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Abstract

In this paper, we develop a novel design framework for energy-efficient spectrum sharing among

autonomous users, who aim to minimize their transmit power levels subject to their minimum throughput

requirements. Most existing works proposed static spectrum sharing policies, in which the users transmit

at constant power levels as long as the system parameters (e.g. direct and cross channel gains) remain

unchanged. Since the users transmit simultaneously under static spectrum sharing policies, they need to

transmit at high power levels in order to fulfill the minimum throughput requirements due to multi-user

interference. To improve the energy efficiency, we construct dynamic spectrum sharing policies, in which

the users can transmit at time-varying power levels even when the system parameters do not change.

Specifically, we focus on a class of dynamic spectrum sharing policies in which the users transmit in a

time-division multiple access (TDMA) fashion. Due to the absence of multi-user interference during the

transmission, this class of policies can greatly improve the spectrum and energy efficiency compared to

existing policies. In addition, the constructed policies have the following desirable properties. First, the

policies can be implemented by the users in a decentralized manner. Second, they are deviation-proof,

namely the autonomous users will find it in their self-interests to follow the policies. Third, the policies

can achieve high energy efficiency while guaranteeing the minimum throughput, even when the users

can only observe the interference power imperfectly. Simulation results validate our analytical results

and quantify the performance gains enabled by the proposed dynamic spectrum sharing policies.

I. INTRODUCTION

In many emerging wireless networks such as cognitive radio networks, there are autonomous

users sharing the spectrum [1]. In these networks, the spectrum sharing policies, which specify

the users’ transmit power levels, are essential to improve the spectrum and energy efficiency [2].
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There are two substantial classes of works on designing spectrum sharing policies. In the first

class of works, the users aim to maximize their utilities subject to maximum transmit power

constraints [3]–[10]. While many works in this class [7]–[8] define the utility function as the

throughput and do not concern energy efficiency, some works [9][10] define the utility function as

the throughput to transmit power ratio in order to achieve spectrum and energy efficiency. In the

second class of works [11]–[18], the users aim to minimize their transmit power levels subject

to minimum throughput requirements. In these works, the energy consumption is minimized,

while spectrum efficiency is also achieved because all the users can coexist in the system and

have successful transmission. We follow the second approach and develop a design framework

for spectrum and energy efficient spectrum sharinghhh.

Since users can use the spectrum as long as they are in the network, they usually coexist in

the system for relatively long periods of time [19]–[22]. In general, the optimal spectrum sharing

policy should be dynamic, namely they should allow users to transmit at different power levels

temporally even when the environment (e.g. the number of users, the channel gains) remains

unchanged. However, most existing spectrum sharing policies require the users to transmit at

constant power levels over the time horizon in which they interact1 [3]–[18]. We call these

spectrum sharing policies static. The static policies are inefficient in energy consumption in

many spectrum sharing scenarios where cross channel gains are strong, because the users need

to transmit at high power levels to fulfill the minimum throughput constraints due to multi-

user interference. To improve energy efficiency, we study dynamic spectrum sharing policies.

Specifically, we focus on TDMA spectrum sharing policies, a class of dynamic spectrum sharing

policies in which the users transmit in a TDMA fashion. Due to the absence of multi-user

interference during the transmission, TDMA policies can achieve high spectrum efficiency that

is not achievable under static policies, and greatly improve the energy efficiency of the static

policies.

One of the challenges in designing TDMA spectrum sharing policies is to deal with the

autonomy of users. Autonomous users may deviate from the prescribed spectrum sharing policy,

if by doing so their energy consumption can be reduced while fulfilling the minimum throughput

1Although some spectrum sharing policies go through a transient period of adjusting the power levels before the convergence

to the optimal power levels, the users maintain constant power levels after the convergence.
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requirement. Hence, the spectrum sharing policy should be deviation-proof, which means that a

user cannot improve its energy efficiency and still fulfill the throughput requirement. In this way,

autonomous users will find it in their self-interest to follow the policy. In the works where the

users minimize their transmit power subject to throughput requirements [11]–[18], the optimal

static spectrum sharing policy, if it exists, is deviation-proof against other static policies, but not

deviation-proof against dynamic policies. In contrast, our proposed spectrum sharing policy is

deviation-proof against both static and dynamic policies.

Another challenge in the design is that the users are unable to perfectly observe the behavior

of each other, which results in inaccuracy in detecting deviating behavior.. Without perfect

monitoring of the deviating behavior, the punishment may be triggered by mistake, resulting in

a loss in energy efficiency or a violation of the minimum throughput requirement. The existing

deviation-proof dynamic policies in [19]–[22] were designed under the assumption that each user

can perfectly monitoring the others’ behavior. In these policies, a punishment phase, in which

all the users transmit at high power levels, is triggered when deviation happens. The inefficient

resource allocation in the punishment phase does not reduce spectrum or energy efficiency under

perfect monitoring, because the punishment phase serves as a threat and is never triggered.

However, under imperfect monitoring, due to monitoring errors, the punishment phase will be

triggered with a positive probability even when no user deviates. Hence, the deviation-proof

dynamic policies in [19]–[22] are inefficient under imperfect monitoring. On the contrary, our

proposed policy has no performance loss under imperfect monitoring.

In this paper, we design dynamic spectrum sharing policies that are deviation-proof given

the imperfect monitoring of the users. We provide a systematic design approach, which first

characterizes the set of deviation-proof policies that fulfill the minimum throughput requirements,

and then for a given energy efficiency criterion, choose the optimal deviation-proof policy. The

proposed policy can be easily implemented by the users in a decentralized manner, and can

achieve energy efficiency with throughput requirements fulfilled even under imperfect monitoring

of the users.

Table I categorizes existing works based on four criteria: the policy is dynamic or static,

whether the policy can be implemented in a decentralized fashion or not, whether the policy

is deviation-proof (against static policies or dynamic policies) or not, and whether there is

performance loss due to imperfect monitoring. Note that we only consider the performance loss

April 20, 2012 DRAFT



4

due to imperfect monitoring for the deviation-proof policies.

The rest of the paper is organized as follows. In Section II, we describe the system model for

spectrum sharing. Then, in Section III, we give a motivating example to show the performance

gain of using dynamic policies and the necessity of constructing deviation-proof policies. In

Section IV, we formulate the policy design problem, solve it in three phases, and discuss

related design and implementation issues. Simulation results are presented in Section V. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL

A. Model For Dynamic Spectrum Sharing

We consider a single-hop wireless ad hoc network, where a fixed set of N users transmit in

a single frequency channel (see Fig 1 for an illustrative example of two users). The set of the

users is denoted by N , {1, 2, . . . , N}. Each user has a transmitter and a receiver. The channel

gain from user j’s transmitter to user i’s receiver is gij . Each user i chooses a power level pi

from a compact set Pi ⊆ R+. We assume that 0 ∈ Pi, namely user i can choose not to transmit.

The set of joint power profiles is denoted by P =
∏N

i=1Pi, and the joint power profile of all the

users is denoted by p = (p1, . . . , pN) ∈ P . Let p−i be the power profile of all the users other

than user i. Each user i’s throughput is a function of the joint power profile, namely ri : P → R.

Since the users cannot jointly decode their signals, each user i treats the interference from the

other users as noise, and obtains the throughput

ri(p) = log2

(
1 +

giipi∑
j 6=i gijpj + σ2

i

)
. (1)

where σ2
i is the noise power at user i’s receiver.

As in [17][24]–[27], there is a local spectrum server (LSS) serving as a mediating entity

among the users. The LSS has a transmitter and a receiver and can measure the interference

temperature (i.e. the total receive power) at its receiver, but it cannot control the actions of the

autonomous users. The LSS, aiming to improve the spectrum and energy efficiency, could be

a device deployed by some regulatory agency such as Federal Communications Commission

(FCC), who uses it for spectrum management in that local geographic area.

The LSS measures the interference temperature (IT) at its receiver imperfectly. The measure-

ment can be written as
∑

i∈N g0ipi + ε, where g0i is the channel gain from user i’s transmitter to
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the LSS’s receiver, and ε is the additive measurement error. We assume that the measurement

error has zero mean and a probability distribution function (p.d.f.) fε known to the LSS. When

the measurement
∑

i∈N g0ipi+ε exceeds an IT threshold I set by the LSS, the LSS will broadcast

a distress signal to all the users. We write the outcome of measuring the interference temperature

as y ∈ Y = {0, 1} with y = 0 indicating that the IT threshold is not exceeded, namely

y =


1, if

∑
i∈N g0ipi + ε > I

0, otherwise
. (2)

We write the conditional probability distribution of the outcome y given the action profile p as

ρ(y|p), which can be calculated as

ρ(y = 0|p) =
∫

x≤I−
∑

i∈N g0ipi

fε(x)dx, and ρ(y = 1|p) = 1− ρ(y = 0|p). (3)

Similar to [7]–[18], we assume that the system parameters, such as the number of users and

the channel gains, remain fixed during the considered time horizon. The system is time slotted

at t = 0, 1, . . .. We assume as in [7]–[18] that the users are synchronized. At the beginning of

time slot t, each user i chooses its action pt
i, and achieves the throughput ri(p

t). At the end

of time slot t, the LSS measures the interference temperature
∑

i∈N g0ip
t
i + εt, where εt is the

realization of the error ε at time slot t. If the outcome at time t is yt = 1, the LSS broadcast

the distress signal to the users. In other words, the LSS feedbacks the binary information about

the interference temperature. However, note that it does not need to broadcast the distress signal

every time slot; it broadcast only when the IT threshold is exceeded.

B. Spectrum Sharing Policies

In a general spectrum sharing policy, each user should determine the transmit power level at

each time slot t based on all the available information, namely the history of its own transmit

powers up to time t, the history of its interference and noise power levels at its receiver up

to time t, and the history of the outcomes of the IT measurement by the LSS. However, the

computational complexity of such a policy is too high. In this paper, we focus on a class of low-

complexity spectrum sharing policies, in which each user i determines the transmit power level

pt
i based only on the history of the outcomes of the IT measurement. The history of outcomes up

to time slot t ≥ 1 is ht = {y0; . . . ; yt−1} ∈ Y t, and that at time slot 0 is h0 = ∅. Formally, we
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consider a class of spectrum sharing policies π = (π1, . . . , πN), in which each user i’s strategy

πi is a mapping from the set of all possible histories H , ∪∞t=0Y
t to its action set Pi. In other

words, user i’s transmit power level at time slot t is determined by pt
i = πi(h

t), and the users’

joint transmit power profile is determined by pt = π(ht). We can classify all the spectrum

sharing policies into two categories, static and dynamic policies, as follows.

Definition 1: A spectrum sharing policy π is static if and only if for all i ∈ N , for all t ≥ 0,

and for all ht ∈ H, we have πi(h
t) = pstatic

i , where pstatic
i ∈ Pi is a constant. A spectrum sharing

policy is dynamic if and only if it is not static.

To further simplify the computational complexity of the spectrum sharing policy, we restrict

our attention to a special class of dynamic polices, namely the TDMA policies with constant

power levels defined as follows.

Definition 2 (TDMA policies with constant power levels): A spectrum sharing policy π is a

TDMA policy with constant power levels if and only if for all t ≥ 0, only one user transmits,

namely

∃i ∈ N , s.t. πi(h
t) > 0, and πj(h

t) = 0, ∀j 6= i, (4)

and for all i ∈ N , for all t ≥ 0, for all ht ∈ H, we have πi(h
t) = pTDMA

i , where pTDMA
i ∈ Pi

is a constant.

A TDMA policy with constant power levels is completely specified by each user i’s transmit

power level pTDMA
i when it transmits and by a schedule of which user transmits at each time slot

t. Hence, such a policy can be relatively easily constructed by the designer and implemented by

the users. Since we focus on this special class of dynamic policies, we refer to “TDMA policy

with constant power levels” when we say “dynamic policy” in the rest of the paper.

Remark 1: In the formal definition of a dynamic policy, each user needs to keep track of the

history of all the past outcomes to determine whether to transmit at each time slot. However,

for the proposed policies shown later in Table III, each user only needs to analytically compute

N indices to determine whether to transmit, where N is the number of users. Hence, each user

can have a finite memory to implement the proposed policy.

C. Definition of Spectrum and Energy Efficiency

The spectrum and energy efficiency of a spectrum sharing policy is characterized by each

user’s average throughput and average transmit power. A user’s average throughput is defined
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as the expected discounted average throughput per time slot. Assuming as in [19]–[23] that all

the users have the same discount factor δ ∈ [0, 1), user i’s average throughput can be written as

Ri(π) = Eh0,h1,...

{
(1− δ)

[
ri(π(h0)) +

∞∑
t=1

δtri(π(ht))

]}
. (5)

Similarly, user i’s average transmit power is the expected discounted average transmit power per

time slot, defined as

Pi(π) = Eh0,h1,...

{
(1− δ)

[
πi(h

0) +
∞∑

t=1

δtπi(h
t)

]}
. (6)

Each user i aims to minimize the power consumption Pi(π) while fulfilling a minimum

throughput requirement Rmin
i . From one user’s perspective, it has the incentive to deviate from a

given spectrum sharing policy, if by doing so it can fulfill the minimum throughput requirement

with a lower power consumption. Hence, we can define deviation-proof policies as follows.

Definition 3: A spectrum sharing policy π is deviation-proof if for all i, we have

Pi(π) ≤ Pi(π
′
i, π−i) for any π′i such that Ri(π

′
i, π−i) ≥ Rmin

i , (7)

where π−i is the joint strategy of all the users other than user i.

III. MOTIVATION FOR DEVIATION-PROOF DYNAMIC SPECTRUM SHARING POLICIES

Before formally describing the design framework, we provide a motivating example to show

why it is beneficial to study dynamic spectrum sharing policies. Consider a simple network with

two symmetric users. For simplicity, we assume the direct channel gains are both 1, and the

cross channel gains are both α > 0, i.e., gii = 1 and gij = α for i = 1, 2 and j 6= i. The noise

power at each user’ receiver is σ2
i = 0.05 for i = 1, 2. Hence, if one user transmits at pi = 1

without interference, the throughput is 4.39 bits/s/Hz.

If the users adopt the static spectrum sharing policy, their minimum transmit power should

be pstatic
1 = pstatic

2 = 1
1−(2r−1)α

· (2r − 1) · n, when their minimum throughput requirement is r.

We can see that the average transmit power, P static
i = pstatic

i , i = 1, 2, increases with the cross

interference level α. Moreover, the static policy is infeasible when α ≥ 1
2r−1

, namely when the

cross interference level or the minimum throughput requirement is very high.

Now suppose that the users adopt a simple dynamic spectrum sharing policy, in which user 1

transmits at a constant power level pdynamic
1 in even time slots t = 0, 2, . . . and user 2 transmits
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at a constant power level pdynamic
2 in odd time slots t = 1, 3, . . .. The users’ throughput are

R1 = (1− δ) ·
∞∑

t=0

δ2t log2

(
1 + pdynamic

1 /n
)

=
1

1 + δ
log2

(
1 + pdynamic

1 /n
)
, (8)

R2 = (1− δ) ·
∞∑

t=0

δ2t+1 log2

(
1 + pdynamic

2 /n
)

=
δ

1 + δ
log2

(
1 + pdynamic

2 /n
)
. (9)

Given the throughput requirement, we can calculate pdynamic
1 and pdynamic

2 from the above equa-

tions. Hence, to fulfill the same throughput requirement r, the users’ average transmit power

should be

P dynamic
1 = (1− δ) ·

∞∑
t=0

δ2tpdynamic
1 =

1

1 + δ

(
2r(1+δ) − 1

)
, (10)

P dynamic
2 = (1− δ) ·

∞∑
t=0

δ2t+1pdynamic
2 =

δ

1 + δ

(
2r(1+ 1

δ
) − 1

)
. (11)

Note that, as opposed to the static policy, the average transmit power in the dynamic policy is

independent of the cross interference level. Hence, the dynamic policy is better in medium to

high interference levels, when the static policy may not even be feasible.

We can compare the energy efficiency (in terms of the total average transmit power) of the static

and dynamic policies under some representative parameter values. Suppose that the throughput

requirement is r = 1, and that the discount factor is 0.9. Then we have

P static
1 = P static

2 = 1
1−α

· n;

P dynamic
1 = 1

1+δ
·
(
21+δ − 1

)
· n, P dynamic

2 = δ
1+δ

·
(
21+ 1

δ − 1
)
· n, δ = 0.9;

The dynamic policy is better when α ≥ 0.34.

(12)

Similar computation indicates that for a discount factor δ = 0.5, the dynamic policy is better

when α ≥ 0.44. Note that in this example, we just show the energy efficiency of one of the

many possible dynamic policies, and have already seen the advantage of dynamic policies. We

will construct the optimal dynamic policy in Section IV, whose performance will be evaluated

under different system parameters in Section V.

Even if a dynamic policy is already energy-efficient, a user may want to deviate from it to

achieve higher energy efficiency when the user has a high throughput requirement or a low

cross channel gain from another user’s transmitter to its own receiver. If it has a high throughput

requirement, the user may need a large transmit power in its time slot even with no multi-user

interference. Hence, it may benefit from transmitting at certain power level in another user’s
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time slot in order to achieve certain throughput and to greatly reduce the power level in its own

time slot. We give the conditions under which it is beneficial for a user to deviate from a given

policy in the following lemma.

Lemma 1: Suppose that under a given dynamic policy, user i transmits at power level pi at

time t and user j transmits at power level pj at time t + s, where t ≥ 0 and s ≥ −t. User j

will deviate by transmitting in both time slot t and t+ s to achieve at least the same throughput

with a lower average power, if and only if the following conditions hold:

pt+s
j =

1 + gjj/nj · pj

gjj/nj

(
(1 +

gjj

nj

· pj) ·
gjj

gjipi + nj

)− 1
δs+1

− nj

gjj

≤ pj, (13)

pt
j =

gjipi + nj

gjj

( 1 + gjj/njpj

1 + gjj/njp
t+s
j

)δs

− 1

 ≤ Pmax
j , (14)

and

pt
j + δspt+s

j ≤ δspj. (15)

Proof: See [28, Appendix A].

From the above lemma, we can see that user j has the incentive to deviate when gjipi is small,

namely the interference from user i is small if user j transmits in user i’s time slot, and when

pj is large, namely user j’s required throughput in time slot t + s is high.

We illustrate the results in Lemma 1 in Fig. 2. Consider the simple network with two symmetric

users discussed above in this section. Fig. 2 shows the range of minimum throughput and cross

interference levels under which it is beneficial for at least one user to deviate from the simple

dynamic policy described above. The discount factor is δ = 0.5. We can see that in this setting,

at least one user has incentive to deviate under a wide range of parameter values. Hence, it is

important to design deviation-proof spectrum sharing policies, considering the users’ inability

to perfectly monitor the spectrum usage.

IV. A DESIGN FRAMEWORK FOR SPECTRUM AND ENERGY EFFICIENT POLICIES

In this section, we first formulate the policy design problem for spectrum and energy efficient

spectrum sharing and outline our design framework to solve it. Then we show in detail how

to solve the design problem for the optimal spectrum sharing policy and how to implement the

optimal policy.
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A. Formulation of The Design Problem

The goal of the designer is to come up with a deviation-proof spectrum sharing policy that

fulfills all the users’ minimum throughput requirements and optimizes certain energy efficiency

criterion. The energy efficiency criterion can be represented by a function defined on the average

power of all the users, E(P1(π), . . . , PN(π)). An example of energy efficiency criterion can be

the average power consumption of all the users, i.e. E(P1(π), . . . , PN(π)) = 1
N

∑
i∈N Pi(π). To

sum up, we can formally define the policy design problem as follows

min
π

E(P1(π), . . . , PN(π)) (16)

s.t. π is deviation− proof,

Ri(π) ≥ Rmin
i , ∀i ∈ N .

We outline the proposed design framework to solve the policy design problem, which is a

procedure consisting of three phases as illustrated in Fig. 3. In Phase I, the LSS exchanges

some information with the users following the procedure described in Table II. In Phase II,

using the information obtained in Phase I, the LSS solves the policy design problem for the

optimal deviation-proof dynamic spectrum sharing policy. Specifically, it first determines the set

of feasible operating points that can be achieved by deviation-proof dynamic policies, and then

selects the optimal operating point based on the given energy efficiency criterion. Finally in

Phase III, the LSS sends the optimal operating point to the users, as an input to each user’s

decentralized implementation of the optimal deviation-proof policy.

Note that the information exchange in Phase I is necessary for the LSS to determine and

for the users to achieve the optimal operating point. A similar information exchange phase is

proposed in [19][20]. The information exchange phase can be also considered as a substitute for

the convergence process needed by the algorithms in [3]–[5]. In the proposed policy, since the

users implement the policy without any information exchange in Phase III, the only information

exchange happen in Phase I and at the end of Phase II. The procedure of information exchange in

our framework is advantageous in that its duration and the amount of information to exchange

are predetermined. On the other hand, the amount of information to exchange in [3]–[5] is

proportional to the convergence time of their algorithms, which is generally unbounded.
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B. Solving The Policy Design Problem By The LSS

1) Characterizing the set of feasible operating points: The first step in solving the design

problem (16) is to characterize the set of feasible operating points that can be achieved by

deviation-proof policies.2 Specifically, an operating point r̄ = (r̄1, . . . , r̄N) is defined as a

collection of throughput r̄i achieved by each user i when it transmits in a dynamic policy.

Since we focus on TDMA policies, the transmit power level of each user i can be obtained from

the operating point according to

pTDMA
i (r̄) =

ni

gii

(2r̄i − 1) . (17)

An operating point r̄ is feasible if there exists a deviation-proof policy with power levels

pTDMA(r̄) that achieves the minimum throughput requirements. As said before, the characteri-

zation of the set of feasible operating points requires some information exchange between the

LSS and the users in Phase I, which will be described after we state Theorem 1.

Before stating Theorem 1, we define the benefit from deviation as follows.

Definition 4 (Benefit from Deviation): We define user j’s benefit from deviation from user i’s

reward maximizing action profile p̃i as

bij = sup
pj∈Pj ,pj 6=p̃i

j

ρ(y = 1|p̃i)− ρ(y = 1|pj, p̃
i
−j)

rj(pj, p̃i
−j)/r̄j

, ∀i ∈ N , ∀j 6= i, (18)

where p̃i = (pTDMA
i (r̄),p−i = 0) is the joint power profile when user i transmits.

As we will see in Theorem 1, if the operating point r̄ can be achieved by deviation-proof

policies, the benefit from deviation bij for all i and j 6= i must be strictly smaller than 0. Since

the throughput rj is always larger than 0, bij < 0 is equivalent to ρ(y = 1|pj, p̃
i
−j) > ρ(y = 1|p̃i)

for all pj 6= p̃i
j , which means that the probability of the outcome y = 1 that indicates deviation

increases when deviation happens. This guarantees that any deviation from p̃i by user j (∀j 6= i)

can be statistically identified. We can observe that the benefit from deviation is also related to

the throughput user j obtains by deviation, rj(pj, p̃
i
−j). If the throughput obtained by deviation

is smaller, the benefit from deviation is smaller.

2Note that we are interested in the case when the users are impatient (their discount factor is fixed and smaller than 1), as

opposed to the case when the users are patient (their discount factor can be arbitrarily close to 1) in [19][20][23]. A similar

characterization with impatient users is provided in [22] under the assumption of perfect monitoring. Our result in Theorem 1

is the first analytical characterization for impatient users with imperfect monitoring.
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Now we state Theorem 1, which characterizes the set of feasible operating points that can be

achieved by deviation-proof policies.

Theorem 1: An operating point r̄ is feasible for the minimum throughput requirements {Rmin
i }i∈N ,

and can be achieved by deviation-proof policies, if the following conditions are satisfied:

• Condition 1: benefit from deviation bij < 0 for all i and j 6= i.

• Condition 2: for all i ∈ N , we have

r̄i − ri(pi, p̃
i
−i) + r̄i ·

∑
j 6=i

ρ(y = 1|p̃i)− ρ(y = 1|pi, p̃
i
−i)

−bij

≥ 0, ∀pi ∈ Pi. (19)

• Condition 3: the discount factor δ satisfies

δ ≥ δ ,
1

1 +
1−
∑

i∈N µ
i

N−1+
∑

i∈N

∑
j 6=i

(−ρ(y0|p̃i)/bij)

. (20)

• Condition 4:
∑

i∈N Rmin
i /r̄i = 1, and r̄i ≤ Rmin

i /µ
i
, where

µ
i
, max

j 6=i

1− ρ(y = 1|p̃i)

−bij

, (21)

Proof: See [28, Appendix B].

Theorem 1 first provides the sufficient conditions for the existence of feasible operating points.

Condition 1 (respectively, Condition 2) ensures that at the power profile p̃i, user j for any j 6= i

(respectively, user i) has no incentive to deviate. Condition 4 gives us the lower bound for

the discount factor. If any of the above conditions is violated, there is no feasible operating

point. When Conditions 1–3 are all satisfied, Condition 4 gives us the set of feasible operating

points under given system parameters. We can choose any point satisfying Condition 4 as the

deviation-proof operating point.

Information Exchange In Phase I: We describe the information exchange phase for the LSS

to identify the set of Pareto optimal equilibrium payoffs. The key quantities needed are {ρ(y =

1|p̃i)}N
i=1, {ρ(y = 1|pj, p̃

i
−j)}i6=j , and {bij}i6=j , which can be obtained at the end of the informa-

tion exchange phase. We list the information obtained by the LSS and users during this phase

in Table II.

2) Selecting the optimal operating point: For a set of throughput requirements {Rmin
i }i∈N ,

we write the set of feasible points obtained in Theorem 1 as B({Rmin
i }i∈N ). The following

proposition formulates the problem of finding the optimal operating point that solves the policy

design problem.
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Proposition 1: The optimal operating point can be solved by the following optimization

problem

min
r̄

E(P1(r̄), . . . , PN(r̄)) (22)

s.t. r̄ ∈ B({Rmin
i }i∈N ),

where Pi(r̄) =
Rmin

i

r̄i
· pTDMA

i (r̄).

Proof: See [28, Appendix C].

The optimization problem (22) can be solved by the LSS, who has enough computational

capability. After obtaining the optimal operating point r̄, the LSS will send it to the users.

C. Constructing The Deviation-Proof Policy

Now we can construct the optimal deviation-proof dynamic policy. The deviation-proof policy

can be implemented by each user in a decentralized manner. The algorithm run by user i is

described in the algorithm in Table III. Note that no information exchange is required at this

phase.

Theorem 2 ensures that if all the users run the algorithm in Table III locally, they will achieve

the minimum throughput requirements {Rmin
i }i∈N , and will have no incentive to deviate.

Theorem 2: For any operating point r̄ ∈ B({Rmin
i }i∈N ), and any discount factor δ ≥ δ, the

throughput achieved by each user running the algorithm in Table III is Rmin
i for each user i, and

no user has incentive to deviate.

Proof: See [28, Appendix D].

The intuition of why the algorithm in Table III works is as follows. At each time slot t, each

user i calculates the indices of all the users αi(t),∀i ∈ N . The user i∗ with the largest index

αi∗(t) = maxi αi(t) can transmit in time slot t. Normally, if user i∗ transmits at the current

time slot, its index in the next time slot is very likely to be small, in order to give other users

larger opportunities to transmit. However, when the users receive the distress signal that indicates

deviation, they calculate the indices in a different way, such that user i∗ still has a large index

at the next time slot. Hence, a user may not have the incentive to deviate, because it will leads

to a smaller opportunity to transmit in the future.
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V. PERFORMANCE EVALUATION

In this section, we demonstrate the performance gain of our spectrum sharing policy over

existing policies, and validate our theoretical analysis through numerical results. Throughout

this section, we use the following system parameters by default unless we change some of

them explicitly. The noise powers at all the users’ receivers are 0.05 W. For simplicity, we

assume that the direct channel gains have the same distribution gii ∼ CN (0, 1),∀i, and the

cross channel gains have the same distribution gij ∼ CN (0, α),∀i 6= j, where α is defined as

the cross interference level. The channel gain from each user to the LSS also satisfies g0i ∼

CN (0, 1),∀i. The interference temperature threshold is I = 1 W. The measurement error ε is

Gaussian distributed with zeros mean and variance 0.1. The energy efficiency criterion is the

average transmit power of each user. The discount factor is 0.9.

We compare the performance of the proposed policy with that of the optimal static policy

in [11][17] and the optimal punish-forgive policy in [19]–[22]. In the optimal static policy,

each user transmits at a constant power level that is just large enough to fulfill the throughput

requirement, given the interference from other users. The optimal static policy is deviation-proof

against other static policies. The punish-forgive policies in [20][22] were originally proposed for

network utility maximization problems (e.g. maximizing the sum throughput). In our simulation,

we adapt the punish-forgive policies to solve the energy efficiency problem in (16). The punish-

forgive policies are dynamic policies that have two phases. When the users have not received

the distress signal, they transmit at the same power levels as in the proposed policy. When they

receive a distress signal that indicates deviation, they are required to switch to a punishment

phase of L time slots. In the punishment phase, all the users transmit at the same power levels as

in the optimal static policy3. In the following simulation results, we always show the performance

of the punish-forgive policy with the optimal punishment length. The “grim-trigger” policy used

in [19] is a special case of the punish-forgive policy when the punishment length L = ∞. Hence,

the performance of the punish-forgive policy with the optimal punishment length is better than

that of the grim-trigger policy. As discussed before, the punish-forgive policy works well if the

users can perfectly monitor the power levels of all the users, because the punishment serves as

3Note that in the punish-forgive policies in [20][22], the users transmit at the maximum power levels in the punishment phase,

which is the Nash equilibrium. In our setting, transmitting at the power levels in the optimal static policy is the Nash equilibrium.
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a threat to deter the users from deviating, and it will never happen in perfect monitoring case

if no user deviates. However, when the users have imperfect monitoring ability, the punishment

will happen with some positive probability, which decreases all the users’ spectrum and energy

efficiency.

We first illustrate the users’ transmit power levels in different policies in Fig. 4. Consider a

simple example of two symmetric users whose minimum throughput requirements are 1 bits/s/Hz.

We can see that both users transmit at the same constant power levels in the optimal static policy.

In the punish-forgive policy and the proposed policy, both users transmit at lower transmit power

levels alternatively before they receive the distress signal at time slot 5. Since a distress signal

is broadcast at the time slot in which user 1 is transmitting, it indicates that user 2 may have

deviated. In the punish-forgive policy, both users transmit at the power levels in the optimal

static policy. On the contrary, in the proposed policy, they still transmit in a TDMA fashion.

However, user 1 transmits in the first three time slots after receiving the distress signal, and user

2 has to wait for the opportunity to transmit later.

Then we compare the energy efficiency of the optimal static policy, the optimal punish-forgive

policy, and the proposed policy under different cross interference levels in Fig. 5. We consider a

network of two users whose minimum throughput requirements are 1 bits/s/Hz. First, notice that

the energy efficiency of the proposed policy remains constant under different cross interference

levels, while the average transmit power increases with the cross interference level in the other

two policies. The proposed policy outperforms the other two policies in medium to high cross

interference levels (approximately when α ≥ 0.3). In the cases of high cross interference levels

(α ≥ 1), there is no static policy that can fulfill the minimum throughput requirements. As a

consequence, the punish-forgive policies cannot fulfill the throughput requirements when α ≥ 1,

either.

In Fig. 6, we examine how the performance of these three policies scales with the number of

users. The number of users in the network increases, while the minimum throughput requirement

for each user remains 1 bits/s/Hz. The cross interference level is α = 0.2. We can see that the

static and punish-forgive policies are infeasible when there are more than 6 users. In contrast,

the proposed policy can accommodate 18 users in the network with each users transmitting at a

power level less than 0.8 W.

Fig. 7 shows the joint spectrum and energy efficiency of the three policies. We can see
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that the optimal static and punish-forgive polices are infeasible when the minimum throughput

requirement is larger than 1.6 bits/s/Hz. On the other hand, the proposed policy can achieve a

much higher spectrum efficiency (2.5 bits/s/Hz) with a better energy efficiency (0.8 W transmit

power). Under the same average transmit power, the proposed policy is always more energy

efficient than the other two policies.

VI. CONCLUSION

In this paper, we studied power control in dynamic spectrum sharing, and proposed a dynamic

spectrum sharing policy that allows the users to transmit in a TDMA fashion. The proposed policy

achieves higher spectrum efficiency compared to existing static spectrum sharing policies, and

is more energy efficient than static policies under the same minimum throughput requirements.

The proposed policy is amenable to decentralized implementation and is deviation-proof, in that

the users find it in their self-interests to follow the policy. The proposed policy can achieve high

spectrum and energy efficiency even under limited and imperfect monitoring, namely the users

only observe the binary distress signals that erroneously indicate the violation of the interference

temperature threshold. Simulation results validate our analytical results on the policy design and

demonstrate the performance gains enabled by the proposed policy.
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TABLE I

COMPARISON WITH RELATED WORKS IN DYNAMIC SPECTRUM SHARING.

[6] [3]–[5] [7]–[18] [19]–[22] This work

Dynamic No No No Yes Yes

Decentralized No Yes Yes Yes Yes

Deviation-proof No No Yes (static) Yes (static, dynamic) Yes (static, dynamic)

Performance loss (due to imperfect monitoring) N/A N/A Yes Yes No

T1 R1

R2T2

g11

g22

g12

LSS

g01

g02
g21

T RTransmitter Receiver

Local 

Spectrum 

Server
LSS

A Wireless Network of Two Users

Distress Signals

Fig. 1. An example system model with two users. The solid line represents a link for data transmission, and the dashed line

indicate a link for control or feedback signals. The channel gains for the corresponding data link are shown in the figure. The

local spectrum server (LSS) sends distress signals if the estimated interference power exceeds a threshold.

TABLE II

INFORMATION OBTAINED BY THE LSS AND USERS DURING THE INFORMATION EXCHANGE PHASE.

Events Information obtained by LSS Information obtained by user i

Initialization I (obtained according to Ī , Γ̄) Pi (known initially)

Each user i transmits at Pmax
i {h0iP

max
i }Ni=1,{ρ(y0|p̃i)}Ni=1

LSS broadcasts {ρ(y0|p̃i)}Ni=1, min{1, Ī
h0iPmax

i
},∀i p̃i

i, {ρ(y0|p̃j)}Nj=1, {hij p̃
j
j}j 6=i, v̄i

Each user i transmits at ∀pi ∈ Pi \ {0, Pmax
i } {ρ(y0|p̃j)− ρ(y0|pi, p̃

j
−i)}j 6=i ui(pj , p̃

i
−j),∀j,∀pj

LSS broadcasts {ρ(y0|p̃j)− ρ(y0|pi, p̃
j
−i)}j 6=i {bki}k 6=i

Each user i broadcasts {bki}k 6=i bij ,∀i,∀j 6= i bij ,∀i,∀j 6= i

Each user i transmits v̄i to LSS {v̄i}Ni=1
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Fig. 2. The system parameters under which it is beneficial for at least one user to deviate.
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Phase I:

Information 

exchange between 

LSS and users

(Table II)

Phase III:

Decentralized 

implementation 

by users

(Theorem 2,

Table III)

Phase II:

LSS determines 

the operating point

(Theorem 1,

Proposition 1)

Initialization:

operating 

points

User 1's local solver

LSS monitors 

the aggregate 

power level

User N's local solver

distress signal

power 

level

power

level

Step 1: Quantify the achievable operating points (by Theorem 1)

Step 2: Determine the optimal operating points (by Proposition 1)

LSS

User 1

User N

Architecture of implementing the algorithm in Table III

(See Table II for a detailed description

of the information exchange procedure)

Fig. 3. An illustration of the design framework. In Phase I, the local spectrum server (LSS) and the users exchange information.

Based on the information exchanged, LSS determines the optimal operating point in Phase II, and tells the payoff values at the

operating points to corresponding users. In Phase III, users implement the spectrum sharing policy in a decentralized way. The

key results related to each phase are also listed in the figure.
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TABLE III

THE ALGORITHM RUN BY USER i.

Require: The operating point r̄ obtained from the LSS

Initialization: Sets t = 0, rj(0) = Rmin
j for all j ∈ N .

repeat

Calculates the index αj(t) =
rj(t)/r̄j−µ

j

1−rj(t)/r̄j+
∑

k 6=j
(−ρ(y=1|p̃j)/bjk)

for all j ∈ N

Finds the largest index i∗ , arg maxj∈N αj(t)

if i = i∗ then

Transmits at the power level pTDMA
i (r̄)

end if

Updates rj(t + 1) for all j ∈ N

if No Distress Signal Received At Time Slot t then

ri∗(t + 1) = 1
δ
· ri∗(t)− ( 1

δ
− 1) · (1 +

∑
j 6=i∗

ρ(y=1|p̃i∗ )
−bi∗j

) · r̄i∗

rj(t + 1) = 1
δ
· rj(t) + ( 1

δ
− 1) · ρ(y=1|p̃i∗ )

−bi∗j
· r̄j for all j ∈ N , j 6= i∗

else

ri∗(t + 1) = 1
δ
· ri∗(t)− ( 1

δ
− 1) · (1−

∑
j 6=i∗

ρ(y=0|p̃i∗ )
−bi∗j

) · r̄i∗

rjssss(t + 1) = 1
δ
· rj(t)− ( 1

δ
− 1) · ρ(y=0|p̃i∗ )

−bi∗j
· r̄j for all j ∈ N , j 6= i∗

end if

t← t + 1

until ∅
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Fig. 4. A snapshot of the two users’ transmit power levels under different spectrum sharing policies. User 1’s power level is

shown as the blue circle, and user 2’s power level is shown as the red square.
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Fig. 5. Energy efficiency of the static, punish-forgive, and proposed policies under different cross interference levels.
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Fig. 6. Energy efficiency of the static, punish-forgive, and proposed policies under different user numbers.
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Fig. 7. Energy efficiency of the static, punish-forgive, and proposed policies under different minimum throughput requirements.
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