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Abstract—We study the problem of distributed interference
management in a network of heterogeneous small cells with
different cell sizes, different numbers of user equipments (UEs)
served, and different throughput requirements by UEs. We
consider the uplink transmission, where each UE determines
when and at what power level it should transmit to its serving
small cell base station (SBS). We propose a general framework for
designing distributed interference management policies, which
exploits weak interference among non-neighboring UEs by letting
them transmit simultaneously (i.e., spatial reuse), while elimi-
nating strong interference among neighboring UEs by letting
them transmit in different time slots. The design of optimal
interference management policies has two key steps. Ideally,
we need to find all the subsets of non-interfering UEs, i.e., the
maximal independent sets (MISs) of the interference graph, but
this is NP-hard (non-deterministic polynomial time) even when
solved in a centralized manner. Then, in order to maximize some
given network performance criterion subject to UEs’ minimum
throughput requirements, we need to determine the optimal
fraction of time occupied by each MIS, which requires global
information (e.g., all the UEs’ throughput requirements and
channel gains). In our framework, we first propose a distributed
algorithm for the UE-SBS pairs to find a subset of MISs in
logarithmic time (with respect to the number of UEs). Then
we propose a novel problem reformulation which enables UE-
SBS pairs to determine the optimal fraction of time occupied
by each MIS with only local message exchange among the
neighbors in the interference graph. Despite the fact that our
interference management policies are distributed and utilize only
local information, we can analytically bound their performance
under a wide range of heterogeneous deployment scenarios in
terms of the competitive ratio with respect to the optimal network
performance, which can only be obtained in a centralized
manner with NP complexity. Remarkably, we prove that the
competitive ratio is independent of the network size. Through
extensive simulations, we show that our proposed policies achieve
significant performance improvements (ranging from 150% to
700%) over state-of-the-art policies.

Index Terms—Heterogeneous Network, Small Cell, Interfer-
ence Management, Power Control, Interference Graph.

I. INTRODUCTION

Dense deployment of low-cost heterogeneous small cells
(e.g. picocells, femtocells) has become one of the most ef-
fective solutions to accommodate the exploding demand for
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wireless spectrum [1] [2] [3]. On one hand, dense deployment
of small cells significantly shortens the distances between
small cell base stations (SBSs) and their corresponding user
equipments (UEs), thereby boosting the network capacity. On
the other hand, dense deployment also shortens the distances
between neighboring SBSs, thereby potentially increasing the
inter-cell interference. Hence, while the solution provided
by the dense deployment of small cells is promising, its
success depends crucially on interference management by the
small cells. Efficient interference management is even more
challenging in heterogeneous small cell networks, due to the
lack of central coordinators, compared to that in traditional
cellular networks.

In this paper, we propose a novel framework for designing
interference management policies in the uplink of small cell
networks, which specify when and at what power level each
UE should transmit1. Our proposed design framework and
the resulting interference management policies fulfill all the
following important requirements:

• Deployment of heterogeneous small cell networks:
Existing deployments of small cell networks exhibit
significant heterogeneity such as different types of
small cells (picocells and femtocells), different cell
sizes, different number of UEs served, different UEs’
throughput requirements etc.

• Interference avoidance and spatial reuse: Effective in-
terference management policies should take into account
the strong interference among neighboring UEs, as well
as the weak interference among non-neighboring UEs.
Hence, the policies should effectively avoid interference
among neighboring UEs and use spatial reuse to take ad-
vantage of the weak interference among non-neighboring
UEs.

• Distributed implementation with local information
and message exchange: Since there is no central
coordinator in small cell networks, interference
management policies need to be computed and
implemented by the UEs in a distributed manner, by
exchanging only local information through local message
exchanges among neighboring UE-SBS pairs.

• Scalability to large networks: Small cells are often de-
ployed over a large scale (e.g., in a city). Effective
interference management policies should scale in large
networks, namely achieve efficient network performance

1Although we focus on uplink transmissions in this paper, our framework
can be easily applied to downlink transmissions.
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while maintaining low computational complexity.
• Ability to optimize different network performance criteria:

Under different deployment scenarios the small cell
networks may have different performance criteria,
e.g., weighted sum throughput or max-min fairness.
The design framework should be general and should
prescribe different policies to optimize different network
performance criteria.

• Performance guarantees for individual UEs: Effective
interference management should provide performance
guarantees (e.g., minimum throughput guarantees) for
individual UEs.

As we will discuss in detail in Section II, existing state-of-
the-art policies for interference management cannot simulta-
neously fulfill all of the above requirements.

Next, we describe our key results and major contributions:
1. We propose a general framework for designing distributed

interference management policies that maximizes the given
network performance criterion subject to each UE’s minimum
throughput requirements. The proposed policies schedule max-
imal independent sets (MISs)2 of the interference graph to
transmit in each time slot. In this way, they avoid strong
interference among neighboring UEs (since neighboring UEs
cannot be in the same MIS), and efficiently exploit the weak
interference among UEs in a MIS by letting them to transmit
at the same time.

2. We propose a distributed algorithm for the UEs to
determine a subset of MISs. The subset of MISs generated
ensures that each UE belongs to at least one MIS in this subset.
Moreover, the subset of MISs can be generated in a distributed
manner in logarithmic time (logarithmic in the number of UEs
in the network) for bounded-degree interference graphs3. The
logarithmic convergence time is significantly faster than the
time (linear or quadratic in the number of UEs) required by
the distributed algorithms for generating subsets of MISs in
[4]–[6].

3. Given the computed subsets of MISs, we propose a
distributed algorithm in which each UE determines the optimal
fractions of time occupied by the MISs with only local
message exchange. The message is exchanged only among
the UE-SBS pairs that strongly interfere with each other, i.e.
among neighbors in the interference graph. The distributed
algorithm will output the optimal fractions of time for each
MIS such that the given network performance criterion is
maximized subject to the minimum throughput requirements.

4. Under a wide range of conditions, we analytically charac-
terize the competitive ratio of the proposed distributed policy
with respect to the optimal network performance. Importantly,
we prove that the competitive ratio is independent of the net-

2Consider the interference graph of the network, where each vertex is a
UE-SBS pair and each edge indicates strong interference between the two
vertices. An independent set (IS) is a set of vertices in which no pair is
connected by an edge. An IS is a MIS if it is not a proper subset of another
IS.

3Bounded-degree graphs are the graphs whose maximum degree can be
bounded by a constant independent of the size of the graph, i.e., ∆ = O(1).
As we will show in Theorem 5, for the interference graphs that are not
bounded-degree graphs, even the centralized solution, given all the MISs,
cannot satisfy the minimum throughput requirements.

work size, which demonstrates the scalability of our proposed
policy in large networks. Remarkably, the constant competitive
ratio is achieved even though our proposed policy requires
only local information, is distributed, and can be computed
fast, while the optimal network performance can only be
obtained in a centralized manner with global information (e.g.,
all the UEs’ channel gains, maximum transmit power levels,
minimum throughput requirements) and NP (non-deterministic
polynomial time) complexity.

5. Through simulations, we demonstrate significant (from
160% to 700 %) performance gains over state-of-the-art
policies. Moreover, we show that our proposed policies can
be easily adapted to a variety of heterogeneous deployment
scenarios, with dynamic entry and exit of UEs.

The rest of the paper is organized as follows. In Section
II we discuss the related works and their limitations. We
describe the system model in Section III. Then we formulate
the interference management problem and give a motivating
example in Section IV. We propose the design framework
in Section V, and demonstrate the performance gain of our
proposed policies in Section VI. Finally, we conclude the paper
in Section VII.

II. RELATED WORKS

State-of-the-art interference management policies can be
divided into three main categories: policies based on power
control, policies based on spatial reuse, and policies based
on joint power control and spatial reuse. In the following,
we discuss their limitations for the considered distributed
interference management problem in heterogeneous small cell
networks. We will list some representative references in this
section; a detailed list can be found in the online report [7].

A. Distributed Interference Management Based on Power
Control

Policies based on distributed power control (representative
works [8]–[10]) have been used for interference management
in both cellular and ad-hoc networks. In these policies, all
the UEs in the network transmit at constant power levels
all the time (provided that the system parameters remain
the same)4. For this reason, we refer to them as constant
power control policies in the rest of this paper. The major
limitation of constant power control policies is the diffi-
culty in providing minimum throughput guarantees for each
UE, especially in the presence of strong interference. Some
works [8]–[10] use pricing to mitigate the strong interference.
However, they cannot strictly guarantee the UEs’ minimum
throughput requirements [8]–[10]. Indeed, the low throughput
experienced by some users, caused by strong interference, is
the fundamental limitation of constant power control policies,
even for the optimal constant power control policy obtained
by a central controller5 [12]. Since strong interference is very

4Although some power control policies [8]–[10] go through a transient
period of adjusting the power levels before the convergence to the optimal
power levels, the users maintain constant power levels after the convergence.

5In the case of average sum throughput maximization given the minimum
average throughput constraints of the UEs, the power control policies are
inefficient if the feasible rate region is non-convex [11] .
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common in dense small cell deployments (e.g., in offices
and apartments where SBSs are installed close to each other
[13]), constant power control policies do not perform well
in these scenarios. Note that there exist a different strand of
works based on [14], which proposes distributed algorithms to
achieve the desired minimum throughput requirement for each
UE with the objective of minimizing transmit power levels.
These works cannot optimize network performance criteria
such as weighted sum throughput, max-min fairness etc., and
hence are suboptimal under these performance criteria.

B. Distributed Spatial Reuse Based on Maximal Independent
Sets

An efficient solution to mitigate strong interference is spatial
reuse, in which only a subset of UEs (those who do not
significantly interfere with each other) transmit at the same
time. Spatial Time reuse based Time Division Multiple Access
(STDMA) has been widely used in existing works on broad-
cast scheduling in multi-hop networks [4] [6]6. Specifically,
these policies construct a cyclic schedule such that in each
time slot an MIS of the interference graph is scheduled. The
constructed schedule ensures that each UE is scheduled at least
once in the cycle.

In terms of performance, STDMA policies [4]–[6] cannot
guarantee the minimum throughput requirement of each UE,
and usually adopt a fixed scheduling (i.e. follow a fixed
order in which the MISs are scheduled), which may be
very inefficient depending on the given network performance
criteria. For example, the policies in [6] are inefficient in
terms of fairness. In terms of complexity, for the distributed
generation of the subsets of MISs, the STDMA policies
in [4]–[6] require an ordering of all the UEs, and have a
computational complexity (in terms of the number of steps
executed by the algorithm) that scales as O(|V |)) (in [5] [6])
or O(|V ||E|)) (in [4]), where |V | and |E| are the number
of vertices/UEs and the number of edges in the interference
graph, respectively. Hence, in large-scale dense deployments,
the complexity grows superlinearly with the number of UEs,
making the policies difficult to compute. By contrast, our
proposed distributed algorithm for generating subsets of MISs
does not require the ordering of all the UEs, and has a
complexity that scales as O(log |V |), namely logarithmically
with the number of the UEs, for bounded-degree graphs.7

Finally, the STDMA policies in [4]–[6] are designed for the
MAC layer and assume that all the UEs are homogeneous at
the physical layer. In practice, different UEs are heterogeneous
due to their different distances from their SBSs, their different
maximum transmit power levels, etc. This heterogeneity is
important, and will be considered in our design framework.

6These works [4]–[6] do not have exactly the same model as in our setting.
However, these works can be adapted to our model. Hence, we also compare
with these works to have a comprehensive literature review.

7As we will show in Theorem 5, for graphs which do not have bounded
degrees, even a centralized solution based on all the MISs cannot satisfy the
minimum throughput requirements.

C. Distributed Power Control and Spatial Reuse For Multi-
Cell Networks

The works discussed in the above two subsections either
focus on distributed power control in the physical layer [8]–
[10] or focus on distributed spatial reuse in the MAC layer
[4]–[6]. Similar to our paper, some works (see [15] [16]
for representative works) adopted a cross-layer approach and
proposed joint distributed power control and spatial reuse for
multi-cell networks. Although these works schedule a subset
of UEs to transmit at each time slot, the subset is not the
MIS of the interference graph [15] [16] . For example, the
policies in [15] [16], called power matched scheduling (PMS)
policies, schedule one UE from each small cell at the same
time, even if some UEs from different cells are very close
to each other. In this case, these UEs will experience strong
inter-cell interference. Hence, the works in [15] [16] cannot
perfectly eliminate strong interference from neighboring cells
and exploit weak interference from non-neighboring cells.
Moreover, the works in [15] [16] cannot provide minimum
throughput guarantees for the UEs.

III. SYSTEM MODEL

A. Heterogeneous Network of Small Cells

We consider a heterogeneous network of K small cells
operating in the same frequency band (see Fig. 1), which rep-
resents a common deployment scenario considered in practice
[2] [10] [17]. Note that the small cells can be of different
types (e.g. picocells, femtocells, etc.) and thereby belong to
different tiers in the heterogeneous network. Each small cell
j has one SBS, (SBS j), which serves a set of UEs under
a closed access scenario [10]. Denote the set of UEs by
U = {1, ..., N}. We write the association of UEs to SBSs
as a mapping T : {1, ..., N} → {1, ..,K}, where each UE i is
served by SBS T (i). The interference graph G of the network
has N vertices, each of which is a UE-SBS pair. There is an
edge between two pairs/vertices if their cross interference is
high (rules for deciding if interference is high will be discussed
in Section V).

We focus on the uplink transmissions; the extension to
downlink transmissions is straightforward when each SBS
serves one UE at a time (e.g., TDMA among the UEs
connected to the same SBS). Each UE-i chooses its transmit
power pi from a compact set Pi ⊆ R+. We assume that
0 ∈ Pi, ∀i ∈ {1, ..., N}, namely any UE can choose not
to transmit. The joint power profile of all the UEs is denoted
by p = (p1, ...., pN ) ∈ P , ΠN

i=1Pi. Under the joint power
profile p, the signal to interference and noise ratio (SINR)
of UE i’s signal, experienced at its serving SBS j = T (i),
can be calculated as γi(p) =

gijpi
N∑

k=1,k 6=i
gkjpk+σ2

j

, where gij is

the channel gain from UE i to SBS j, and σ2
j is the noise

power at SBS j. Since the UEs do not cooperate to encode
their signals to avoid interference, each UE-SBS pair treats the
interference from other UEs as white noise. Hence, each UE i
gets the following throughput [15], ri(p) = log2(1 + γi(p))8.

8We use the Shannon capacity here. However, our analysis is general and
applies to the throughput models that consider the modulation scheme used.
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Figure 1. Illustration of a heterogeneous small cell network.

B. Interference Management Policies

The system is time slotted at t = 0,1,2..., and the UEs are
assumed to be synchronized9. At the beginning of each time
slot t, each UE i decides its transmit power pti and obtains
a throughput of ri(pt). Each UE i’s strategy, denoted by
πi : Z+ , {0, 1, ..} → Pi, is a mapping from time t to a
transmission power level pi ∈ Pi. The interference manage-
ment policy is then the collection of all the UEs’ strategies,
denoted by π = (π1, ..., πN ). The average throughput for
UE-i is given by Ri(π) = limT→∞

1
T+1

∑T
t=0 ri(pt), where

pt = (π1(t), ..., πN (t)) is the power profile at time t. We
assume that the channel gains are fixed over the considered
time horizon as in [15] [18]–[21]. However, we will illustrate
in Section VI that our framework performs well under time-
varying channel conditions (e.g., due to fading) as well.

An interference management policy πconst is a constant
power control policy [8]–[10] if πconst(t) = p for all t.
As we have discussed before, our proposed policy is based
on MISs of the interference graph. Given an interference
graph, we write I = {I1, ..., INMIS} as the set of all the
MISs of the interference graph. Let pIj be a power profile
in which the UEs in the MIS Ij transmit at their maximum
power levels and the other UEs do not transmit, namely
p
Ij
k = pmaxk , maxPk if k ∈ Ij and pk = 0 otherwise.

Let PMIS =
{

pI1 , ...,pINMIS
}

be the set of all such power
profiles. Then π is a policy based on MIS if π(t) ∈ PMIS

for all t. We denote the set of policies based on MISs by
ΠMIS =

{
π : Z+ → PMIS

}
.

IV. PROBLEM FORMULATION

In this section, we formulate the interference management
policy design problem.

A. The Interference Management Policy Design Problem

We aim to optimize a chosen network performance criterion
W (R1(π), ..., RN (π)), defined as a function of the UEs’
average throughput. We can choose any performance criterion
that is concave in R1(π), ...., RN (π). For instance, W can be
the weighted sum of all the UEs’ throughput

∑N
i=1 wiRi(π)

with
∑N
i=1 wi = 1 and wi ≥ 0. Alternatively, the network

performance can be max-min fairness (i.e., the worst UE’s
throughput) miniRi(π). The policy design problem (PDP)
can be then formalized as follows

9Strict synchronization is required for inter-cell interference coordination
(ICIC) in Release 10 of 3GPP [17] and is widely assumed in the literature as
well [2] [4]–[6] [15] [16].

Policy Design Problem (PDP)
maxπ W (R1(π), ..., RN (π))

subject to Ri(π) ≥ Rmini , ∀i ∈ {1, ..., N}

The above design problem is very challenging to solve even
in a centralized manner (it is NP-hard [22] when W is the sum
throughput). Denote the optimal value of the PDP as Wopt.
Our goal is to develop distributed, fast algorithms to construct
policies that achieve a constant competitive ratio with respect
to Wopt, with the competitive ratio independent of the network
size. We achieve our goal by focusing on policies based on
MISs ΠMIS , among other innovations that will be described
in Section V.

V. DESIGN FRAMEWORK FOR DISTRIBUTED
INTERFERENCE MANAGEMENT

A. Proposed Design Framework

Our proposed design framework (see Fig. 2) consists of the
following four steps.

Step 1. Identification of the interfering neighbors: In
Step 1, each UE-SBS pair identifies the UE-SBS pairs that
strongly interfere with it. Essentially, each pair obtains a local
view (i.e., its neighbors) of the interference graph. Note that an
edge exists between two pairs if at least one of them identifies
the other as a strong interferer.

Specifically, each UE-SBS pair is first informed of other
pairs in the geographical proximity by managing servers (e.g.,
femtocell controllers/gateways) [23] [24] [19] [20]. Then each
pair can decide whether another pair is strongly interfering
based on various rules, such as rules based on Received Signal
Strength (RSS) in the Physical Interference Model [23] [19]
[20], and rules based on the locations in the Protocol Model
[18]. If one pair identifies another pair as strongly interfering,
its decision can be relayed by the managing servers to the
latter, such that any two pairs can reach consensus of whether
there exists an edge between them.

Step 2. Distributed generation of MISs that span all the
UEs: In Step 2, the UE-SBS pairs generate a subset of MISs in
a distributed fashion. It is important that the generated subset
spans all the UEs, namely every UE is contained in at least
one MIS in the subset. Otherwise, some UEs will never be
scheduled.

The key idea is that from a given list of colors, each UE has
to choose a set of colors such that the choice does not conflict
with its neighbors. We should ensure that each UE has at least
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the interfering UE-
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each UE executes Phase 1 and 2 
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(Theorem 1)

Step 3.

Each UE executes the procedure in 

Table I, to arrive at the optimal 

fraction  of time allocated to each 

MIS. (Theorem 2 and 3)

Step 4.

Each UE computes the cycle 

length and the duration of each 

MIS in the cycle.

Figure 2. Steps in the Design Framework.

one color. We call the set of UEs with the same color “a color
class”. In addition, we should also ensure that every color
class is a MIS. This step is composed of two phases: first,
distributed coloring of the interference graph based on [25],
and second, extension of color classes to MISs. All the UEs are
synchronized and carry out their computation simultaneously.
We now explain the algorithm in detail. The pseudo-codes can
be found in Table II and III in the Appendix.

Phase 1. Distributed coloring of the interference graph:
Let H10 be the maximum number of colors given to all SBSs
at the installation and di be the degree (number of neighbors
in the interference graph) of the ith pair. The goal of this
phase is to let each UE-SBS pair i choose one color from
C0
i , {1, ...H}∩{1, .., di+1}, such that no neighbors choose

the same color. The distributed coloring works as follows.
i) At the beginning of each time slot t, each UE i chooses a

color from the set of remaining colors Cti uniformly randomly,
and informs its neighbors of its tentative choice. This infor-
mation can be transmitted through the back-haul network/X2
interface that is used for ICIC [24].

ii) If the tentative choice of a UE does not conflict with any
of its neighbor, then it fixes its color choice and informs the
neighbors of its choice. This UE does not contend for colors
any further in Phase 1. The neighbors delete the color chosen
by i from their lists Ct+1

j
,∀j ∈ N (i), where N (i) is the set

of i’s neighbors.
iii) Otherwise, if there is a conflict, then the UE does not

choose that color and repeats i) and ii) in the next time slot.
There are dc1 log 4

3
Ne+1 time slots in Phase 1, where c1 is

the parameter given by the protocol. The number of time slots
is known to the SBSs at installation. Phase 1 is successful if
all the UEs acquire a color, which implies that the set of color
classes (i.e., the set of UE-SBS pairs with the same color)
spans all the UEs.

Phase 2. Extending color classes to the MISs: Each color
class obtained at the end of Phase 1 is an independent set (IS)
of the graph. In Phase 2, we extend each of these ISs to MISs
and possibly generate additional MISs. After Phase 1, each
UE has chosen one color and deleted some colors from its
list. But there may still be remaining colors in its list that are
not acquired by any of its neighbors. If the UEs can acquire
these remaining colors without conflicting with its neighbors,
then each color class will be a MIS. Phase 2 works as follows.

i) At each time slot in Phase 2, UE i chooses each color from

10The maximum number of colors H should be set to be larger than the
maximum number of UE-SBS pairs interfering with any UE-SBS pair. The
SBSs can determine H according to the deployment scenario. H in general
will also include the number of UEs that use the same SBS who interfere
with each other along with the other neighboring UEs. For example, H can
be 10-15 in an office building with dense deployment of SBSs, and can be
3-5 in a residential area.

the remaining colors in its list independently with probability
c. Each UE i then sends the set of its tentative choices to its
neighboring UEs, and receives their neighbors’ choices.

ii) For any tentative choice of color, if there is a conflict with
at least one neighbor, then that color is not fixed; otherwise,
it is fixed.

iii) At the end of each time slot, each UE deletes its set of
fixed colors from its list, and transmits this set of fixed colors
to its neighbors, who will delete these fixed colors from their
lists as well. Note that a UE deletes a particular color if and
only if the UE itself or some of its neighbors have chosen
this color. Based on this key observation, we can see that if a
color is not in any UE’s list, the set of UEs with this color is
a MIS. If all the UEs have an empty list, then for any color
in the set {1, ...,H}, the set of UEs with this color is a MIS.

There are dc2 logxNe + 1 time slots in Phase 2, where
x = 1

1−(c)H(1−c)H2 , and c2 is the parameter given by the
protocol. The number of time slots is known to the SBSs at
installation. We say that Phase 2 is successful, if it finds H
MISs, or equivalently if all the UEs have an empty list.

Example: We illustrate Step 2 in a network of 4 UE-SBS
pairs, whose interference graph is shown in Fig. 3. At the start,
each UE-SBS pair has a list of 3 colors {Red, Yellow, Green}.
Phase 1 is run for P1 = dc1 log 4

3
5e time slots. At the

end of Phase 1, UE 1 and UE 2 acquire Green and Yellow
respectively, while UEs 3-4 acquire Red. Hence, UE 1 (UE
2) has an empty list, as Green (Yellow) is acquired by itself
and Red, Yellow (Green) by its neighbors. UE 3 (UE 4) has
Green (Yellow) color in its list of remaining colors. At the
end of Phase 1, the Red color class is a MIS, while the
Yellow and Green color classes are not. Phase 2 is run for
P2 = dc2 logx 5e + 1 time slots. UE 3 (UE 4) acquires the
remaining color Green (Yellow). At the end of Phase 2, the
Green and Yellow color classes become MISs too.

The next theorem establishes the high success probability
of Step 2.

Theorem 1. For any interference graph with the maximum
degree ∆ ≤ H − 1, the proposed algorithm in Table II
and III outputs a set of H MISs that span all the UEs in
(dc1 log 4

3
Ne+ dc2 logxNe+ 2) time slots with a probability

no smaller than (1− 1
Nc1−1 )(1− 1

Nc2−1 ), where c1 and c2 are
design parameters that trade-off the run time and the success
probability.

See the Appendix for proof sketches of all our results, and
see the Appendix of the online report [7] for detailed proofs.

Theorem 1 characterizes the performance of our proposed
algorithm, in terms of the run time of the algorithm and the
lower bound of the success probability. When the parameters
c1 and c2 are larger, the lower bound of the success probability
increases at the expense of a longer run time. When the
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Figure 3. Illustration of the distributed generation of MISs in Step 2.

maximum degree of the interference graph is larger, we need
to set a higher H , which results in a longer run time. This
is reasonable, because it is harder to find coloring and MISs
when the number of interfering neighbors is higher. Finally,
we can see that the lower bound of the successful probability
is very high even under smaller c1 and c2, especially if
the number of UEs is large. Note that the exact successful
probability should depend on the probability c in Phase 2,
while the lower bound in Theorem 1 does not. Hence, our
lower bound is robust to different system parameters. Note
also that the interference graph here is a bounded-degree graph
since the maximum degree is bounded by a given constant,
H − 1. The algorithms in [4] [6] (require ordering of the
vertices, work sequentially and have a higher complexity)
can be used to output the MISs spanning all the UEs for
arbitrary graphs. However, we will show in Theorem 5, that the
restriction to bounded-degree graphs is a must to ensure that
the minimum throughput requirement of each UE is satisfied
for any MIS based policy.

Step 3. Distributed computation of the optimal fractions
of time for each MIS: Let the set of MISs generated in Step
2 be {I ′1, ..., I

′

H}. In Step 3, the UE-SBS pairs compute the
fractions of time allocated to each MIS in a distributed manner.

When an MIS is scheduled, the UEs in this MIS transmit
at their maximum power levels, and the other UEs do not
transmit. Define Rki as the instantaneous throughput obtained
by UE i in the MIS I

′

k, which can be calculated as log2(1 +

giT (i)p
I
′
k
i∑N

r=1,r 6=i grT (i)p
I
′
k
r +σ2

T (i)

), where p
I
′
k
i = pmaxi if i ∈ I

′

k and

p
I
′
k
i = 0 otherwise. To determine Rki , the UE needs to know the

total interference it experiences when transmitting in I
′

k. This
can be measured by having an initial cycle of transmissions of
UEs in each MIS in the order of the indices of MISs/colors.

From now on, we assume that the network performance
criterion W (y) is concave in y and is separable, namely
W (y1, ...yN ) =

∑N
i=1Wi(yi). Examples of separable criteria

include weighted sum throughput and proportional fairness.
Our framework can also deal with max-min fairness, although
it is not separable (see the discussion in the Appendix of
the online report [7]). The problem of computing the optimal
fractions of time for the MISs is given as follows:

Coupled Problem (CP)

maxα
∑N
i=1Wi

(∑H
k=1 α

kRki

)
subject to

∑H
k=1 α

kRki ≥ Rmini , ∀i ∈ {1, .., N}∑H
k=1 α

k = 1, αk ≥ 0, ∀k ∈ {1, ..,H}

Each UE i knows only its own utility function Wi and
minimum throughput requirement Rmini . Hence, it cannot
solve the above problem by itself. We will first reformulate
the above problem into a decoupled problem and then show
that the reformulated problem can be solved in a distributed
manner. Let each UE i have a local estimate βki of the
fractions of time allocated to each MIS I

′

k (including those
MISs that UE i does not belong to). We impose an additional
constraint that all the UEs’ local estimates are the same. Note
that this constraint will be satisfied by our solution, and is
not an assumption. Such a constraint is still global, because
any two UEs, even if they are not neighbors, need to have
the same local estimate. Hence, global message exchange
among any pair of UEs is still needed to solve this problem
with local estimates and global constraints11. To avoid global
message exchange, we reformulate the CP into a decoupled
problem (DP) that involves only local coupling among the
neighbors and can be solved with local message exchange
using Alternating Direction Method of Multipliers (ADMM)
[27].

Write βi = (β1
i , ..., β

H
i ) as UE i’s local estimates of

the fractions of time allocated to each MIS, and Ri =
(R1

i , ..., R
H
i ) as UE i’s throughput when each MIS is sched-

uled. Each UE i’s local estimates should be in the polyhedron
Bi , {βi : 1Tβi = 1,βi ≥ 0,βTi Ri ≥ Rmini }, where
()T is the transpose. Let E be the set of edges, where each
edge e = {i, j} is an ordered set of the vertices, i < j that
are directly connected. As we will prove in Theorem 2, in a
connected interference graph12, the requirement that all UEs’
local estimates are the same can be reduced to the requirement
that every UE has the same local estimate as its neighbors,
namely βi = βj for i, j s.t. {i, j} = e, where e ∈ E. To make

11If the UEs could exchange messages globally, i.e. broadcast messages
to all the UEs in the network, and if the network performance criterion is
strictly concave, we could use standard dual decomposition with augmented
Lagrangian in [26] to derive a distributed algorithm. However, in large
networks, the UEs cannot exchange messages globally with other UEs, and the
network performance criterion may not be strictly concave (e.g., the weighted
sum throughput is linear).

12A graph is connected, if any two nodes are connected by a path of edges.
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the problem solvable by ADMM, we rewrite the constraints by
introducing auxiliary variables θkei, where i ∈ e is one endpoint
of the edge. Then the constraint for each edge e = {i, j} can
be rewritten as βki = θkei, −βkj = θkej , θ

k
ei + θkej = 0. Hence,

the auxiliary variable θkei can be interpreted as i’s estimate
of its neighbor j’s estimate βkj . For e = {i, j} define set of
the auxiliary variables Θk

e = {(θei, θej) ∈ R2 : θkei + θkej =
0, −1 ≤ θei ≤ 1,−1 ≤ θej ≤ 1} and let Θk = Πe∈EΘk

e .
Also for each edge e = {i, j}and for each k ∈ {1, ..,H}
define Dk

ei = 1 and Dk
ej = −1. Then the decoupled problem

is given as follows:
Decoupled Problem (DP)

min{βi∈Bi}Ni=1,{θk∈Θk}Hk=1
−
∑N
i=1Wi

(
βTi Ri

)
subject to Dk

eqβ
k
q = θkeq, ∀q ∈ e, ∀e ∈ E, ∀k ∈ {1, ..,H}

Theorem 2: For any connected interference graph, the
coupled problem (CP) is equivalent to the decoupled problem
(DP).

The above theorem shows that the original problem (CP),
which requires global information and global message ex-
change to solve, is transformed into an equivalent problem
(DP), which as we will show, can be solved in a distributed
manner with local message exchange

We denote the optimal solution to the DP by WG
distributed.

We associate with each constraint Dk
eqβ

k
q = θkeq a dual

variable λkeq . The augmented Lagrangian for DP is
Ly
(
{βi}i, {θkeq}k,e,q, {λkeq}k,e,q

)
= −

∑N
i=1Wi(β

T
i Ri) +∑H

k=1

∑
e∈E

∑
q∈e

[
λkeq
(
Dk
eqβ

k
q − θkeq

)
+ y

2

(
Dk
eqβ

k
q − θkeq

)2]
.

In the ADMM procedure (see Table IV in the Appendix),
each UE i solves for its optimal local estimates βi(t) that
maximizes the augmented Lagrangian given the previous dual
variables λkei(t− 1) and auxiliary variables θkei(t− 1) . Then
it updates its dual variable λkei(t) and auxiliary variable θkei(t)
based on its local estimate βki (t) and its neighbor j’s local
estimate βkj (t). This iteration of updating local estimates,
dual variables, and auxiliary variables is repeated P times.
Next, it is shown that this procedure will indeed converge.

Theorem 3: If DP is feasible13, then the ADMM algorithm
in Table IV converges to the optimal value WG

distributed with a
rate of convergence O( 1

P ).
Step 4. Determining the cycle length and transmission

times: At the end of Step 3, all the UEs have a consensus
about the optimal fractions of time allocated to each MIS,
namely β∗i = γ∗ = (γ∗1 , ..., γ

∗
H), ∀i ∈ {1, .., N}. The

MISs transmit in the order of their indices (i.e., {1, ..,H})
in cycles. In each cycle of transmission, MIS I

′

k transmits for⌈
γ∗k

mini∈1,...,N γ∗i
× 10d

⌉
slots, where we multiply by 10d such

that the rounding error is reduced or eliminated in case that
γ∗k

mini∈1,...,N γ∗i
is not an integer.

B. A Motivation Example

Consider a network of 2 picocell base stations (PBS) and
2 femtocell base stations (FBS), each serving one UE. The
network topology is shown in Fig. 4. We assume a path loss

13DP is feasible, if the feasible region resulting from the constraints in DP
is non-empty.
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Figure 4. A heterogeneous network of 2 PBS and 2 FBS and their
corresponding UEs.

model for channel gains, with path loss exponent 4. The
maximum transmit power of each UE is 80 mW, and the
noise power at each SBS is 1.6× 10−3 mW. UEs in different
tiers have different minimum throughput requirements: FUE
(femtocell UE) 1 and FUE 2 in the femtocells require a
minimum throughput 0.4 bits/s/Hz, and PUE (picocell UE)
1 and PUE 2 in the picocells require 0.2 bits/s/Hz. The
interference graph is constructed according to a distance based
threshold rule similar to [18]. Specifically, an edge exists
between two UE-BS pairs if the distance between any pair
of SBSs is less than a threshold, which is set to be 1.2m
here. There are two MISs. MIS 1 consists of FUE 1 and FUE
2, and MIS 2 consists of PUE 1 and PUE 2. We consider
two performance criteria: the max-min fairness and the sum
throughput. We will compare with the following state-or-the-
art policies:

1. Distributed Constant Power Control Policies [8]–[10]:
In these policies, all the UEs choose constant power levels
determined by distributed algorithms utilizing information
(e.g., power levels used by neighbors) made available through
local/global message exchange.

2. Optimal Centralized Constant Power Policies: In these
policies, all the UEs choose constant power levels determined
by a central controller utilizing global information.

3. Distributed MIS STDMA-1 [6] and STDMA-2 [4]:
These policies construct a subset of the MISs of the interfer-
ence graph in a distributed manner and propose fixed schedules
of the MISs. Different works adopt different schedules, and we
differentiate them by referring to them as MIS STDMA-1 [6]
and STDMA-2 [4].

4. Distributed Joint Power Control and Spatial Reuse
[15] [16]: These policies choose one UE from each cell to form
a subset, and schedule these subsets of UEs based on their
channel gains to maximize the sum throughput. The policies
are named power matched scheduling (PMS).

In Table 1, we compare the performance of our proposed
policy with state-of-the-art policies for the same setup as in
Fig. 4. We compute the optimal centralized constant power
control policy by exhaustive search, which serves as the
performance upper bound of the distributed constant power
control policies [8]–[10] centralized constant power control
policies [12]. In PMS policies [15] [16], UEs within the
same cell are scheduled in a time-division multiple access
(TDMA) fashion, and the active UEs in different cells transmit
simultaneously. In this motivating example, there is one UE
in each cell, which will be scheduled to transmit all the
time. Therefore, the PMS policy reduces to a constant power
control policy, and is worse than the optimal centralized
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constant power control policy. We can see that our proposed
policy outperforms all constant power control policies and
distributed PMS policies by at least 375% and 32.8%, in
terms of max-min fairness and sum throughput, respectively.
The significant performance improvement over the constant
power control policies results from the elimination of the high
interference among the users through scheduling MISs. Our
proposed policy also outperforms distributed STDMA policies
by 30%-40%. As we will see in Section VI, the performance
gain is even higher (160%-700%) in realistic deployment
scenarios. Finally, in this motivating example, the proposed
policy achieves the optimal performance of the benchmark
problem defined in Section VI, which is a close approximation
of the original problem (CP).

C. Performance Guarantees for Large Networks and Proper-
ties of Interference Graphs

In this subsection, we provide performance guarantees for
our proposed framework described in Section V-A. Specif-
ically, we prove that the network performance WG

distributed
achieved by the proposed distributed algorithms has a constant
competitive ratio with respect to the optimal value Wopt of
the PDP. Moreover, we prove that the competitive ratio does
not depend on the network size. Our result is strong, because
the solution to PDP needs to be computed by a centralized
controller with global information and with NP complexity,
while our proposed framework allows the UEs to compute the
policy fast in a distributed manner with local information and
local message exchange.

Before characterizing the competitive ratio analytically, we
define some auxiliary variables. Define the upper and lower
bounds on the UEs’ maximum transmit power levels and
throughput requirements as, 0 < pmaxlb ≤ pmaxi ≤ pmaxub ,∀i ∈
{1, ..., N} and, 0 < Rminlb ≤ Rmini ≤ Rminub ,∀i ∈ {1, ..., N}
respectively. Let Dij is the distance between UE i and SBS
j. Define upper and lower bounds on the distance between
any UE and its serving SBS and the noise power at the
SBSs as, 0 < Dlb ≤ DiT (i) ≤ Dub,∀i ∈ {1, ..., N} and,
σ2
lb ≤ σ2

j ≤ σ2
ub,∀j ∈ {1, ...,K} respectively. We assume that

the channel gain is gij = 1
(Dij)np

, where np is the path loss
exponent.

Definition 1 (Weak Non-neighboring Interference): The
interference graph G exhibits ζ Weak Non-neighboring
Interference (ζ-WNI) if for each UE i the maximum
interference from its non-neighbors is bounded, namely∑
j 6∈N (i),j 6=i gjT (i)p

max
j ≤ (2ζ − 1)σ2

ub, ∀i ∈ {1, ..., N}.

Define ∆max =
log2(1+

pmaxlb
(Dub)np2ζσ2

ub

)

Rminub

−1. Then we have the
following theorem for the network performance criterion, sum
throughput14.

Theorem 4: For any connected interference graph, if the
maximum degree ∆ ≤ ∆max and it exhibits ζ-WNI then, our
proposed framework of interference management described in
Section V-A achieves a performance WG

distributed ≥ Γ · Wopt
with a probability no smaller than (1 − 1

Nc1−1 )(1 − 1
Nc2−1 ).

14We can extend this result for weighted sum throughput, with weights
wi = Θ( 1

N
), it is not done to avoid complex notations.

Moreover, the competitive ratio Γ =
Rminub

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
is

independent of the network size.
Note that the analytical expression of competitive ratio,

Γ =
Rminub

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
, does not depend on the size of the

network. Our results are derived under the conditions that the
interference graph has a maximum degree bounded by ∆max,
and that the interference from non-neighbors is bounded (i.e.
ζ−WNI). These conditions do not restrict the size of the
network (for more detail, see the Section V-C of the online
report [7]). In addition, our results hold for any interference
graph that satisfy the conditions in Theorem 4, regardless of
how the graph is constructed.

Both Theorem 1 and 4 restricted the interference graph to be
bounded-degree. We justify our restriction by showing that the
bounded-degree property is necessary to fulfill the minimum
throughput requirements of each UE. Specifically, we prove
that if the maximum degree exceeds some threshold, then no
MIS based policy in ΠMIS (which is a large policy space)
is feasible. Suppose that the interference graph is constructed
based on a distance based threshold rule similar to [18]: an
edge exists between two UE-SBS pairs if and only if the
distance between two SBSs is no greater than Dth. We define
the threshold of the maximum degree as ∆∗ (See the Appendix
for the expression).

Theorem 5: If the maximum degree of the interference
graph ∆ ≥ ∆∗, then any MIS based policy in ΠMIS fails to
satisfy the minimum throughput requirements of the UEs.

The intuition behind Theorem 5 is that, if the degree of
the interference graph is large then there must be a large
number of UE-SBS pairs which interfere with each other
strongly, which makes it impossible to allocate each UE
enough transmission time to satisfy their minimum throughput
requirements simultaneously.

D. Self-Adjusting Mechanism for Dynamic Entry/Exit of UEs

We now describe how the proposed framework can adjust
to dynamic entry/exit by the UEs in the network without
recomputing all the four steps. We allow the UEs to enter
and exit, but number of SBSs is fixed. We only let one UE
enter or leave the network in any time slot.

1. UE leaves the network: Suppose UE i, which was trans-
mitting to SBS T (i), leaves the network. If the UE i was
transmitting in a set of colors Ci, then as soon as it leaves,
these colors can be potentially used by some neighbors, N (i).
SBS T (i) can still be serving other UEs which are still in the
network and transmitting. Then for each color c′ ∈ Ci it first
searches among these UEs that are not already transmitting
in c′ and who also do not have a neighboring UE-SBS pair
which is already transmitting in c′. Let the set of such UEs be
UEc

′

i,left. SBS T (i) allocates color c′ to the UE whose index
is arg maxj∈UEc′i,left

Rc
′

j . In case UEc
′

i,left is empty then that

color, c
′

is left unused.
2. UE enters the network: Suppose a UE i registered with

SBS T (i) enters the network. SBS T (i) creates the list of col-
ors Cvalidi,enter, which are either unused or the UEs transmitting
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Table I
COMPARISONS IN TERMS OF MAX-MIN FAIRNESS & SUM THROUGHPUT CRITERION

Policies Max-min Performance Sum Performance
throughput (bits/s/Hz) Gain % throughput (bits/s/Hz) Gain %

Distributed constant power control [8]–[10] <0.28 >375 % 6.1 32.8 %
Distributed PMS [15], [16] <0.28 >375% 6.1 32.8 %
Optimal centralized constant power control 0.28 375% 6.1 32.8 %
Distributed MIS STDMA-2/1 [4], [6] 0.96 38.5% 6.25 30.0 %
Proposed (Section-V) 1.33 - 8.12 -
Benchmark Problem (BP) (Section- VI) 1.33 - 8.12 -

in the colors are transmitting at more than their minimum
throughput requirement. SBS T (i) allocates some portions
from the fractions of time allocated to the colors in Cvalidi,enter,
to satisfy UE-i’s throughput requirement to the best possible
extent, making sure that the minimum throughput requirements
of UEs transmitting to SBS T (i) in Cvalidi,enter are not violated.
If the requirement of UE-i is not satisfied then, SBS T (i)
requests the neighboring UE-SBSs to announce the set of
colors, which are either not being used or in which the UEs
being served are operating at more than their throughput
requirement. From the list of colors received, T (i) chooses
those in which UE i can transmit without conflicting with
neighbors. For each of these colors it sends the request (portion
of time needed) to the neighbors. SBS T (i) and the neighbors
go through a phase of communication (more detail in the
Section V-D of online report [7]), based on which SBS T (i)
can decide how much time UE-i can transmit in these colors.

E. Extensions

In our model, UEs operate in the same frequency band.
However, our methodology can be extended to scenarios where
UEs operate in different frequency channels (frequency reuse)
and transmit at the same time. In this case, the problem is to
find the optimal frequency allocation with the same objective
function and constraints as in PDP. To solve this problem,
the first two steps of the framework remain the same. In
Step 3, the UEs compute distributedly the optimal fractions of
bandwidth to be allocated to each MIS. This step is equivalent
to computing the optimal fraction of time allocated to each
MIS as in our current formulation. In Step 4, the UEs compute
the number of frequency channels allocated to each MIS based
on the bandwidth allocation.

Note that we do not implement beamforming, although
beamforming can be used in conjunction with our policy.
If the UEs transmitting to the same SBS cooperate to do
beamforming, we can delete the edge between them in the
interference graph, and use the new interference graph in the
scenario with beamforming.

VI. ILLUSTRATIVE RESULTS

In this section, we evaluate our proposed policy under a
variety of scenarios with different levels of interference, large
numbers of UEs, different performance criteria, time-varying
channel conditions, and dynamic entry and exit of UEs.

We compare our policy with the optimal centralized
constant power control policy, the distributed MIS STDMA-
1 [6] and STDMA-2 [4], distributed PMS [15] [16], in

1 2 3 4 5

Figure 5. Different interference graphs for the 3 x 3 BS grid

terms of sum throughput and max-min fairness. We do
not separately compare with distributed/centralized constant
power control policies in [8]–[10] [12], because their
performance is upper bounded by the optimal centralized
power control. Since it is difficult to compute the solution
to the NP-hard PDP, we define a benchmark problem,
where we restrict our search to policies in which a UE
either transmits at its maximum power level or does not
transmit.The space of such policies can be writtenas ΠBC =
{π = (π1, ..., πN ) : πi : Z+ → {0, pmaxi } ∀i ∈ {1, .., N}}.
The policy space ΠBC is a subset of all policies Π and is a
superset of MIS based policies ΠMIS . In other words, the
benchmark problem has the same objective and constraints
as PDP; the only difference is the policy space to search .
Hence, the benchmark problem is a close approximation of
the PDP. Note that the benchmark problem is also NP-hard
(see the Appendix of the online report [7]).

A. Performance under time-varying channel conditions

Consider a 3x3 square grid of 9 SBSs with the minimum
distance between any two SBSs being d = 4.7m. Each SBS
serves one UE, who has a maximum power of 1000 mW
and a minimum throughput requirement of 0.45 bits/s/Hz. The
UEs and the SBSs are in two parallel horizontal hyperplanes,
and each SBS is vertically above its UE with a distance of√

10m. Then the distance from UE i to another SBS j is
Dij =

√
10 + (DBS

ij )2 , where DBS
ij is the distance between

SBSs i and j. The channel gain from UE i to SBS j is a
product of path loss and Rayleigh fading fij ∼ Rayleigh(β) ,
namely gij = 1

(Dij)2
fij . The density function of Rayleigh(β)

is v(z) = z
β2 e
− z2

2β2 for z ≥ 0, and v(z) = 0 for z < 0. The
SBSs identify neighbors using a distance based rule with the
threshold distance as in Section V-C with Dth = 7m. Note
that different thresholds lead to different interference graphs,
and hence different performance, which will be discussed
next. Although, we use a distance based threshold rule, our
framework is general and does not rely on a particular rule.
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Figure 6. Comparison of the proposed policy with state of the art under
different interference strength and time-varying channel conditions

The resulting interference graph for this setting is graph 3
shown in Fig. 5.

At the beginning, the UE-SBS pairs generate the set of MISs
(Step 2 of the design framework in Section V), and compute
the optimal fractions of time allocated to each MIS (Step 3).
In our simulation, we assume a block fading model [28] and
the fading changes every 100 time slots independently. To
reduce complexity, the UEs do not recompute the interference
graph and the MISs, but will recompute the optimal fractions
of time under the new channel gains every 100 time slots.
In Fig. 6, we compare the performance of the proposed
policy with state of the art policies under different variances
β of Rayleigh fading. We do not plot the performance of
distributed PMS for this scenario since it is upper bounded
by optimal centralized constant power control (because there
is one UE per cell). We do not plot the distributed MIS
STDMA -1 either, when the performance criterion is average
throughput per UE (i.e., sum throughput

N ), because it cannot satisfy
the minimum throughput constraints. From Fig. 6, we can see
that in terms of both average throughput and max-min fairness,
our proposed policy achieves large performance gain (up to
88%) over existing policies, and achieves performance close
to the benchmark (as close as 9%).
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Figure 7. a) Comparison of max-min fairness under different grid sizes, b)
Sample paths of sum throughput under dynamic entry/exit of UEs in the
network
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5 m 5 m

Figure 8. Illustration of setup with 3 rooms.

Selecting the Optimal Interference Graph : For different
values of d, there can be five possible interference graphs,
which are shown in Fig. 5. In Fig. 7 a) we show that as the
grid size d decreases (d = 4.7m, d = 3.7m and d = 2.5m),
the levels of interference from the adjacent UEs increases, and
as a result, the interference graph with higher degrees perform
better (as d decreases, the optimal graph changes from graph
3 to graph 1) .

B. Performance scaling in large networks

Consider the uplink of a femtocell network in a building
with 12 rooms adjacent to each other. Fig. 8 illustrates 3 of
the 12 rooms with 5 UEs in each room. For simplicity, we
consider a 2-dimensional geometry. Each room has a length
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Figure 9. Comparison of max-min fairness and average throughput per UE
against state of the art for large networks

of 20 meters. In each room, there are P uniformly spaced
UEs, and one SBS installed on the left wall of the room at a
height of 2m. The distance from the left wall to the first UE,
as well as the distance between two adjacent UEs in a room,
is 20

(1+P ) meters. Based on the path loss model in [29], the
channel gain from each SBS i to a UE j is 1

(Dij)2∆nij , where
∆ = 100.25 is the coefficient representing the loss from the
wall, and nij is the number of walls between UE i and SBS
j. Each UE has a maximum transmit power level of 50 mW, a
minimum throughput requirement of Rmini = 0.025 bits/s/Hz,
and a noise power level of 10−11mW at its receiver. Here, we
consider that the UEs use a distance based threshold rule as
in Section V-B with Dth = 30 m. This results in interference
graphs which connects all the UE-SBS pairs within the room
and in the adjacent rooms. We vary the number P of UEs
in each room from 5 to 9 and compare the performance in
Fig. 9. Note that the optimal centralized constant power policy
cannot satisfy the feasibility conditions for any number of
UEs in each room. Hence, only the performance of distributed
MIS STDMA-1,2 and distributed PMS is shown in Fig. 9. We
can see that under both criteria, the performance gain of our
proposed policy is significant (from 160% to 700%). Note that
since the number of UEs is large, it is impossible to solve the
benchmark problem (which is NP-hard) is not possible.

C. Self-adjusting mechanism for dynamic entry/exit of the UEs

The self-adjusting mechanism proposed in Section V-D is
aimed to provide incoming UEs with the maximum possible

throughput without affecting the incumbent UEs, and to reuse
the time slots left vacant by exiting UEs efficiently. Consider
the same setup as in Section VI-B with 3 rooms and a
maximum of P = 3 UEs in each room. Each UE has
a maximum transmit power of 1000 mW and a minimum
throughput requirement of 0.25 bits/s/Hz.

We assume that at a given time only one UE either enters or
leaves the network. In Fig. 7 b) we show different sample paths
of the sum throughput under different entry and exit processes.
In the legends (i.e., Rmintol), we show the minimum through-
put achieved at any point in the sample path. We repeated the
same procedure 100 times. We can see that the self-adjusting
mechanism works well by guaranteeing a worst-case minimum
throughput requirement of 0.23 bits/s/Hz, which is just 0.02
bits/s/Hz below the original requirement more than 80% of
the time.

VII. CONCLUSION

We proposed a design framework for distributed interference
management in large-scale, heterogeneous networks, which are
composed of different types of cells (e.g. femtocell, picocell),
have different number of UEs in each cell, and have UEs
with different minimum throughput requirements and channel
conditions. Our framework allows each UE to have only local
knowledge about the network and communicate only with
its interfering neighbors. There are two key steps in our
framework. First, we propose a novel distributed algorithm
for the UEs to generate a set of MISs that span all the
UEs. The distributed algorithm for generating MISs requires
O(logN) steps (which is much faster than state-of-the-art)
before it converges to the set of MISs with a high probabil-
ity. Second, we reformulate the problem of determining the
optimal fractions of time allocated to the MISs in a novel
manner such that the optimal solution can be determined by
a distributed algorithm based on ADMM. Importantly, we
prove that under wide range of conditions, the proposed policy
can achieve a constant competitive ratio with respect to the
policy design problem which is NP-hard. Moreover, we show
that our framework can adjust to UEs entering or leaving the
network. Our simulation results show that the proposed policy
can achieve large performance gains (160%-700%).

APPENDIX A
PROOF OF THEOREM 1

The analysis of the success probability of Phase 1 is similar
to [25] and is omitted here. For Phase 2, we first show that
if every UE i’s list C1ni of remaining colors is empty, then
Phase 2 has produced H MISs that span all the UEs. Let us
assume otherwise, namely all the UEs’ lists are empty, but
there exists some color h ∈ {1, ...,H} such that I

′

h is not a
MIS. I

′

h has to be an IS (see [7]). Since I
′

h is not maximal,
there exists at least one UE j 6∈ I ′hthat is not a neighbor of
any UE in I

′

h. SinceUE j’s list is empty and j 6∈ I
′

h, UE j
must have deleted color h because at least one of its neighbors
k ∈ N (j) acquired it. However, this means that k ∈ I ′h, which
is contradictory to the fact that j is not a neighbor of any UE
in I

′

h. Next, we derive the success probability of Phase 2. Let
Un be the number of UEs that have a non-empty list, and let
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Table II
GENERATING MISS IN A DISTRIBUTED MANNER, ALGORITHM FOR UE i

Phase 1- Initialization: Txitent = φ, Txifinal = φ, tentative and final choice of UE i, RxN (i)
tent = φ ,RxN (i)

final = φ tentative
and final choice made by the neighbors, C0

i = {1, ..., H} ∩ {1, .., di + 1} the current list of subset of available colors,
Ci = φ, list of colors used by i, Fi

colored = φ, C10i = {1, ..., H},the current list of all available colors
for n = 0 to dc1 log 4

3
Ne

Txitent = φ, Txifinal = φ
if(Fi

colored = φ)
Txitent = rand{Cn

i }, rand represents randomly selecting a color and informing the neighbors about it.
RxN (i)

tent = {Txktent,∀k ∈ N (i)}
If(Txitent 6= RxN (i)

tent (j), ∀j ∈ N (i)), here UE-i checks if there is a conflict with any of the neighbor’s choice
Txifinal = Txitent, Ci = {Txifinal},if there is no conflict then UE-i transmits its final color choice to the neighbors,

else
Txifinal = φ

end
end
RxN (i)

final = {Txkfinal, ∀k ∈ N (i)}
Cn+1

i = Cn
i ∩ {RxN (i)

final ∪ Txifinal}
c, C1n+1

i = C1ni ∩ {RxN (i)
final ∪ Txifinal}

c

if(Txifinal 6= φ)
Fi

colored = 1
end
end

Table III
PHASE 2 OF THE DISTRIBUTED MIS GENERATION

Phase 2-Initialization: Txset
tent,i = φ,Txset

final,i = φ, the set of tentative and final colors chosen by i,Rxset
tent,i = φ,

Rxset
final,i = φ, the set of tentative and final colors chosen that are received from the neighbors, x = 1

1−(c)H (1−c)H
2

for n = dc1 log 4
3
Ne+ 1 to dc1 log 4

3
Ne+ dc2 logxNe+ 1

Txset
tent,i = φ,Txset

final,i = φ,
for m = 1 to |C1ni |
with probability c, Txset

tent,i(m) = C1ni (m), randomly selecting and informing the neighbors about tentative choice
with probability 1− c, Txset

tent,i(m) = φ
end

Rxset
tent,i = ∪k∈N (i)Txset

tent,k, set of tentative color choices of the neighbors of i
for r = 1 to |Txset

tent,i|
If(Txset

tent,i(r) 6= Rxset
tent,i(j) ∀j ∈ N (i) )

Txset
final,i(r) = Txset

tent,i(r)

else
Txset

final,i(r) = φ

end
Ci = Ci ∪ Txset

final,i
Rxset

final,i = ∪k∈N (i)Txset
final,k, set of final color choices of the neighbors of i

C1n+1
i = C1ni ∩ {Rxset

final,i ∪ Txset
final,i}

c

end

Tn(Un) be the number of time slots needed before all the
UEs have an empty list. Consider an arbitrary UE i with a
non-empty list at time n. The probability that it will have an
empty list at time n + 1 is no smaller than the probability
that it picks all the remaining colors and none of its neighbors
picks any of them, which is c|C1ni |

∏
j∈N (i)(1−c)

|C1nj |. Since
|C1ni | ≤ H for all i andN (i) ≤ ∆ < H , the above probability
is lower bounded by cH

[
(1− c)H

]H
= cH(1 − c)H2

.From
this, we get E(Un+1) ≤

(
1− cH(1− c)H2

)
Un , 1

xU
n and

Tn(Un) = 1 + Tn(Un+1). Assume the worst case where
Phase 2 starts with all N UEs having non-empty lists. From
[30], we get P (Tn(N) ≥ dc2 logxNe) ≤ 1

Nc2−1 . This gives
the lower bound on the success probability of Phase 2. �

APPENDIX B
PROOF OF THEOREM 2

We first prove that the coupled problem (CP) is equivalent
to the following problem:

Global Primal Problem (GPP)

max
{βki }i,,k

N∑
i=1

Wi(

H∑
k=1

βki R
k
i )

subject to
H∑
k=1

βki R
k
i ≥ Rmini ,

H∑
k=1

βki = 1, ∀i

βki = βkl , ∀i 6= l,∀k ∈ {1, ...,H}, βki ≥ 0, ∀i,∀k

In the GPP, we let each UE have a local estimate of the
fractions αk in the CP, and require all the UEs’ estimates to be
the same. We show that there is a one-to-one mapping between



13

Table IV
ADMM UPDATE ALGORITHM FOR UE i

Initialization: arbitrary βi(0) ∈ Bi, θkei(0) such that θk ∈ Θk , and λkei(0) = 0, ∀k ∈ {1, ..., H},∀e such that i ∈ e
For t = 0 to P − 1

βi(t+ 1) = arg minβi∈Bi −
∑N

i=1Wi(β
T
i Ri) +

∑H
k=1

∑
e∈E

∑
q∈e

[
λkeq

(
Dk

eqβ
k
q − θkeq

)
+ y

2

(
Dk

eqβ
k
q − θkeq

)2]
βi(t+ 1) is transmitted to all of its neighbors in N (i).
λkei(t) is transmitted to its neighbor connected with edge e, ∀k ∈ {1, ..., H} and ∀e such that i ∈ e
Update ∀k ∈ {1, ..., H} and ∀e such that i ∈ e
λkei(t+ 1) = 1

2
(λkei(t) + λkej(t))− y

2
(Dk

eiβ
k
i (t+ 1) +Dk

ejβ
k
j (t+ 1)), where j is the other endpoint of e.

θkei(t+ 1) = 1
y

(λkei(t+ 1)− λke,i(t)) +Dk
eiβ

k
i (t+ 1)

end

the optimal solution β∗ = (β∗1 , ...,β
∗
N ) to the GPP and the

optimal solution α∗ to the CP. Suppose β∗ = (β∗1 , ...,β
∗
N )

is the optimal solution to the GPP.From the constraints, we
have β∗i = β∗j ) component-wise ∀i, j ∈ {1, ..., N}. Let
α∗ = β∗. Then α∗ satisfies the constraints in the CP and
hence is a feasible solution to the CP. Assume that the
optimal solution to the CP is α′ 6= α∗. Then we can define
β′i = α′ ∀i ∈ {1, ..., N}, such that the objective of the GPP
at β′ is higher than that at β∗, which contradicts the fact
that β∗ is the optimal solution to the GPP. Similarly, we
can uniquely define the optimal solution to the GPP from the
optimal solution to the CP. Finally, note that if either of CP
or GPP is infeasible, then the other problem is infeasible as
well. Hence, the CP is equivalent to the GPP.

Under connected graphs, the requirements that all the UEs’
local estimates are the same are equivalent to the requirements
that all the neighboring UEs’ local estimates are the same.
With the addition of the auxiliary variables θkei, we get the
equivalent problem (DP). �

APPENDIX C
PROOF OF THEOREM 3

According to [27], the ADMM algorithm converges with
rate O(1/P ) if the DP is feasible and if the feasible set is
compact. Since Bi and Θk are all closed and bounded polyhe-
drons, the feasible set is compact. �

APPENDIX D
PROOF OF THEOREM 4

To obtain the competitive ratio, we will derive a lower bound
of the performance of our proposed distributed policy and an
upper bound of the optimal network performance. To obtain
the lower bound of the performance of our policy, we first
show that our policy is feasible by constructing a feasible
solution. In Step 2, the maximum number of colors used is
∆+1, since each UE selects colors from subset of {1, ...,∆+
1}∩{1, ..., di+1}. After Step 2, we get ∆+1 MISs that span
all the UEs. If the fraction of time assigned to each of these
∆+1 MISs is Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
, then such an assignment is

feasible since ∆ ≤ ∆max =⇒ (∆+1)
Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
)
≤

1. Since the network exhibits ζ−WNI, the minimum in-
stantaneous throughput that can be obtained by UE i is
log2(1 +

pmaxi

(DiT (i))np2ζσ2
ub

), and the minimum instantaneous

throughput of any UE is log2(1 +
pmaxlb

(Dub)np2ζσ2
ub

). Thus,
each UE i’s throughput requirement is satisfied, because

Rminub

log2(1+
pmax
lb

(Dub)np2ζσ2
ub

)
log2(1 +

pmaxi

(DiT (i))np2ζσ2
ub

) ≥ Rminub . In

other words, there exists a feasible solution. Since our policy
is the optimal feasible solution, it is feasible, too. Based
on the minimum throughput requirements Rminub , we get the
lower bound NRminub for the sum throughput obtained by our
proposed policy. The upper bound on the optimal network
performance is obtained by summing up the maximum in-
stantaneous throughput log2(1 +

pmaxub

(Dlb)npσ2
lb

) of all the UEs.
Based on the lower bound of our policy and the upper bound
of the optimal network performance„ we get the competitive
ratio Γ =

Rminub

log2(1+
pmax
ub

(Dlb)npσ2
)

. �

APPENDIX E
PROOF OF THEOREM 5

Let ∆∗ = 6η with η = d
log2(1+ 1

(Dlb)npσ2
lb

pmaxub )

Rminlb

e. We
assume that the interference graph is constructed using a
distance threshold rule (Section V-B). Since each UE’s mini-
mum throughput requirement is at least Rminlb , and since the
maximum instantaneous throughput of any UE is log2(1 +

pmaxub

(Dlb)npσ2
lb

), each UE needs at least Rminlb

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
fraction

of time. First, we need to show that if there exists a clique
(subset of UEs which are mutually connected) in the interfer-
ence graph of size X > η, then the minimum throughput con-
straints cannot be satisfied. For such a clique, any MIS based
scheduling policy will allocate non-overlapping fractions of
time to each UE in the clique, which leads to a total fraction
X

Rminlb

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
of time allocated to this clique. However,

since X > η, we have X Rminlb

log2(1+
pmax
ub

(Dlb)npσ2
lb

)
> 1, which leads

to infeasibility. Next, if ∆ ≥∆∗, we will have at least one
clique satisfying this condition. If ∆ ≥∆∗ there exists a UE i
with a degree di ≥ 6η, which implies that there exists at least
6η SBSs within a radius of Dth around SBS T (i). This circle
around SBS T (i) can be partitioned into 6 sectors subtending
π
3 at the center. The distance between any two points located
in the sector is no larger than Dth (See [7]). Hence, any two
points in the sector are connected. If there are at least 6η
SBSs in 6 sectors, then there are more than η SBSs in at least
one sector (due to Pigeonhole principle), which implies the
existence of a clique of size X > η. �
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