Online Appendix for RELEAF: An Algorithm

for Learning and Exploiting Relevance

Cem Tekin, Member, IEEE, Mihaela van der Schaar, Fellow, IEEE

Abstract

This online appendix is composed of two sections. In the first section we give the proof of Theorem

5 in [1]. The second section is an extensive version of the numerical results given in Section V of [1].

I. PROOF OF THEOREM 5
A. Preliminaries

Let A := | A|. We first define a sequence of events which will be used in the analysis of the regret of
RELEAF. For p € Pr(q) let w(a,p) = ,u(a,ac;}(a) (p)), where TR (a) (p) = {7} (pi) }ier(a) such that
x}(p;) is the type 4 context at the geometric center of p. Let W (R (a)) be the set of Dyy-tuple of types
such that R(a) C w, for every w € W(R(a)). We have |W(R(a))| = (23_]|—7|27(€a()a|)|) For a Dy -tuple of
types w, let D(w, D’) be the set of D’'-tuple of types whose elements are from the set D_,,.

For any w € W(R(a)) and j € D(w, D), let

. _(w,) 3
INACC; (a, w,) := {Irt((P @) = (0 o)) > 5LV De iIET;gé)S(PR(a),t)}a

be the event that the sample mean reward of action a corresponding to the 2D, -tuple of types (w, j) is
inaccurate for action a. Let
ACCy(a) = | (| INACCi(a,w,j)¢
weW (R(a)) jeD(w,Drel)
be the event that sample mean reward estimates of action a corresponding to all tuples (w,j) w €
W(R(a)) and j € D(w, D) are accurate. Consider ¢t € 7(T'). Let
WNGy(a):= | {w ¢Rel(a)}
weW (R(a))
be the event that some D -tuple that contains R(a) is not in the set of relevant tuples of types for action

a. Let WNG; := (J,c 4 WNG¢(a), and CORR7 := ﬂteT(T) WNGtC , be the event that all D -tuples of

types that contain the set of relevant contexts of each action is an element of the set of candidate relevant
D, -tuples types corresponding to that action at all exploitation steps.
We first prove several lemmas related to Theorem 5. The next lemma gives a lower bound on the

probability of CORR7p.

Lemma 1. For RELEAF, for all a € A, t € 7(T), we have P(INACCt(a,w,j)) < ﬁ‘iﬁ. for all
w € W(R(a)), j € D(w, D,,), and P(CORRy) > 1 —§ for any T.

Proof: For t € 7(T), we have U; = (), hence
2log(tAD*/9)
(L mingeq(q) s(pie))?’
for all a € A, g € Q(t). Due to the Similarity Assumption, since for all « € A, w € W(R(a)) and

s°9(q,a) >

(w,5)

J € D(w, Dyer) the rewards in 7, ™ ((Pyy 4> Pj 1), @) are sampled from distributions with mean between
(@, Pra).) — 2 maxier(a) $(pic)s 7@, Pr(a) 1) + 2P max;cr () 5(pi)). using a Chernoff bound
we get

P(INACC,(a,w, j))

2log(tAD*/4)
< 2exp (—2 L+/Dye max s(pit))? -
(el iR (a) (z,t)) (Lmlnie(w,j)S(pi,t))Q

< 25/(AD*th).

We have

WNG(a) | U INACCi(a)“.
weW (R(a)) j€D(w,Drer)

D—R(a

2D 1772((1))’ which is less than or equal to D* =

Since the number of 2Dy -tuples that contain R(a) is (
(Qg;il) since 1 < R(a) < Dy, we have
P(WNG;(a)) < 25/(At"),
and
P(WNG;) < 26/t

This implies that

P(CORRY) <) P(WNGy)
ter(T)

25 =20
<2 sl s
er(T) t=3
|
Lemma 2. When CORRy happens we have for all t € 7(T)
e (@) (pcf (a) ya) — p(a, R) +)| < 3L/ Dy max s(pit) —i—maxs(pzt +2L+\/D rel max s(pit)-
£ @ i€e.(a) R (a)
Proof: From Lemma 1, CORRy happens when
_ 3L~/ Dy
72 (Pap > @) — (0, Pr(a))] < Tng;g(x)s(pm)
for all a € A, w € W(R(a)), t € 7(T). Since
L+/Dxg
(@ TRa)1) = 7@ Pra))| < —5— Zg;gé)S(pm)
by the Similarity Assumption, we have
‘ﬁfw(pw,tv CL) - /’L(a’7 xR(a),t)’ < 2L/ Dyl 12?();) 8(pi7t)7 (A.1)

foralla € A, w € W(R(a)), t € 7(T). Consider ¢ (a). Since it is chosen from Rel;(a) as the Dy -tuple

of types with the minimum variation, we have on the event CORR

gét(a)’k)((péf,(a),upk,t), a) — rzECt(a))((Pc, t?th a)] <3Ly/ Drei max s(pit),

|7
1€¢:(a)
for all g,k € D(éi(a), Dret). For any w € W(R(a)), let g(w, é(a)) be a 2D, -tuple such that for all
i € wand j € ¢&la), i,j € g(w,é(a)). The existence of at least one such 2D, -tuple of types is

guaranteed since w and ¢ (a) are both Dy -tuples of types. Hence, we have for any w € W(R(a))

178 (a2 @) — 74 (D ()4 @)
—(wzk) —(ét(a)vj)

< _ R .

= keD(w,Dra)§ €D(é: (a).Dia) {\7} (Puts i), @) = 7 ((Pey(a)0Ps0); “)’}
_(w,k) _g(w,é(a))

S kGD(’w Dre]]jli.ljaé)%)(ét (a)yDrel) {‘rt ((pw7t7 pk7t),) - rt (pg(w7ét (a)),tj a)|

D Dy 00) = 7D (P 0023)5) |
< 3L+/ Dy glax) s(pit) + max s(pit)) (A.2)

Combining (A.1) and (A.2), we get

‘ftét(a)(Pat(a),tv a) — p(a, TR(q)¢)| < 3L/ Dy ma(x)s(plt) —l—maxs(pzt)) + 2L/ Dyq ma(x)s (pit)-

1€¢(a

B. Regret bound for exploitations

Since for t € 7(T), ay = arg max,¢ 4 Fft(a)(pét(a)jt, a), using the result of Lemma 2, we conclude that

pe(en) > pr(a™ (1)) — 6L/ Dyey ma(X)S(pzt) +maXS (pit)) — AL/ Drel nax s (pit),

i€¢(a

Thus, the regret in exploitation steps is bounded above by

6L/ Do Z max spzt +maxs p“g)) + 4L/ Dyg Z max splt

ZeCt a

< 16L+/ D,e Z maxs p”

ter(T)

<16Ly/Dra Y Y s(pin)

ter(T) i€D

glGLD@Igg > s(pie)

ter(T)

We know that as time goes on RELEAF uses partitions with smaller and smaller intervals, which reduces
the regret in exploitations. In order to bound the regret in exploitations for any sequence of context
arrivals, we assume a worst case scenario, where context vectors arrive such that at each ¢, the active
interval that contains the context of each type has the maximum possible length. This happens when for
each type ¢ contexts arrive in a way that all level [intervals are split to level [+ 1 intervals, before any
arrivals to these level [+ 1 intervals happen, for all I = 0,1,2,.... This way it is guaranteed that the
length of the interval that contains the context for each ¢ € 7(7T) is maximized. Let ..« be the level of

the maximum level interval in P;(7"). For the worst case context arrivals we must have

lmax—1

D 227 < T =l < 14 logy T/ (1 + p),
1=0
since otherwise maximum level hypercube will have level larger than [,,«. Hence, we have

16LD/Dermax | D s(pis)
ter(T)

1+log, T/(14p)

< 16LD+/ Dy Z olgrlg—l

1+log, T/ 14p)

= 16LD+/ Dy Z 2Pl

< 16L D/ Dyy22rTP/(1H0)

Hence, we have R;(T) = O(T?/(149)) with probability 1 — §.

C. Regret bound for explorations

Recall that time ¢ is an exploitation step only if &; = (). In order for this to happen we need

e (q)(q, a) > D, for all g € Q;(t). The number of distinct 2D, -tuples of types is (23 E]). Whenever

action a is explored, all the counters for these (2331) type tuples are updated for the 2D, -tuples of
intervals that contain types of contexts present at time ¢, i.e. ¢ € ;. Now consider a hypothetical
scenario in which instead of updating the counters of all g € ()¢, the counter of only one of the randomly
selected 2D, -tuple of intervals is updated. Clearly, the exploration regret of this hypothetical scenario
upper bounds the exploration regret of the original scenario. In this scenario for any q € s, we have
2log(tAD*/4)
(L min,ey(q) 5(pi))?

We fix a 2D, -tuple of types j = (j1,J2,---,J2D,,), and analyze the worst-case regret due to explo-

D
2Drel

59 (g,a) < +1.

ration of this tuple of types, which is denoted by Ro (7). Since there are () of such tuples of types,
an upper bound on the exploration regret is (zgrE])RoJ- (T).

Let lax be the maximum possible level for an active interval for type ¢ by time 7. We must have

bmas=L 901 < T, which implies that lyay < 14 logy T/p. Let v = 1+ logy T/ p.

First, we will consider the exploration regret incurred in all configurations where type j,’s intervals
has levels I, for n = 1,2,...,2D, such that I; < Iy <... <lyp . We denote this ordering by j* and
the exploration regret in this ordering by R j«(T'). There are (2D)! different configurations in which
the orderings of levels of the intervals of the types are different.

Let z = 2Dy. Consider the tuple of intervals (pj:,...,pj;, 1). The exploration regret for this tuple of

intervals is bounded by
(co+1) (210g(TAD*/8)/(27212) +1).
Hence, we have

Roj+(T) < (co +1)

Y Y Y

2log(TAD*/¢)

A la L.

DILDI WD IETE ==L IS
=0 lo=ly l.=l.1

Y Y
<(cot+1) Y 250 > 2 0(T¥rlogT)

lz:lz—l lz—lzlz—2
’Y Y
<(cot+1) Y 2= > 2=20(TYrlogT)

lz:lz—l lsz.’:lsz

= O(T?+2Pa)/P10g T).

Since Ro(T) < (25)(2Dye1)!Ro. - (T'), we have Ro(T) = O(T?+2De)/P1og T).

rel

D. Balancing the regret due to exploitations and explorations
From the results of the previous subsections we have with probability 1 — &, R;(T) = O(T*/(1+0))
and Ro(T) = O(T(3+2Dw)/p) Since R;(T) is increasing in p and Ro(T) is decreasing in p there is a

unique p for which they are equal. This unique solution is

92+ 2D, + \/4D2 4 16D, + 12

rel

p= .
4+ 2l)rel + \/4Dr2el + 16l)rel + 12

II. APPENDIX TO THE NUMERICAL RESULTS IN [1]
A. Datasets
The datasets we have used in [1] are available at http://medianetlab.ee.ucla.edu/JSTSPdatasets/.

Breast Cancer (BC) [2]: The dataset consists of features extracted from the images of fine needle aspirate
(FNA) of breast mass, that gives information about the size, shape, uniformity, etc., of the cells. Each
instance of the dataset contains 10 attributes: clump thickness, cell size uniformity, cell shape uniformity,
marginal adhesion, single epi cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses and class.
The class attribute takes two values “malignant” or “benign”. We take the other 9 attributes as the context
of the instance and normalized them to lie in [0, 1]. This normalization is done in the following way:
maximum and minimum context values in the dataset are found. Minimum context value is subtracted
from all contexts, then the result is divided by the difference between the maximum and minimum values
such that they lie in [0, 1]. The prediction action belongs to the set {benign, malignant}. Reward is 1
when the prediction is correct and 0 otherwise. 50000 instances are created by duplication of the data and
are randomly sequenced. Analysis of the data shows that 69% of the instances are labeled as “benign”
while the rest is “labeled” as malignant. Instances arrive to the learner sequentially in an online fashion.
When an instance comes, the learning algorithm selects an action based on its context.

Network Intrusion (NI) [2]: The network intrusion dataset from UCI archive [2] consists of a series
of TCP connection records, labeled either as normal connections or as attacks. The data consists of 42
features. The names of the features can be found in http://kdd.ics.uci.edu/databases/kddcup99/kddcup.
names. The set of features that are used in numerical results in [1] is correspond to the features in
columns [1: 6 23:30] of the 42 dimensional dataset plus the feature corresponding to the label of the

previous instance which is located at the 42nd column of the dataset. Taken features are normalized to lie

in [0, 1]. The prediction action belongs to the set {attack, noattack}. Reward is 1 when the prediction
is correct and O otherwise.

Network Intrusion with All Features (NI-AF) [2]: Same as NI but all 41 features available in the
dataset except the label are included in the context vector.

Webpage Recommendation (WR) [6]: This dataset contains webpage recommendations of Yahoo!
Front Page which is an Internet news website. Each instance of this dataset consists of (i) IDs of the
recommended items and their features, (ii) context vector of the user, and (iii) user click information. For
a recommended webpage (item), reward is 1 if the user clicks on the item and O otherwise. The context
vector for each user is generated by mapping a higher dimensional set of features of the user including
features such as gender, age, purchase history, etc. to [0, 1]°. The details of this mapping is given in [6].

We select 5 items and consider 7' = 10000 user arrivals.

B. Learning algorithms

Next we briefly summarize the algorithms considered in our evaluation:

RELEAF: Our algorithm whose pseudocode is given in Fig. 2 in [1] with control numbers D; ; divided
by 5000 to reduce the number of explorations.!

RELEAF-ALL: Same as RELEAF except that reward of the selected action is observed in every time
slot. This version is useful when the reward of the selected action can be observed with no cost.

RELEAF-FO: Same as RELEAF except that it observes the rewards of all actions instead of the
reward of the selected action. We refer to this version of our algorithm as RELEAF with full observation
(RELEAF-FO). This algorithm is used in datasets BC and NI, in which the actions are predictions, and
when the label is received, estimated rewards of all predictions can be updated. Unless otherwise specified
RELEAF, RELEAF-ALL and RELEAF-FO are run with input parameters L = 1, § = 0.01, e = 1,
p=2+2V2.

Contextual zooming (CZ) [7]: This algorithm adaptively creates balls over the joint action and context
space, calculates an index for each ball based on the history of selections of that ball, and at each time
slot selects an action according to the ball with the highest index that contains a current action-context
pair. The calculation of index involves adding an uncertainty term on top of the sample mean rewards

that depends on the number of times a specific ball is selected and the radius of the ball. For CZ, the

!The theoretical bounds are proven to hold for worst-case context vector arrivals and reward distributions. In practice, the

relevance relation and the order of action rewards are identified correctly with much less explorations.

Algorithm Base classifiersPrior training|Online Learning|Active learning
AM [9] required no no no
Adaboost [10] required required no no
Online Adaboost [10], Blum [12] required required yes no
CZ [7], Hybrid-¢ [8] , LinUCB [6]| not required | not required yes no
RELEAF not required | not required yes yes
TABLE I

PROPERTIES OF RELEAF, ENSEMBLE LEARNING METHODS AND OTHER CONTEXTUAL BANDIT ALGORITHMS.

Lipschitz constant L transforms the radius of the ball into the uncertainty about the expected reward
caused by the size of the ball. Unless otherwise specified CZ runs with L = 0.5.

Hybrid-¢ [8]: This algorithm is the contextual version of e-greedy, which forms context-dependent
sample mean rewards for the actions by considering the history of observations and decisions for groups
of contexts that are similar to each other.

LinUCB [6]: This algorithm computes an index for each action by assuming that the expected reward
of an action is a linear combination of different types of contexts. The action with the highest index is
selected at each time step.

Ensemble Learning Methods Average Majority (AM) [9], Adaboost [10], Online Adaboost [11] and
Blum’s Variant of Weighted Majority (Blum) [12]: The goal of ensemble learning is to create a strong
(high accuracy) classifier by combining predictions of base classifiers. Hence all these methods require
base classifiers (trained a priori) that produce predictions (or actions) based on the context vector.

AM simply follows the prediction of the majority of the classifiers and does not perform active learning.
Adaboost is trained a priori with 1500 instances, whose labels are used to compute the weight vector.
Its weight vector is fixed during the test phase (it is not learning online); hence no active learning is
performed during the test phase. In contrast, Online Adaboost always receives the true label at the end
of each time slot. It uses a time window of 1000 past observations to retrain its weight vector. Similar to
Online Adaboost, Blum also learns its weight vector online. The key differences between our algorithm

and the methods that we compare against are given in Table L.

C. Breast cancer simulations

In this section we compare the performance of RELEAF, RELEAF-ALL and RELEAF-FO with other
learning methods described in Section II-B. For the ensemble learning methods, there are 6 logistic

regression base classifiers, each trained with a different set of 10 instances.

Performance

Algorithm |error %|missed %l|false % number of active learning
label observations |cost for cp = 1
AM 8.22 17.20 4.09 |0 (no online learning) 0
Adaboost 4.60 3,82 4.97 (1500 (to train weights) 1500
Online Adaboost| 4.68 4.07 4.95 |all labels are observed 50000

Blum 11.18 | 27.12 3.86 |all labels are observed 50000
CZ 3.15 4.24 2.89 |all labels are observed 50000
Hybrid-e 8.83 11.77 | 7.48 |all labels are observed 50000
LinUCB 10.67 7.27 12.22 |all labels are observed 50000

RELEAF 1.88 1.93 1.86 2630 2630
RELEAF-ALL | 1.24 1.19 1.36 |all labels are observed 50000
RELEAF-FO 1.68 1.34 1.82 2630 2630

TABLE II

COMPARISON OF RELEAF WITH ENSEMBLE LEARNING METHODS AND OTHER CONTEXTUAL BANDIT ALGORITHMS FOR

THE BREAST CANCER DATASET.

The simulation results are given in Table II. Since RELEAF-FO updates the reward of both predictions
after the label is received, it achieves lower error rates compared to RELEAF. In this setting it is natural
to assume that the reward of both predictions are updated, because observing the label gives information
about which prediction is correct. RELEAF-ALL which observes all the labels has the lowest error rate.

Among the ensemble learning schemes Adaboost and Online Adaboost performs the best, however,
their error rates are more than two times higher than the error rate of RELEAF and about three times
higher than the error rate of RELEAF-FO. Although the number of actively obtained labels (explorations)
for RELEAF and RELEAF-FO are higher than the initial training samples used to train Adaboost; neither
RELEAF nor RELEAF-FO has a predetermined exploration size as Adaboost. This is especially beneficial
when time horizon of interest is unknown or prediction performance is desired to be uniformly good
over all time instances. CZ is the best among the other multi-armed bandit algorithms with 3.15% error,

but worse than RELEAF which has 1.88% error.

D. Network intrusion simulations (15 dimensional context vector)

In this section we compare the performance of RELEAF, RELEAF-ALL and RELEAF-FO with other
learning methods described in Section II-B. For the ensemble learning methods, the base classifiers are

logistic regression classifiers, each trained with 5000 different instances from the NI. Comparison of

10

performances in terms of the error rate is given in Table III. We see that RELEAF-FO has the lowest
error rate at 0.68%, more than two times better than any of the ensemble learning methods. All the
ensemble learning methods we compare against use classifiers to make predictions, and these classifiers
require a priori training. In contrast, RELEAF and RELEAF-FO do not require any a priori training, learn
online and require only a small number of label observations (i.e. they can perform active learning).
CZ performs very poorly in this simulation because its learning rate is sensitive to Lipschitz constant
that is given as an input to the algorithm which we set equal to 0.5 (the same values is used in all
simulations). LinUCB performs the best in terms of the overall rate of error, but if we consider the error
rate of RELEAF in exploitations it is better than LinUCB. This highlights the finding of Theorem 1 in
[1] regarding RELEAF, which states that highly suboptimal actions are not chosen in exploitations with

a high probability.

Algorithm |error %|exploitation| number of
error % |label observations
AM 3.07 N/A 0
Adaboost 3.1 N/A 1500
Online 2.25 N/A all
Adaboost
Blum 1.64 N/A all
CZ 53 N/A all
Hybrid-¢ 8.8 N/A all
LinUCB 0.27 N/A all
RELEAF 1.19 0.24 398
RELEAF-ALL| 1.07 0.22 all
RELEAF-FO | 0.68 0.24 229
TABLE III

COMPARISON OF THE ERROR RATES OF RELEAF-FO WITH ENSEMBLE LEARNING METHODS FOR NETWORK INTRUSION

DATASET.

E. Network intrusion simulations (41 dimensional context vector)

In this section we compare the performance of RELEAF and CZ for different L parameter values for
the NI-AF dataset.

Table IV compares the performance of RELEAF and CZ as a function of the input parameter L. We

see that RELEAF performs significantly better than CZ. Our numerical results illustrate that the error

11

percentage of RELEAF is decreasing in the L value, while the error percentage of RELEAF in exploitation
slots (calculated only over the time slots in which RELEAF exploits) is increasing in the L value. This
result is consistent with the observation that the number of explorations of RELEAF decreases with L.
Error percentage in exploitation slots is increasing because the number of exploitation slots increases
with L, while the accuracy of the sample mean estimates formed in exploration slots decreases with L.
However, the error percentage (over all time slots) decreases. This is because the decrease in the error
percentage due to exploiting more is larger than the increase in the error percentage due to exploiting
with more inaccurate sample mean reward estimates. We see that the lowest error percentage for CZ is

achieved when L = 1. for this dataset.

L| CZ |RELEAF RELEAF RELEAF| RELEAF |RELEAF
Error %| Error % [Missed %| False % |Exploit error %|Exploit %

0.1 24.22 | 17.56 10.74 23.57 0 58.70

0.5| 61.68 | 5.30 2.53 1.74 0.34 89.12

1] 2389 | 392 2.07 5.55 0.43 92.33
TABLE IV

PERFORMANCE OF RELEAF AND CZ AS A FUNCTION OF INPUT PARAMETER L FOR THE NI-AF DATASET.

F. Webpage recommendation simulations

In this dataset only the click behavior of the user for the recommended item is observed. Moreover, it
is reasonable to assume that the click behavior feedback is always available (no costly observations). The
ensemble learning methods require availability of experts recommending actions and full reward feedback
including the rewards of the actions that are not selected, to update the weights of the experts, hence they
are not suitable for this dataset. In contrast, multi-armed bandit methods are more suitable since only the
feedback about the reward of the chosen action is required. Hence we only compare RELEAF-ALL, CZ,
LinUCB and Hybrid-¢ for this dataset. We compare the click through rates (CTRs), i.e., average number
of times the recommended item is clicked, of all algorithms in Table V. We observe that RELEAF-ALL
has the highest CTR.

G. Identifying the relevant types

When RELEAF exploits at time ¢, it identifies a relevant type ¢;(a) for every action a € A and selects

the arm with the highest sample mean reward according to its estimated relevant type. Hence, the value

12

Abbreviation |CTR
Cz 3.79
Hybrid-¢ |6.41
LinUCB |6.06
RELEAF-ALL|6.62

TABLE V
COMPARISON OF THE CLICK THROUGH RATES (CTRS) OF RELEAF, CZ, HYBRID-¢ AND LINUCB FOR WEBPAGE

RECOMMENDATION DATASET.

of the context of the relevant type plays an important role on how well RELEAF performs.

For each dataset we choose a single action and for each chosen action show in Table VI the percentage
of times a type is selected as the type that is relevant to that action in the time slots that RELEAF
exploits. Since there are many types, only the 4 of the types which are selected as the relevant type
for the corresponding action highest number of times are shown. For instance, for BC in 70% of the
exploitation slots the type identified as the type relevant to action “predict benign” comes from a 3
element subset of the set of 9 types in the data. Similarly for NI the type identified as the type relevant
to action “predict attack” comes from a 2 element subset of the set of 15 types in the data for 85% of
the exploitation slots.

This information provided by RELEAF can be used to identify the relevance relation that is present in
a dataset. For instance, consider the NI dataset. Since the type that is assigned as the estimated relevant
type most of the times is only assigned in 45% of the exploitation slots, for the NI dataset we should
have D, > 1. However, since the pair of types that are assigned as the estimated relevant type most of
the times is assigned in 85% of the exploitation slots, we can conclude that approximately D, < 2 for

the NI dataset.

REFERENCES

[1] C. Tekin and M. van der Schaar, “RELEAF: An algorithm for learning and exploiting relevance,” submitted to IEEE JSTSP,
2014.

[2] K. Bache and M. Lichman, “UCI machine learning repository,” http://archive.ics.uci.edu/ml, University of California, Irvine,
School of Information and Computer Sciences, 2013.

[3] J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data streams: Analysis and practice,” in Proc. IEEE
ICDM, 2007, pp. 143-152.

[4] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Integrating novel class detection with classification for
concept-drifting data streams,” in Proc. ECML PKDD, 2009, pp. 79-94.

(3]

(6]

(7]
(8]

(9]

(10]

(11]

[12]

13

highest rates of relevance

highest |2nd highest|3rd highest|4th highest
type-rate| type-rate | type-rate | type-rate
BC |predict “benign”| 3-27% 1-22% 7-21% 2-12%
NI |predict “attack”| 1-45% | 15-40% 2-7% 4-5%
WR recommend | 3-46% 1-44% 2-8% 4-1%
webpage a
WR recommend | 2-57% 1-32% 5-9% 4-1%
webpage b

Dataset Action

TABLE VI
AVERAGE NUMBER OF TIMES RELEAF IDENTIFIED A TYPE AS THE TYPE RELEVANT TO THE SPECIFIED ACTION IN

EXPLOITATIONS.

L. L. Minku and Y. Xin, “DDD: A new ensemble approach for dealing with concept drift,” vol. 24, no. 4, pp. 619-633,
2012.

L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit approach to personalized news article recommenda-
tion,” in Proceedings of the 19th International Conference on World Wide Web. ACM, 2010, pp. 661-670.

A. Slivkins, “Contextual bandits with similarity information,” in 24th Annual Conference On Learning Theory, 2011.

D. Bouneffouf, A. Bouzeghoub, and A. L. Gancarski, “Hybrid-c-greedy for mobile context-aware recommender system,”
in Advances in Knowledge Discovery and Data Mining. Springer, 2012, pp. 468—-479.

J. Gao, W. Fan, and J. Han, “On appropriate assumptions to mine data streams: Analysis and practice,” in Seventh IEEE
International Conference on Data Mining (ICDM), 2007, pp. 143-152.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in
Computational Learning Theory. Springer, 1995, pp. 23-37.

W. Fan, S. J. Stolfo, and J. Zhang, “The application of adaboost for distributed, scalable and on-line learning,” in Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, 1999, pp. 362-366.

A. Blum, “Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain,”

Machine Learning, vol. 26, no. 1, pp. 5-23, 1997.

