spaces. Using the formulation
with extended state space, the parameters can be estimated using standard
HMM machinery, in particular by conducting a numerical maximization of
the likelihood, which is evaluated using the forward algorithm. For model
checking, pseudo residuals can be used, and the states can be decoded using
the standard Viterbi algorithm.

2.2 Coupled Markov-switching regression models

To allow for covariates in the observation processes, we assume the ex-
pectations E(Ym,t) of the state-dependent distributions to be state-specific
functions of (variable-specific) covariate vectors Xm

t = (Xm
1,t, . . . , X

m
pm,t):

E(Ym,t|sm,t) = β
(m,sm,t)
0 + β

(m,sm,t)
1 Xm

1,t + . . .+ β(m,sm,t)
pm

Xm
pm,t.

Thus, the CMSR model comprises state-specific regression functions for
each variable Ym while also taking into account possible interactions in the
state processes. Again, the forward algorithm and numerical optimization
can be used to find the maximum likelihood estimates. Further extensions,
for instance to generalized CMSR models with response distributions from
the exponential family, are straightforward.

3 Case study on UCLA electronic health record data

Our dataset contains hourly information on vital signs, treatments and
also personal data of 702 intensive care unit (ICU) patients at the UCLA,
with a total number of 114927 observed time points. All of the patients
considered underwent dialysis, which reduces the heterogeneity between
the patients in the sense that individuals in a comparable situation are
considered. Furthermore, these patients stayed in the ICU for at least 24
hours. Our aim is to model the observed heart rate, respiratory rate, systolic
and diastolic blood pressure. The time series of observed vital signs all
exhibit substantial changes over time, however, these changes do not always
occur synchronously, which motivates the use of CMSR models rather than
multivariate HMMs.
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FIGURE 2. Estimated (marginal) state-dependent densities of the fitted CMSR
model. The black lines correspond to the first state of the model, and the gray
lines to the second state. Dashed lines indicate the presence of ventilation, dotted
lines indicate the presence of vasopressors. The estimated correlations between
systolic and diastolic blood pressure are ρ(1) = 0.48 and ρ(2) = 0.43 for state 1
and state 2, respectively.

We fitted a CMSR model with state-dependent normal distributions and
N = 2 possible states per variable, considering the presence of ventilation
and vasopressors as dummy covariates for all four vital signs. Since the
blood pressure variables are highly correlated, we assume these two vari-
ables to depend on the same state sequence, with state-dependent bivariate
normal distributions. The resulting marginal state-dependent distributions
of our CMSR model are displayed in Figure 2. The estimated distributions
are distinct, the model is thus able to capture changes in all four vital
signs. However, only the presence of vasopressors is estimated to highly
affect the state-dependent distributions, and only for the blood pressure
variables (see Table 1).
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TABLE 1. Estimated parameters of the state-dependent distributions for the four
observed vital signs and both states, respectively.

param. heart rate resp. rate sys. b. p. dias. b. p.

β
(1)
0 75.15 16.33 102.41 53.71

β
(1)
ven 3.16 0.93 5.38 1.79

β
(1)
vaso 0.28 -0.17 -5.35 -1.14

σ(1) 9.83 3.83 13.81 10.68

β
(2)
0 100.39 24.49 141.39 69.36

β
(2)
ven 2.80 1.86 -1.64 -2.16

β
(2)
vaso 6.59 -0.70 -17.74 -12.28

σ(2) 12.44 5.18 19.60 18.04

4 Conclusion

Our preliminary results suggest that CMSR models are promising tools for
analyzing the interplay of latent variables which do not evolve in lockstep,
in particular such that are related to the health state of a patient. To
decrease the computational costs, sparser parametrization of the transition
probabilities could be used, as proposed for example by Saul and Jordan
(1999). Current work focuses on model selection, on refinements of the
particular model applied to the UCLA data, and on drawing meaningful
medical inference.

Acknowledgments: We would like to thank Dr. Scott Hu (Division of
Pulmonary and Critical Care Medicine, David Geffen School of Medicine,
UCLA) for providing us with the clinical data.

References

Brand, M. (1997). Coupled hidden Markov models for modeling interacting
processes. Technical Report 405, Massachusetts Institute of Technol-
ogy Media Laboratory, Cambridge.

Saul, L. K. and Jordan, M. I. (1999). Mixed memory Markov models: De-
composing complex stochastic processes as mixtures of simpler ones.
Machine Learning, 37, 75–87.

Zucchini, W., MacDonald, I. L. and Langrock, R. (2016). Hidden Markov
models for time series: An introduction using R, 2nd Edition. Boca
Raton: Chapman & Hall/CRC.


