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Abstract—We investigate the problem of estimating the causal
effect of a treatment on individual subjects from observational
data; this is a central problem in various application domains,
including healthcare, social sciences, and online advertising.
Within the Neyman-Rubin potential outcomes model, we use the
Kullback-Leibler (KL) divergence between the estimated and
true distributions as a measure of accuracy of the estimate, and
we define the information rate of the Bayesian causal inference
procedure as the (asymptotic equivalence class of the) expected
value of the KL divergence between the estimated and true
distributions as a function of the number of samples. Using Fano’s
method, we establish a fundamental limit on the information
rate that can be achieved by any Bayesian estimator, and show
that this fundamental limit is independent of the selection bias
in the observational data. We characterize the Bayesian priors
on the potential (factual and counterfactual) outcomes that
achieve the optimal information rate. As a consequence, we show
that a particular class of priors that have been widely used
in the causal inference literature cannot achieve the optimal
information rate. On the other hand, a broader class of priors
can achieve the optimal information rate. We go on to propose
a prior adaptation procedure (which we call the information-
based empirical Bayes procedure) that optimizes the Bayesian
prior by maximizing an information-theoretic criterion on the
recovered causal effects rather than maximizing the marginal
likelihood of the observed (factual) data. Building on our analysis,
we construct an information-optimal Bayesian causal inference
algorithm. This algorithm embeds the potential outcomes in
a vector-valued reproducing kernel Hilbert space (vvRKHS), and
uses a multi-task Gaussian process prior over that space to
infer the individualized causal effects. We show that for such
a prior, the proposed information-based empirical Bayes method
adapts the smoothness of the multi-task Gaussian process to the
true smoothness of the causal effect function by balancing a
tradeoff between the factual bias and the counterfactual variance.
We conduct experiments on a well-known real-world dataset and
show that our model significantly outperforms the state-of-the-art
causal inference models.

Index Terms—Bayesian nonparametrics, causal effect infer-
ence, Gaussian processes, multitask learning, selection bias.

I. INTRODUCTION

THE problem of estimating the individualized causal effect
of a particular intervention from observational data is

central in many application domains and research fields,
including public health and healthcare [1], computational
advertising [2], and social sciences [3]. With the increasing

A. Alaa is with the Department of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, CA, 90095, USA (e-mail:
ahmedmalaa@ucla.edu).

M. van der Schaar is with the Department of Engineering Science,
University of Oxford, Parks Road, Oxford, OX1 3PJ, UK (e-mail: mi-
haela.vanderschaar@eng.ox.ac.uk).

Section VII of this work was presented in part at the thirty-first annual
conference on Neural Information Processing Systems (NIPS), 2017.

availability of data in all these domains, machine learning
algorithms can be used to obtain estimates of the effect of
an intervention, an action, or a treatment on individuals given
their features and traits. For instance, using observational
electronic health record data1, machine learning-based recom-
mender system can learn the individual-level causal effects
of treatments currently deployed in clinical practice and help
clinicians refine their current treatment policies [4]. There is
a growing interest in using machine learning methods to infer
the individualized causal effects of medical treatments; this
interest manifests in recent initiatives such as STRATOS [4],
which focuses on guiding observational medical research, in
addition to various recent works on causal effect inference by
the machine learning community [5]–[10].

The problem of estimating individual-level causal effects
is usually formulated within the classical potential outcomes
framework, developed by Neyman and Rubin [11], [12]. In
this framework, every subject (individual) in the observational
dataset possesses two “potential outcomes”: the subject’s out-
come under the application of the treatment, and the subject’s
outcome when no treatment is applied. The treatment effect is
the difference between the two potential outcomes, but since
we only observe the “factual” outcome for a specific treatment
assignment, and never observe the corresponding “counter-
factual” outcome, we never observe any samples of the true
treatment effect in an observational dataset. This is what
makes the problem of causal inference fundamentally different
from standard supervised learning (regression). Moreover, the
policy by which treatments are assigned to subjects induces a
selection bias in the observational data, creating a discrepancy
in the feature distributions for the treated and control patient
groups, which makes the problem even harder. Many of the
classical works on causal inference have focused on the sim-
pler problem of estimating average treatment effects, where
unbiased estimators based on propensity score weighting were
developed to alleviate the impact of selection bias on the causal
estimands (see [13] and the references therein).

While more recent works have developed machine learning
algorithms for estimating individualized treatment effects from
observational data in the past few years [2], [5], [8], [14]–
[19], the inference machinery built in most of these works
seem to be rather ad-hoc. The causal inference problem entails
a richer set of modeling choices and decisions compared to
that of the standard supervised learning (regression) problem,
which includes deciding what model to use, how to model the
treatment assignment variables in the observational data, and
how to handle selection bias, etc. In order to properly address

1https://www.healthit.gov/sites/default/files/briefs/
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all these modeling choices, one needs to understand the
fundamental limits of performance in causal effect estimation
problems, and how different modeling choices impact the
achievable performance.

In this paper, we establish the fundamental limits on the
amount of information that a learning algorithm can gather
about the causal effect of an intervention given an observa-
tional data sample. We also provide guidelines for building
proper causal inference models that “do not leave any infor-
mation on the table” because of poor modeling choices. A
summary of our results is provided in the following Section.

II. SUMMARY OF THE RESULTS

We address the individualized causal effect estimation prob-
lem on the basis of the Neyman-Rubin potential outcomes
model [11], [12]. We focus on Bayesian nonparametric learn-
ing algorithms, as they are immune to model mis-specification,
and can learn highly heterogeneous response functions that
one would expect to encounter in datasets with medical or
social outcomes [3], [20]. In Section IV, we introduce the
notion of information rate as a measure for the quality of
Bayesian nonparametric learning of the individualized causal
effects. The information rate is defined in terms of a measure
of the Kullback-Leibler divergence between the true and
posterior distributions for the causal effect. In Theorem 1,
we establish the equivalence between Bayesian information
rates and frequentist estimation rate. In the rest of the paper,
we characterize: (1) the optimal information rates that can be
achieved by any Bayesian nonparametric learning algorithm,
and (2) the nature of the priors that would give rise to “infor-
mationally optimal” Bayesian nonparametric causal inference
procedure.

In Section V, we establish the fundamental limit on the in-
formation rate that can be achieved by any Bayesian causal in-
ference procedure using an information-theoretic lower bound
based on Fano’s method. The optimal information rate is a
property of the function classes to which the potential out-
comes belong, and is independent of the inference algorithm.
We show that the optimal information rate for causal inference
is governed by the “rougher” of the two potential outcomes
functions. We also show that the optimal information rates for
causal inference are insensitive to selection bias (Theorem 2).

In Section VI, we characterize the Bayesian priors that
achieve the optimal rate. We show that the most common
modeling choice adopted in the literature, which is to augment
the treatment assignment variable to the feature space, leads
to priors that are suboptimal in terms of the achievable rate
(Theorem 3). We show that informationally optimal priors are
ones that place a probability distribution over a vector-valued
function space, where the function space has its smoothness
matching the rougher of the two potential outcomes functions.
Since the true smoothness parameter of the potential outcomes
functions is generally unknown a priori, we propose a prior
adaptation procedure, called the information-based empirical
Bayes procedure, which optimizes the Bayesian prior by
maximizing an information-theoretic criterion on the recovered
causal effects rather than maximizing the marginal likelihood
of the observed (factual) data.

We conclude the paper by building an information-optimal
Bayesian causal inference algorithm that is based on our analy-
sis. The inference procedure embeds the potential outcomes in
a vector-valued reproducing kernel Hilbert space (vvRKHS),
and uses a multi-task Gaussian process prior (with a Matérn
kernel) over that space to infer the individualized causal ef-
fects. We show that for such a prior, the proposed information-
based empirical Bayes method exhibits an insightful factual
bias and counterfactual variance decomposition. Experiments
conducted on a standard dataset that is used for benchmarking
causal inference models show that our model significantly
outperforms the state-of-the-art.

III. RELATED WORK

We conduct our analysis within the potential outcomes
framework developed by Neyman and Rubin [11], [12]. The
earliest works on estimating causal effects have focused on
the problem of obtaining unbiased estimates for the aver-
age treatment effects using observational samples. The most
common well-known estimator for the average causal effect
of a treatment is the propensity score weighting estimator,
which simply removes the bias introduced by selection bias
by giving weights to different samples that are inversely
proportional to their propensity scores [13]. More recently, the
machine learning community has also developed estimators
for the average treatment effects that borrows ideas from
representation learning, i.e. see for instance the work in [9]. In
this paper, we focus on the individual, rather than the average
causal effect estimation problem.

To the best of our knowledge, non of the previous works
have attempted to characterize the limits of learning causal
effects in either the frequentist or Bayesian setups. Instead,
most previous works on causal effect inference have focused
on model development, and various algorithms have been
recently developed for estimating individualized treatment
effects from observational data, mostly based on either tree-
based methods [7], [8], [16], or deep learning methods [14],
[15]. Most of the models that were previously developed
for estimating causal effects relied on regression models
that treat the treatment assignment variables (i.e. whether
or not the intervention was applied to the subject) as an
extended dimension in the feature space. Examples of such
models include Bayesian additive regression trees (BART)
[8], causal forests [7], balanced counterfactual regression [18],
causal multivariate additive regression splines (MARS) [19],
propensity-dropout networks [15], or random forests [21].
In all these methods, augmenting the treatment assignment
variable to the feature space introduces a mismatch between
the training and testing distribution (i.e. covariate shift induced
by the selection bias [18]). The different methods followed
different approaches for handling the selection bias: causal
forests use estimates of the propensity score for deriving a tree
splitting rule that attempts to balance the treated and control
populations, propensity-dropout networks use larger dropout
regularization for training points with very high or very low
propensity scores, whereas balanced counterfactual regression
uses deep neural networks to learn a balanced representation
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(i.e. a feature transformation) that tries to alleviate the effect
of the selection bias. Bayesian methods, like BART, do not
address selection bias since the Bayesian posterior naturally in-
corporates uncertainty in regions of poor overlap in the feature
space. As we show later in Sections VI and VIII, our analysis
and experimental results indicated that, by augmenting the
treatment assignment variable to the feature space, all these
methods achieve a suboptimal information rate.

Our analysis is related to a long strand of literature that
studied frequentist (minimax) estimation rates, or posterior
contraction rates in standard regression problems [22]–[26].
In Theorem 2, we show that the optimal information rate
for causal inference has the same form as the optimal min-
imax estimation rate obtained by Stone in [25] for standard
nonparametric regression problems, when the true regression
function is set to be the rougher of the two potential outcomes
functions. Our analysis for the achievable information rates for
Gaussian process priors uses the results by van Zanten and van
der Vaart in [27].

IV. BAYESIAN NONPARAMETRIC CAUSAL INFERENCE
FROM OBSERVATIONAL DATA

In this section, we provide a general description for the
Neyman-Rubin causal model considered in this paper (Subsec-
tion IV-A), and present the Bayesian nonparametric inference
framework under study (Subsection IV-B).

A. The Neyman-Rubin Causal Model

Consider a population of subjects with each subject i
possessing a d-dimensional feature Xi ∈ X . An intervention is
applied to some subjects in the population: subject i’s response
to the intervention is a random variable denoted by Y

(1)
i ,

whereas the subject’s natural response when no intervention
is applied is denoted by Y

(0)
i . The two random variables,

Y
(1)
i , Y

(0)
i ∈ R, are known as the potential outcomes. The

causal effect of the intervention (treatment) on subject i is
characterized through the difference between the two (random)
potential outcomes (Y

(1)
i − Y

(0)
i ) |Xi = x, and is generally

assumed to be dependent on the subject’s features Xi = x.
Hence, we define the individualized treatment effect (ITE) for
a subject i with a feature Xi = x as

T (x) = E
[
Y

(1)
i − Y

(0)
i

∣∣∣ Xi = x
]
. (1)

Our goal is to estimate the function T (x) from an observa-
tional dataset Dn, which comprises n independent samples
of the random tuple {Xi, ωi, Y

(ωi)
i }, where ωi ∈ {0, 1} is

an intervention assignment indicator that indicates whether
or not subject i has received the intervention (treatment)
under consideration. The outcomes Y

(ωi)
i and Y

(1−ωi)
i are

known in the literature as the factual and the counterfactual
outcomes, respectively [18], [28]. Intervention assignments
generally depend on the subjects’ features, i.e. ωi ⊥̸⊥ Xi.
This dependence is quantified via the conditional distribution
P(ωi = 1|Xi = x), also known as the propensity score of
subject i [13], [11]. In the rest of this paper, we denote the
propensity score of a feature point x as γ(x).

The observational dataset Dn = {Xi, ωi, Y
(ωi)
i }ni=1 is

drawn from a joint density dP(Xi, ωi, Y
(0)
i , Y

(1)
i ), with a

probability space (Ω,F ,P) that supports the following stan-
dard conditions [11], [12]:

• Condition 1 (unconfoundedness): Treatment assignment
decisions are independent of the outcomes given the
subject’s features, i.e. (Y (0)

i , Y
(1)
i )⊥⊥ ωi |Xi.

• Condition 2 (overlap): Every subject has a non-zero
chance of receiving the treatment, and treatment assign-
ment decisions are non-deterministic, i.e. 0 < γ(x) < 1.

B. Bayesian Nonparametric Causal Inference

Throughout this paper, we consider the following signal-in-
white-noise random design regression model for the potential
outcomes:

Y
(ω)
i = fω(Xi) + ϵi,ω, ω ∈ {0, 1}, (2)

where ϵi,ω ∼ N (0, σ2
ω) is a Gaussian noise variable. It follows

from (2) that E[Y (ω)
i |Xi = x] = fω(x), and hence the ITE

is given by T (x) = f1(x) − f0(x). The functions f1(x) and
f0(x) correspond to the response surfaces over the subjects’
feature space with and without the intervention; the difference
between these two surfaces correspond to the individualized
effect of the intervention. We assume that X is a compact
metric space (e.g. bounded, closed sets in Rd), and that the
true regression function fω : X → R, ω ∈ {0, 1}, lives in a
space of “smooth” or “regular” functions Fαω , where αω is
a smoothness (or regularity) parameter. This roughly means
that fω is αω-differentiable; precise definitions for αω-regular
function classes will be provided in subsequent Sections.

A Bayesian procedure for estimating the ITE function
entails specifying a prior distribution Π over the response
surfaces f1(x) and f0(x), which in turn induces a prior over
T (x). The nonparametric nature of inference follows from the
fact that Π is a prior over functions, and hence the estimation
problem involves an infinite-dimensional parameter space. For
a given prior Π, the Bayesian inference procedure views the
observational dataset Dn as being sampled according to the
following generative model:

f0, f1 ∼ Π, Xi ∼ dP(Xi = x)

ωi |Xi = x ∼ Bernoulli(γ(x))

Y
(ωi)
i | f0, f1, ωi ∼ N (fωi(x), σ

2
ωi
), i = 1, . . ., n. (3)

Since we are interested in estimating an underlying true
ITE function T (x), we will analyze the Bayesian causal
inference procedure within the so-called frequentist setup,
which assumes that the subjects’ outcomes {Y (ωi)

i }ni=1 are
generated according to the model in (3) for a given true (and
fixed) regression functions f0(x) and f1(x). That is, in the
next Subsection, we will assess the quality of a Bayesian
inference procedure by quantifying the amount of information
the posterior distribution dΠn(T | Dn) = dΠn(f1 − f0 | Dn)
has about the true ITE function T . This type of analysis is
sometimes referred to as the “Frequentist-Bayes” analysis [29].
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C. Information Rates

How much information about the true causal effect function
T (.) is conveyed in the posterior dΠn(T | Dn)? A natural mea-
sure of the “informational quality” of a posterior dΠn(T | Dn)
is the information-theoretic criterion due to Barron [30], which
quantifies the quality of a posterior via the Kullback-Leibler
(KL) divergence between the posterior and true distributions.
In that sense, the quality (or informativeness) of the posterior
dΠn(T | Dn) at a feature point x is given by the KL divergence
between the posterior distribution at x, dΠn(T (x) | Dn), and
the true distribution of (Y (1) − Y (0)) |X = x. The overall
quality of a posterior is thus quantified by marginalizing the
pointwise KL divergence over the feature space X . For a
prior Π, true responses f0 and f1, propensity function γ, and
observational datasets of size n, the expected KL risk is:

Dn(Π; f0, f1, γ) = Ex [EDn
[DKL (P (x) ∥QDn

(x)) ] ] , (4)

where DKL(.∥.) is the KL divergence2, P (x) is the true dis-
tribution of T (x), i.e. P (x) = dP(Y (1) − Y (0) |X = x), and
QDn(x) is the posterior distribution of T (x), given by:

QDn(x) = dΠn(Y
(1) − Y (0) |X = x,Dn)

(⋆)
= dΠn(T (x) +N (0, σ2

0 + σ2
1) | Dn),

(∗)
=

∫
N (T (x), σ2

0 + σ2
1) dΠn(T (x) | Dn), (5)

where steps (⋆) and (∗) in (5) follow from the sampling
model in (3). The expected KL risk Dn in (4) marginalizes
the pointwise KL divergence DKL(P (x) ∥QDn(x)) over
the distribution of the observational dataset Dn (generated
according to (3)), and the feature distribution dP(X = x).
Variants of the expected KL risk in (4) have been widely
used in the analysis of nonparametric regression models,
usually in the form of (cumulative) Cesàro averages of the
pointwise KL divergence at certain points in the feature space
[27], [30], [32], [33]. Assuming posterior consistency, the
(asymptotic) dependence of Dn(Π; f0, f1, γ) on n reflects the
rate by which the posterior dΠn(T | Dn) “sandwiches” the
true ITE function T (x) everywhere in X . An efficient causal
inference procedure would exhibit a rapidly decaying Dn:
this motivates the definition of an “information rate”.

Definition 1. (Information Rate) We say that the information
rate of a Bayesian causal inference procedure is In, for a
sequence In → 0, if Dn(Π; f0, f1, γ) is Θ(In).

Note that In is the equivalence class of all sequences that
have the same asymptotic rate of convergence. In the rest of
this paper, we use the notation In(Π; f0, f1, γ) to denote the
information rate achieved by a prior Π in a causal inference
problem instance described by the tuple (f0, f1, γ). The
notion of an “information rate” for a Bayesian causal effect
inference procedure is closely connected to the frequentist
estimation rate (with respect to the L2 loss) with T (.) as the

2The KL divergence between probability measures P and Q is given
by DKL(P∥Q) =

∫
log(dP/dQ)dP [31]. The existence of the Radon-

Nikodym derivative dP
dQn

in (4) is guaranteed since P and Q are mutually
absolutely continuous.

estimand [30], [34], [35]. The following Theorem establishes
such a connection.

Theorem 1. Let In(Π; f0, f1, γ) be the information rate of a
given Bayesian causal inference procedure, then we have that

EDn

[ ∥∥EΠ [T | Dn ]− T
∥∥2
2

]
≤ 2(σ2

0 + σ2
1) · In(Π; f0, f1, γ),

where ∥.∥22 is the L2(P)-norm with respect to the feature
distribution, i.e. ∥f∥22 =

∫
f2(x)dP(X = x).

Proof. Recall from (4) that Dn is given by

Dn(Π; f0, f1, γ) = Ex [EDn [DKL (P (x) ∥QDn(x)) ] ] .

Based on (5), DKL (P (x) ∥QDn(x) ) can be written as

DKL

(
P (x)

∥∥∥∥ ∫ N (T (x), σ2
0 + σ2

1) dΠn(T (x) | Dn)

)
,

which by the concavity of the KL divergence in its second
argument, and using Jensen’s inequality, is bounded below by

DKL

(
P (x)

∥∥N (
EΠ[T (x) | Dn ], σ

2
0 + σ2

1

))
.

From the regression model in (2), we know that P (x) =
dP(Y (1) − Y (0) |X = x) ∼ N (T (x), σ2

0 + σ2
1), and hence

KL divergence above can be written as

DKL

(
N (T (x), σ2

0 + σ2
1)
∥∥N (

EΠ[T (x) | Dn ], σ
2
0 + σ2

1

))
,

which is given by 1
2(σ2

0+σ2
1)

|EΠ[T (x) | Dn ]− T (x) |2 since
DKL(N (µ0, σ

2)∥N (µ1, σ
2)) = 1

σ2 |µ1 − µ0|2 [31]. Hence,
the expected KL risk is bounded below as follows

Dn(Π; f0, f1, γ) ≥ EDn

[
Ex

[
|EΠ[T (x) | Dn ]− T (x) |2

2(σ2
0 + σ2

1)

]]
,

=
1

2(σ2
0 + σ2

1)
EDn

[
∥EΠ[T | Dn ]− T ∥22

]
,

for all n ∈ N+.

Theorem 1 says that the information rate of causal inference
upper bounds the rate of convergence of the L2(P) risk of
the sequence of estimates T̂n induced by the posterior mean∫
TdΠn(T | Dn). The L2(P) risk ∥EΠ[T | Dn ] − T ∥22 was

dubbed the precision in estimating heterogeneous effects
(PEHE) by Hill in [8], and is the most commonly used
metric for evaluating causal inference model [8], [18], [21],
[28], [36]. Theorem 1 tells us that the PEHE is O(In),
and hence inference procedures with good information rates
should also exhibit fast convergence for the PEHE. Thus, the
asymptotic behavior of In(Π; f0, f1, γ) is revealing of both
the informational quality of the Bayesian posterior, as well as
the convergence rates of frequentist loss functions.

V. OPTIMAL INFORMATION RATES FOR
BAYESIAN CAUSAL INFERENCE

In this Section, we establish a fundamental limit on the
information rate that can be achieved by any sequence of pos-
teriors dΠn(T | Dn) for a given causal inference problem. Let
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the achievable information rate for a given prior Π and func-
tion classes Fα0 and Fα1 , denoted by In(Π;Fα0 ,Fα1 , γ), be
the rate obtained by taking the supremum of the information
rate over functions in Fα0 and Fα1 . This is a quantity that
depends only on the prior but not on the specific realizations
of f0 and f1. The optimal information rate is defined to be the
maximum achievable information rate by any possible prior,
and is denote by I∗n(Fα0 ,Fα1 , γ). While the information rate
In(Π; f0, f1, γ) characterizes a particular instance of a causal
inference problem with (f0, f1, γ) and a given Bayesian prior
Π, the optimal information rate I∗n(Fα0 ,Fα1 , γ) is an abstract
(prior-independent) measure of the “information capacity” or
the “hardness” of a class of causal inference problems (cor-
responding to response surfaces in Fα0 and Fα1). Intuitively,
one expects that the limit on the achievable information rate
will be higher for smooth (regular) response surfaces and for
propensity functions that are close to 0.5 everywhere in X .
Whether or not the Bayesian inference procedure achieves the
optimal information rate will depend on the prior Π. In the
next Section, we will investigate different design choices for
the prior Π, and characterize the “capacity-achieving” priors
that achieve the optimal information rate.

Before presenting the main result of this Section (Theorem
2), we first give a formal definition for the optimal information
rate. We say that g(n) is a lower information rate if there is
a positive constant c such that

lim
n→∞

inf
Π

sup
f0,f1

P(In(Π; f0, f1, γ) ≥ c · g(n)) = 1, (6)

where the infimum is taken over all possible priors, and the
supremum is taken over the function spaces Fα0 and Fα1 . We
say that g(n) is an achievable information rate if there exists
a prior Π and a positive constant c such that

lim
n→∞

sup
f0,f1

P(In(Π; f0, f1, γ) ≥ c · g(n)) = 0. (7)

The sequence I∗n(Fα0 ,Fα1 , γ) → 0 is an optimal information
rate if it is both a lower and an achievable information rate
[25]. In Theorem 2, we will use the notion of metric entropy
H(δ;Fα) to characterize the “size” of general (nonparametric
or parametric) function classes. The metric entropy H(δ;Fα)
of a function space Fα is given by the logarithm of the
covering number N(δ,Fα, ρ) of that space with respect to a
metric ρ, i.e. H(δ;Fα) = log(N(δ,Fα, ρ)). A formal defini-
tion for covering numbers is provided below.

Definition 2. (Covering number) A δ-cover of a given func-
tion space Fα with respect to a metric ρ is a set of functions
{f1, . . ., fN} such that for any function f ∈ Fα, there exists
some v ∈ {1, . . ., N} such that ρ(f, fv) ≤ δ. The δ-covering
number of Fα is [29]

N(δ,Fα, ρ) := inf{N ∈ N : ∃ a δ-cover of Fα}.

That is, the covering number of a function class Fα is the
number of balls (in a given metric ρ) of a fixed radius δ > 0
required to cover it. Throughout this paper, the metric entropy
will always be evaluated with respect to the L2(P) norm. In
the light of the definition above, the metric entropy can be

Fig. 1: Pictorial depiction of covering sets for Fα0 and Fα1 .

thought of as a measure of the complexity of a function class;
smoother function classes would generally display a smaller
metric entropy. All function classes considered in this paper
comprise bounded functions over bounded domains, and hence
all such classes have finite metric entropy. Figure 1 shows a
pictorial depiction for two exemplary function classes Fα0

and Fα1 for the treated and control responses, respectively.
In this depiction, α0 is smaller than α1, hence the δ-cover
of Fα0 contains more balls than the δ-cover of Fα1 , and it
follows that Fα0 has a larger metric entropy. This manifests
in the control response surface f0 being less smooth than
the treated response surface f1. This is usually the case for
real-world data on responses to medical treatments, where the
untreated population typically display more heterogeneity than
the treated population [20].

We now present the main result of this Section. In the
following Theorem, we provide a general characterization for
the optimal information rates of Bayesian causal inference
when the treated and control surfaces are known to belong
to function classes Fα1 and Fα0 . The proofs for all the
Theorems in this paper are provided in an online appendix3.

Theorem 2. (Optimal Information Rates) Suppose that X is
a compact subset of Rd, and that Conditions 1-2 hold. Then
the optimal information rate is Θ(δ20 ∧ δ21), where δω is the
solution for H(δω; Fαω ) ≍ n δ2ω, ω ∈ {0, 1}.

Proof. See Appendix A.

Theorem 2 characterizes I∗n(Fα0 ,Fα1 , γ) in terms of the met-
ric entropies H(δ; Fα0) and H(δ; Fα1) for general function
classes Fα0 and Fα1 . We used the local Fano method to
derive an information-theoretic lower bound on the informa-
tion rate that can be achieved by any estimator [30]. The
characterization in Theorem 2 implies that selection bias has

3http://medianetlab.ee.ucla.edu/papers/JSTSPappendix.pdf
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TABLE I: OPTIMAL INFORMATION RATES FOR BAYESIAN CAUSAL INFERENCE IN STANDARD FUNCTION SPACES.

SPACE METRIC ENTROPY RESPONSE SURFACES OPTIMAL INFORMATION RATE
Fα H(δ;Fα) f0, f1 I∗n(Fα0 ,Fα1)

Analytic Cω(X ) H(δ;Cω) = log
(
1
δ

)
f0, f1 ∈ Cω(X ) Θ(n−1)

Smooth C∞(X ) H(δ;C∞) = log
(
1
δ

)
f0, f1 ∈ C∞(X ) Θ(n−1)

α-Smooth Cα(X ) H(δ;Cα) = δ−
d
α f0 ∈ Cα0 (X ), f1 ∈ Cα1 (X ) Θ

(
n−2(α0∧α1)/(2(α0∧α1)+d)

)
Hölder Hα(X ) H(δ;Hα) = δ−

d
α f0 ∈ Hα0 (X ), f1 ∈ Hα1 (X ) Θ

(
n−2(α0∧α1)/(2(α0∧α1)+d)

)
Sobolev Sα(X ) H(δ;Sα) = δ−

d
α f0 ∈ Sα0 (X ), f1 ∈ Sα1 (X ) Θ

(
n−2(α0∧α1)/(2(α0∧α1)+d)

)
Besov Bα

p,q(X ) H(δ;Bα) = δ−
d
α f0 ∈ Bα0

p,q(X ), f1 ∈ Bα1
p,q(X ) Θ

(
n−2(α0∧α1)/(2(α0∧α1)+d)

)
Lipschitz Lα(X ) H(δ;Lα) = δ−

d
α f0 ∈ Lα0 (X ), f1 ∈ Lα1 (X ) Θ

(
n−2(α0∧α1)/(2(α0∧α1)+d)

)
Parametric models H(δ; Θ) = K · log

(
1
δ

)
, |Θ| = K fω(θω), θω ∈ Θω , |Θω | = Kω , ω ∈ {0, 1} Θ

(
(K0 ∧K1)2 · n−1

)

no effect on the achievable information rate. (Thus, in the rest
of the paper we drop the dependency on γ when referring to
I∗n.) That is, as long as the overlap condition holds, selection
bias does not hinder the information rate that can be achieved
by a Bayesian causal inference procedure, and we can hope to
find a good prior Π that achieves the optimal rate of posterior
contraction around the true ITE function T (x) irrespective
of the amount of bias in the data. Theorem 2 also says that
the achievable information rate is bottle-necked by the more
“complex” of the two response surfaces f0 and f1. Hence, we
cannot hope to learn the causal effect at a fast rate if either
of the treated or the control response surfaces are rough, even
when the other surface is smooth.

The general characterization of the optimal information rate
for causal inference provided in Theorem 2 can be cast into
specific forms by specifying the regularity classes Fα0 and
Fα1 . Table I demonstrates the optimal information rates for
standard function classes, including the space of analytic,
smooth, Hölder, Sobolev, Besov, and Lipschitz functions. A
rough description for the optimal information rates of all
nonparametric function spaces (α-smooth, Hölder, Sobolev,
Besov, and Lipschitz) can be given as follows. If f0 is α0-
regular (e.g. α0-differentiable) and f1 is α1-regular, then the
optimal information rate for causal inference is

I∗n(Fα0 ,Fα1) ≍ n
−2(α0∧α1)

2(α0∧α1)+d , (8)

where ≍ denotes asymptotic equivalence, i.e. in Bachmann-
Landau notation, g(x) ≍ f(x) if g(x) = Θ(f(x)). That is,
the regularity parameter of the rougher response surface,
i.e. α0 ∧ α1, dominates the rate by which any inference
procedure can acquire information about the causal effect.
This is because, if one of the two response surfaces is much
more complex (rough) than the other (as it is the case in the
depiction in Figure 1), then the ITE function T (x) would
naturally lie in a function space that is at least as complex
as the one that contains the rough surface. Moreover, the best
achievable information rate depends only on the smoothness
of the response surfaces and the dimensionality of the feature
space, and is independent of the selection bias. As it is the case
in standard nonparametric regression, the optimal information
rate for causal inference gets exponentially slower as we add
more dimensions to the feature space [23], [26], [35], [37].
Note that in Theorem 2, we assumed that for the surfaces
f0 and f1, all of the d dimensions of X are relevant, and

that the responses have the same smoothness level on all
dimensions. Now assume that surfaces f0 and f1 have relevant
feature dimensions in the sets P0 and P1, respectively, where
|Pω| = pω ≤ d, ω ∈ {0, 1} [37]. In this case, the optimal
information rate becomes

I∗n(F
α0

P0
,Fα1

P1
) ≍ n

−2α0
2α0+p0 ∧ n

−2α1
2α1+p1 , (9)

where Fαω

Pω
denotes the space of functions in Fαω for which

the relevant dimensions are in Pω . In (9), the rate is dominated
by the more complex response surface, where “complexity”
here is manifesting as a combination of the number of relevant
dimensions and the smoothness of the response over the those
dimensions. One implication of (9) is that the information rate
can be bottle-necked by the smoother of the response surfaces
f0 and f1, if such a response has more relevant dimensions
in the feature space4. More precisely, if α0 < α1, then the
information rate can still be bottle-necked by the smoother
surface f1 as long as p1 > α1

α0
p0.

Since the optimal (Bayesian) information rate is an upper
bound on the optimal (frequentist) minimax estimation rate
(Theorem 1), we can directly compare the limits of estimation
in the causal inference setting (established in Theorem 2) with
that of the standard nonparametric regression setting. It is well
known that the optimal minimax rate for estimating an α-
regular function is Θ(n−2α/(2α+d)); a classical result due to
Stone [25], [26]. The result of Theorem 2 (and the tabulated
results in Table I) asserts that the causal effect estimation prob-
lem is as hard as the problem of estimating the “rougher” of
the two surfaces f0 and f1 in a standard regression setup. The
fact that selection bias does not impair the optimal information
rate for causal inference is consistent with previous results
on minimax-optimal kernel density estimation under selection
bias or length bias [38]–[41]. In these settings, selection bias
did not affect the optimal minimax rate for density estimation,
but the kernel bandwidth optimization strategies that achieve
the optimal rate needed to account for selection bias [40],
[42]. In Section VI, we show that the same holds for causal
inference: in order to achieve the optimal information rate, the
strategy for selecting the prior Π needs to account for selection
bias. This means that even though the optimal information
rates in the causal inference and standard regression settings

4A more general characterization of the information rate would consider
the case when the responses have different smoothness levels on each of the
d-dimensions. Unfortunately, obtaining such a characterization is technically
daunting.



IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. X, XXXX 2018 7

Fig. 2: Duality of Bayesian causal inference and channel coding in a cascade of AWGN and erasure channels.

are similar, the optimal estimation strategies in both setups are
different.

In the rest of this Section, we present a sketch of the proof
of Theorem 2. The detailed proof is provided in Appendix A.
(Readers can skip the following Subsection and proceed to
Section VI without loss of context.) In Section VI, we study
different strategies for selecting the prior Π, and identify the
priors that achieve the optimal information rate in Theorem 2.

Sketch of the Proof of Theorem 2

We will first show that δ20 ∧ δ21 , where δω is the solution for
the transcendental equation H(δω; Fαω ) = n δ2ω, ω ∈ {0, 1},
is a lower information rate (condition (6)) by proving that it is
an optimal lower bound for Dn. We will then show that such
a rate is achievable (7), and hence I∗n ≍ δ20 ∧ δ21 .

VI. RATE-ADAPTIVE BAYESIAN CAUSAL INFERENCE

In Section V, we have established the optimal rates by which
any Bayesian inference procedure can gather information
about the causal effect of a treatment from observational
data. In this Section, we investigate different strategies for
selecting the prior Π, and study their corresponding achievable
information rates. (An optimal prior Π∗ is one that achieves
the optimal information rate I∗n.) A strategy for selecting Π
comprises the following three modeling choices:

1) How to incorporate the treatment assignment variable ω
in the prior Π?

2) What function (regularity) class should the prior Π place
a probability distribution over?

3) What should be the smoothness (regularity) parameter of
the selected function class?

The first modeling decision involves two possible choices.
The first choice is to give no special role to the treatment as-
signment indicator ω, and build a model that treats it in a man-
ner similar to all other features by augmenting it to the fea-
ture space X . This leads to models of the form

f(x, ω) : X × {0, 1} → R.

We refer to priors over models of the form above as Type-
I priors. The second modeling choice is to let ω index two
different models for the two response surfaces. This leads to
models of the form f(x) = [f0(x), f1(x)]

T , where f0 ∈ Fβ0

and f1 ∈ Fβ1 for some β0, β1 > 0. We refer to priors over
models of the form f(.) as Type-II priors.

Type I and Type II priors induce different estimators for the
ITE function: we will study the information rates achieved by
those estimators in order to assess the qualities of the two
modeling choices. The posterior mean ITE estimator (which
is the optimal estimator with respect to the L2(P) risk) for a
Type-I prior is given by

T̂n(x) = EΠ[f(x, 1) | Dn]− EΠ[f(x, 0) | Dn],

whereas for a Type-II prior, the posterior mean ITE estimator
is given by T̂n(x) = EΠ[f

T (x)v | Dn], where v = [−1, 1]T .
Figure 3 is a pictorial depiction for the posterior mean ITE
estimates obtained via Type-I and Type-II priors.

Fig. 3: Depiction for estimates obtained by Type-I and Type-II priors.

The main difference between Type-I and Type-II priors is
that the former restricts the smoothness of f(x, ω) on any
feature dimension to be the same for ω = 0 and ω = 1. This
also entails that the relevant dimensions for the two response
surfaces (ω = 0 and ω = 1) need to be the same under a Type-
I prior. (This is a direct consequence of the fact that Type-I
priors give no special role to the variable ω.) As a result, a
priori knowledge (or even data-driven a priori knowledge) on
the different characteristics between responses f0 and f1 (e.g.
different smoothness levels or relevant dimensions) cannot be
incorporated in a Type-I prior. Type-II priors can incorporate
such information as they provide separate models for f0 and
f1. However, while Type-I priors give a posterior of f0 and f1
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using all the observational data (by virtue of joint modeling
of the two surfaces), Type-II priors use only the data for
the treated population to compute posteriors of f1 (and uses
the control population for f0), which can be problematic if
the two populations posses highly unbalanced relative sizes
(e.g. treated populations are usually much smaller than control
populations [1]).

In order to better illustrate the difference between Type-I
and Type-II priors, we look at their simpler parametric coun-
terparts. A Type-I linear regression model defines f(x, ω) as
a linear function Y = βT x+ γ̃ · ω+ϵ, where β ∈ Rd, γ̃ ∈ R,
and ϵ is a Gaussian noise variable. (Here the Type-I prior is a
prior on the model coefficients β and γ̃) As we can see, this
model restricts the two responses f0 and f1 to have the exact
same interactions with the features through the coefficients in
β. If we know a priori that f0 and f1 have different “slopes”
or different relevant dimensions, we cannot incorporate this
knowledge into the model. What would such a model learn?
Assuming consistency, the estimated ITE function would be
T̂n(x) → γ̃ everywhere in X . Thus, the restricted nature of a
Type-I parametric model led to a constant (non-individualized)
estimate of T (.). Contrarily, a Type-II model of the form
Y (ω) = βT

ω x+ϵ, ω ∈ {0, 1}, would allow for learning a linear
estimate T̂n(x) of the true function T (x), with potentially
different relevant dimensions for both surfaces (different non-
zero entries in β0 and β1). However, Type-II model will only
use data with ω = w to fit the model for Y (w), w ∈ {0, 1}.

Unlike their parametric counterparts, the nonparametric
Type-I and II priors can (in general) learn the ITE function
consistently, but how do their information rates compare?
Subsection VI-A studies the achievable information rates for
“oracle” Type-I and Type-II priors that are informed with the
true smoothness parameters (α0 and α1) and relevant dimen-
sions of the function classes Fα0 and Fα1 . In Subsection
VI-B, we study the (more realistic) setting when Fα0 and Fα1

are unknown, and investigate different strategies for adapting
the prior Π to the smoothness of the treated and control
response surface in a data-driven fashion. The achievability
and adaptivity analyses in Subsections VI-A and VI-B will
guide the design of a practical Bayesian inference algorithm,
which we present in Section VII.

A. Oracle Priors

In this Subsection, we assume that the true smoothness and
relevant dimensions for f0 and f1 are known a priori. In the
following Theorem, we show that Type-II priors are generally
a better modeling choice than Type-I priors.

Theorem 3. (Sub-optimality of Type-I priors) Let Π◦
β be the

space of all Type-I priors that give probability one to draws
from Hβ , and let Π◦◦

β0,1
be the space of all Type-II priors that

give probability one to draws from (Hβ0 ,Hβ1). If f0 ∈ Hα0

P0

and f1 ∈ Hα1

P1
, then

inf
β

inf
Π∈Π◦

β

In(Π;Hα0

P0
,Hα1

P1
) . I∗n(H

α0

P0
,Hα1

P1
),

inf
β0,β1

inf
Π∈Π◦◦

β0,1

In(Π;Hα0

P0
,Hα1

P1
) ≍ I∗n(H

α0

P0
,Hα1

P1
).

Proof. See Appendix B.

The proof of Theorem 3 utilizes an information-theoretic
lower bound (based on Fano’s inequality) on the minimax
information rate achieved by Type-I and Type-II priors.
Theorem 3 says that the best minimax information rate that
any Type-I prior can achieve is always suboptimal, even if
we know the true smoothness of the response surfaces f0 and
f1. Contrarily, Theorem 3 also says that an oracle Type-II
prior can achieve the optimal information rate. When the the
surfaces f0 and f1 have the same relevant dimensions and
the same smoothness, the gap between the best information
achieved by a Type-I prior and the optimal information is not
large, and it diminishes for high-dimensional feature spaces
or very smooth response surfaces (see Appendix B). The gap
becomes larger when the surfaces f0 and f1 exhibit different
relevant dimensions and smoothness levels. More precisely,
the best achievable information rate for a Type-I prior is
given by

inf
β

inf
Π∈Π◦

β

In(Π;Hα0

P0
,Hα1

P1
) = Θ

(
n

−2(α0∧α1)

2(α0∧α1)+|P0∪P1|+1

)
,

whereas for Type-II priors, the best achievable rate is

inf
β0,β1

inf
Π∈Π◦◦

β0,1

In(Π;Hα0

P0
,Hα1

P1
) = Θ

(
n

−2α0
2α0+|P0| ∧ n

−2α1
2α1+|P1|

)
.

We note that most state-of-the-art causal inference algorithms,
such as causal forests [7], Bayesian additive regression trees
[8], and counterfactual regression [18], [28], use Type-I regres-
sion structures for their estimates. (While causal forests and
counterfactual regression are frequentist methods, Theorems 1
and 3 imply the sub-optimality of their minimax estimation
rate.) The sub-optimality of Type-I priors, highlighted in The-
orem 3, suggests that improved estimates can be achieved over
state-of-the-art algorithms via a Type-II regression structure.

We now focus on the second and third modeling questions:
on what function space should the prior Π be defined, and
what smoothness level to select? Obviously, with oracle
knowledge of Fα0 and Fα1 , the oracle prior Π should
give probability one to draws from the function space F ,
since the true response surfaces are known to lie in F ; it is
non-obvious though what smoothness level should be selected
for the prior. In the following Theorem, we characterize the
achievable information rates as a function of the smoothness
of the prior.

Theorem 4. (The Matching Condition) Suppose that f0 and
f1 are in Hölder spaces Hα0 and Hα1 , respectively. Let Π◦◦

β

be a Type-II prior on (Hβ0 ,Hβ1). Then we have that:

In(Π
◦◦
β0,1

;Hα0 ,Hα1) ≍ n
−2(β0∧α0)

2β0+d + n
−2(β1∧α1)

2β1+d .

Proof. See Appendix C.

Recall that the optimal information rate for causal inference
in Hölder spaces is I∗n(H

α0 ,Hα1) = n
−2(α0∧α1)

2(α0∧α1)+d (Table I).
Theorem 4 quantifies the information rates achieved by a
Type-II prior with smoothness levels β0 and β1 for treated
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and control responses. Theorem 4 says that a Type-II prior
can achieve the optimal information rate if and only if it
captures the smoothness of the rougher of the two response
surfaces. This gives rise to a matching condition that a
Type-II prior requires in order to guarantee optimality: for a
prior to achieve the optimal information rate, it must have a
smoothness level that matches the smoothness of the rougher
of the two response surfaces. For the prior Π◦◦

β , the matching
condition is βω = α0 ∧ α1, ω = argmaxw∈{0,1} αw. Note
that Theorems 3 and 4 assume that the true response surfaces
are Hölder continuous. Deriving the matching conditions for
general function spaces is a technically hard task; we believe
that the α-Hölder functions are good representatives of the
generic behavior of α-regular functions. This is supported by
the results in Table I, which show that all α-regular functions
have the same optimal information rate.

To conclude this Subsection, we summarize the conclusions
distilled from analyses of the achievable information rates for
oracle priors. In order to achieve the optimal information rate,
the prior should be of Type-II, and it needs to satisfy the
matching condition. Since in practice we (generally) do not
know the true smoothness of the response surfaces, we cannot
build a prior that satisfies the matching condition as we neither
know which of the response surfaces is rougher, nor do we
know the exact level of smoothness. Practical causal inference
thus requires adapting the prior to the smoothness of the true
function in a data-driven fashion; we discuss this in the next
Subsection.

B. Rate-adaptive Data-driven Priors
Assume that the true response surfaces f0 and f1 belong

to the Hölder spaces Hα0 and Hα1 , respectively. In this
case, we know from the analysis in Subsection VI-B that the
optimal prior is a Type-II prior over Hα0∧α1 . In practice,
we do not know α0 ∧ α1 a priori, and hence we need to
obtain an estimate β̂n of the optimal smoothness α0 ∧ α1

from the data in order to satisfy the matching condition
in Theorem 4. Note that, unlike in standard nonparametric
regression, estimating the optimal regularity parameter for
causal inference (α0 ∧ α1) entails a mixed problem of testing
and estimation, i.e. we need to test whether α0 < α1, and then
estimate α0. Hence, one would expect that the prior adaptation
methods used in standard regression problems would not
suffice in the causal inference setup. Prior adaptation can
be implemented via hierarchical Bayes or empirical Bayes
methods. Hierarchical Bayes methods specify a prior over
α0∧α1 (also known as the hyper-prior [24]), and then obtain
a posterior over priors in a fully Bayesian fashion. Empirical
Bayes simply obtains a point estimate β̂n of α0∧α1, and then
conducts inference via the prior specified by β̂n. We focus
on empirical Bayes methods since the hierarchical methods
are often impractically expensive in terms of memory and
computational requirements. A prior Πβ̂n

induced by β̂n
(obtained via empirical Bayes) is called rate-adaptive if it
achieves the optimal information rate, i.e. In(Πβ̂n

) = I∗n.

In the rest of this Subsection, we show that marginal
likelihood maximization, which is the dominant strategy

for empirical Bayes adaptation in standard nonparametric
regression [24], [43], can fail to adapt to the optimal
smoothness α0 ∧α1 in the general case when α0 ̸= α1. (This
is crucial since in most practical problems of interest, the
treated and control response surfaces have different levels of
heterogeneity [20].) We then propose a novel information-
based empirical Bayes strategy, and prove that it always
asymptotically satisfies the matching condition in Theorem 4.
Finally, we conclude the Subsection by identifying candidate
function spaces over which we can define the prior Π
such that we are able to both adapt to functions in Hölder
spaces, and also conduct practical Bayesian inference in an
algorithmically efficient manner.

(a) An exemplary data-driven prior obtained via the likelihood-based empir-
ical Bayes method.

(b) An illustration for the factual bias and counterfactual variance trade-off.

Fig. 4: Pictorial depiction for the operation of likelihood-based and
information-based empirical Bayes adaptation methods.

1) Information-based Empirical Bayes and the failure of
Maximum Likelihood-based Prior Adaptation: To see why the
marginal likelihood-based empirical Bayes method may fail
in adapting priors for causal inference, consider the following
example. Suppose that f0 ∈ Hα0 and f1 ∈ Hα1 , where α0 <
α1. Let Π◦

β̂n
be a Type-I data-driven prior, where β̂n is an

empirical Bayes estimate of the optimal smoothness α0 ∧ α1.
For the likelihood-based empirical Bayes, β̂n is obtained by
maximizing the marginal likelihood dP(Dn |β) with respect
to β. Note that since f0 and f1 possess different smoothness
parameters, then the “true” model for generating Dn has
is characterized by a likelihood function dP(Dn |α0, α1).
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Assume that the true model dP(Dn |α0, α1) is identifiable,
i.e. the mapping (α0, α1) 7→ P is one-to-one. Type-I priors
re-parametrize the observation model so that the likelihood
function dP(Dn |β) is parametrized with a single smoothness
parameter β. Hence, as long as α0 ̸= α1, the new parametriza-
tion renders an unidentifiable model, since the mapping β 7→ P
is not one-to-one (i.e. different combinations of α0 and α1

can map to the same β). This means that likelihood-based
empirical Bayes can never satisfy the matching condition in
Theorem 4, even in the limit of infinite samples (n ↑ ∞). In
most practical Bayesian models (e.g. Gaussian processes), the
empirical Bayes estimate β̂n will be in the interval (α0, α1)
with high probability as depicted in Figure 4a. This means that
with high probability, the likelihood-based empirical Bayes
method will prompt an oversmoothed prior, from which all
draws are smoother than the true ITE function, leading to a
poor information rate. This problem is not specific to Type-I
priors, but would arise in Type-II priors as well if the prior
fixes the smoothness parameters for both components of its
vector-valued output.

The failure of likelihood-based empirical Bayes in the
causal inference setup is not surprising as maximum likelihood
adaptation is only optimal in the sense of minimizing the
Kullback-Leibler loss for the individual potential outcomes.
Optimal prior adaptation in our setup should be tailored to the
causal inference task. Hence, we propose an information-based
empirical Bayes scheme in which, instead of maximizing the
marginal likelihood, we pick the smoothness level β̂n that
minimizes the posterior Bayesian KL divergence defined in
(4), i.e.

β̂n = argmin
β

Ef0,f1∼dΠβ(. | Dn)[Dn(Πβ ; f0, f1) | Dn ]. (10)

The information-based empirical Bayes estimator is simply a
Bayesian estimator of β with the loss function defined as the
information-theoretic criterion for the quality of the posterior
distribution of the ITE function T (x) (see (4)). Unlike the
likelihood-based method, the objective in (10) is an direct
measure for the quality of causal inference conducted with
a prior Πβ . In the following Theorem, we show that the
information-based empirical Bayes asymptotically satisfies
the matching condition in Theorem 4.

Theorem 5. (Asymptotic Matching) Suppose that f0 and f1
are in Hölder spaces Hα0 and Hα1 , respectively. Let Πβ be
a Type-I (or Type-II) prior defined over Hβ . If β̂n is obtained
as in (10), then we have that β̂n

p→ (α0 ∧ α1).
Proof. See Appendix D.

Theorem 5 says that the information-based empirical Bayes
estimator is consistent. That is, the estimate β̂n will eventually
converge to the optimal smoothness α0 ∧α1 as n→ ∞. Note
that this is a weaker result than adaptivity: consistency of β̂n
does not imply that the corresponding prior will necessarily
achieve the optimal information rate. However, the consistency
result in Theorem 5 is both strongly suggestive of adaptivity,
and also indicative of the superiority of the information-based
empirical Bayes method to the likelihood-based approach.

Note that, while information-based empirical Bayes
guarantees the recovery of the optimal smoothness α0 ∧ α1

(in the asymptotic sense), it still oversmoothes the prior for
the smoother response surface, even when using a Type-II
prior, as long as the prior restricts itself to a single smoothness
parameter β for both f0 and f1. This can problematic if we
wish the posterior credible interval on T (x) to be “honest”, i.e.
possess frequentist coverage [7], [36], [44]. A more flexible
Type-II prior that assigns different smoothness parameters
β0 and β1 to response surfaces f0 and f1 can potentially
guarantee honest frequentist coverage in a manner similar
to that provided by causal forests [7]. As a consequence of
Theorem 1, it turns out that the information-based empirical
Bayes estimator in (10) is structurally similar to the risk-
based empirical Bayes estimator proposed in [24]. Hence, we
conjecture that our proposed empirical Bayes procedure can
guarantee frequentist coverage for the estimated causal effects
under some conditions (the polished tail condition in [24]).

2) Concrete Priors for Bayesian Causal Inference: So far
we have been assuming that, given that f0 and f1 belong to
Hölder spaces, the prior Π places a probability distribution
over a Hölder space with a (data-driven) regularity parameter.
In practice, we cannot build an inference algorithm that
operates on a general Hölder space: we need to specify
simpler function spaces over which machine learning/Bayesian
inference methods become feasible. Two function spaces that
are most commonly used in Bayesian nonparametric inference
are the reproducing kernel Hilbert space (RKHS) [45]–[47],
and the space of piece-wise constant functions (trees)[8],
[16], [16]. The machine learning objects operating on those
spaces are Gaussian processes (GPs), and Bayesian additive
regression trees (BART), respectively. BART was especially
proven successful in causal inference problems, and was one of
the winning algorithms in the 2016 Atlantic Causal Inference
Conference Competition5.

In order to decide which function spaces we would build
our inference procedure on, we evaluated the information
rates achievable by oracle priors in the form of GPs and
BART. The following is a summary of our analysis: details are
provided in Appendix E. Let Πβ(GP) be a (Type-II) Gaussian
process prior over a RKHS, defined by a Matérn covari-
ance kernel with parameter β, then the achievable informa-
tion rate is In(Πβ(GP);Hα0 ,Hα1) ≍ n−2(β∧α0∧α1)/(2β+d).
Hence, the optimal information rate is achieved if the match-
ing condition is satisfied (Theorem 4). The squared expo-
nential kernel displayed a suboptimal information rate of
(log(n))−(α0∧α1)/2+d/4, whereas spline kernels achieved a
rate of (n/ log(n))−2(β∧α0∧α1)/(2β+d), which when satisfying
the matching condition, becomes a near-optimal rate (optimal
up to a logarithmic factor). The analyses in Appendix E was
based on the work of van der Vaart and van Zanten in [27].

Since BART places a prior on a space of non-differentiable
(piece-wise constant) functions, one would expect that the
information rates achieved by BART would be inferior to
those achieved by a GP. We show in Appendix E that a

5http://jenniferhill7.wixsite.com/acic-2016
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carefully designed BART can only achieve a near-optimal
rate of (n/ log(n))−2(β∧α0∧α1)/(2β+d) [16], [22], [23]. Our
conclusion was that GPs are better choice for causal modeling,
not only because it can achieve better rates than BART, but
also because its relatively tractable nature would allow for
an easy implementation for the information-based empirical
Bayes scheme in (10).

VII. PRACTICAL RATE-ADAPTIVE CAUSAL INFERENCE
WITH MULTITASK GAUSSIAN PROCESS PRIORS

The previous Section provided a detailed recipe for the
informationally optimal Bayesian causal inference procedure.
In particular, inference should be conducted through a Type-
II Gaussian process prior on an RKHS space (Theorem 3
and Subsection VI-B). Moreover, the RKHS space should be
defined through a Matérn covariance kernel with parameters
β0 and β1 for response surfaces f0 and f1 (Subsection VI-B),
and the parameters β = (β0, β1) should be optimized via
the information-based empirical Bayes procedure in (10). In
this Section, we construct a practical learning algorithm that
follows this recipe.

Type-II GP priors place a probability distribution on func-
tions f : X → R2 in a vector-valued Reproducing Kernel
Hilbert Space (vvRKHS). A vvRKHS HK is equipped with an
inner product ⟨., .⟩HK

, and a reproducing kernel K : X×X →
R2×2, where K is a (symmetric) positive semi-definite matrix-
valued function [5], [46]–[48]. Note that by operating in a
vvRKHS we get the algorithmic advantage of being able to
conduct posterior inference in an infinite-dimensional function
space by estimating a finite number of coefficients evaluated
at the input feature points (this is a consequence of the well-
known representer Theorem [49]). GP regression in vvRKHS
is often associated with multi-task learning [47], and the
corresponding GP is often known as a multi-task GP [48].
Multi-task learning is a common setup in machine learning
where one model shares parameters between different tasks to
improve statistical efficiency. The results of Theorem 3 can be
thought of as suggesting multi-task learning as a framework
for causal inference, where learning each of the potential out-
comes (f0 and f1) is thought of as a separate learning task, and
a single model is used to execute the two tasks simultaneously.

We chose the Matérn covariance kernel as the underlying
regularity of the vvRKHS since it can achieve the optimal
information rate (see Appendix E). In order to avoid under-
smoothing any of the two surfaces, we also chose to assign
separate smoothness parameters β0 and β1 to f0 and f1,
respectively. Standard intrinsic coregionalization models for
vector-valued kernels impose the same covariance parameters
for all outputs [48], which implies that the prior will have the
same smoothness on both f0 and f1. Thus, we constructed a
linear model of coregionalization (LMC) [47], which mixes
two intrinsic coregionalization models as follows

Kθ(x, x
′) = A k0(x, x

′) +B k1(x, x
′),

where kω(x, x′) = Matérn(βω), ω ∈ {0, 1}, whereas A and
B are given by

A =

[
a200 a01
a10 ϵ

]
, B =

[
ϵ b01
b10 b11

]
, (11)

where ϵ → 0 is a small positive number that is determined a
priori and kept fixed during the prior adaptation procedure. The
LCM kernel structure in (11) ensures that the response surfaces
f0 and f1 have smoothness levels β0 abd β1 respectively. The
constant ϵ ensures that Kθ(x, x

′) is positive semi-definite for
any selection of the other parameters. The parameters a00 and
b11 represent the variances of f0 and f1, whereas all other
variables (a01, a10, b01, b10) are correlation variables that share
information among the two learning tasks (learning f0 and
f1). The set of all kernel parameters is denoted as β. Given
a set of “hyper-parameters” β, the ITE function estimate T̂n
is obtained in terms of the posterior mean6 as follows: T̂n =
EΠβ

[ fTv | Dn], where v = [−1, 1]T .
Now that we completely specified the multi-task GP

prior for a given hyper-parameter set β, the only remaining
ingredient in the recipe is to implement the information-
based empirical Bayes adaptation criterion in (10). The
following Theorem gives an insightful decomposition of the
information-based empirical Bayes objective for the multi-task
GP model. (In the following Theorem, Y(W) = [Y

(ωi)
i ]i

and Y(1−W) = [Y
(1−ωi)
i ]i are vectors comprising all factual

and counterfactual outcomes associated with an observational
dataset Dn.)

Theorem 6. (Factual bias and counterfactual variance de-
composition) The minimizer β∗ of the information-based
empirical Bayes adaptation criterion in (10) is given by

arg min
β

∥∥∥Y(W) − EΠβ
[ f | Dn ]

∥∥∥2
2︸ ︷︷ ︸

Factual bias

+
∥∥∥VarΠβ

[Y(1−W) | Dn ]
∥∥∥
1︸ ︷︷ ︸

Counterfactual variance

,

where VarΠβ
is the posterior variance and ∥.∥p is the p-norm.

Proof. See Appendix F.

Theorem 6 states that, for a multi-task GP prior, the
information-based empirical Bayes criterion in (10)
decomposes to factual bias and counterfactual variance
terms7. The factual bias term quantifies the empirical
error in the observed factual outcome that results from
selecting a particular smoothness level β. In that sense,
the factual bias is a measure of the goodness-of-fit for the
posterior mean resulting from a prior smoothness β. On the
other hand, the counterfactual variance term quantifies the
posterior uncertainty that would be induced in the unobserved
counterfactual outcomes when selecting a smoothness level
β. A small value for β would lead to a rough posterior mean
function, which corresponds to a good empirical fit for the
data. On the contrary, a small value for β would induce large
uncertainty in the unobserved outcomes, which corresponds

6Closed-form expressions for the posterior mean of a multi-task GP can be
found in [46], [48].

7The objective function in Theorem 6 can be easily optimized via a leave-
one-out cross-validation procedure. Refer to [5] for a detailed explanation.
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to large uncertainty in the counterfactual outcomes. The
couterfactual variance thus acts as a regularizer for the factual
bias that helps solving the joint testing-estimation problem
of identifying the minimum of α0 and α1, and estimating
the value of α0 ∧ α1. That is, the regularizer attempts to
protect the prior from falsely recognizing either α0 or α1 as
being very low just because it over-fit the factual outcomes,
and hence underestimating the true optimal smoothness
α0 ∧ α1, thereby undersmoothing the prior and giving rise
to a suboptimal information rate. The two terms work in
opposite directions as shown in Figure 4b: factual bias pushes
for undersmoothed priors and counterfactual variance pushes
for oversmoothed priors. Theorem 6 says that the resulting
prior will lie on the optimal boundary in the large data limit.

Finally, we note that the factual bias and counterfactual
variance trade-off automatically handles selection bias. That
is, when there is a poor overlap between the treated and
control populations, the posterior counterfactual variances
would tend to be higher, and the information-based empirical
Bayes method would tend to oversmooth the prior rather
than fitting the factual data. Selection bias does not affect
the optimal information rate, but it does affect the optimal
strategy for achieving that rate as long as we decide to
share parameters and data points between our models for the
potential outcomes.

VIII. EXPERIMENTS

We sought to evaluate the finite-sample performance of
the Bayesian causal inference procedure proposed in Section
VII, and compare it with state-of-the-art causal inference
models. Causal inference models are hard to evaluate [6],
and obviously, it is impossible to validate a causal model
using real-world data due to the absence of counterfactual
outcomes. A common approach for evaluating causal models,
which we follow in this paper, is to validate the model’s
predictions/estimates in a semi-synthetic dataset for which
artificial counterfactual outcomes are randomly generated via
a predefined probabilistic model. To ensure a fair and objective
comparison, we did not design the semi-synthetic dataset used
in the experiments by ourselves, but rather used the (standard)
semi-synthetic experimental setup designed by Hill in [8]. In
this setup, the features and treatment assignments are real but
outcomes are simulated. The experimental setup was based on
the IHDP dataset, a public dataset for data from a randomized
clinical trial. We describe the dataset in more detail in the
following Subsection.

A. The IHDP dataset

The Infant Health and Development Program (IHDP) is
an interventional program that is intended to enhance the
cognitive and health status of low birth weight, premature
infants through pediatric follow-ups and parent support groups
[8]. The semi-simulated dataset in [8], [18], [28] is based on
features for premature infants enrolled in a real randomized
experiment that evaluated the impact of the IHDP on the
subjects’ IQ scores at the age of three. Because the data was
originally collected from a randomized trial, selection bias was

introduced in the treatment assignment variable by removing
a subset of the treated population. All outcomes (response
surfaces) are simulated. The response surface data generation
process was not designed to favor our method: we used the
standard non-linear ”Response Surface B” setting in [8]. The
dataset comprises 747 subjects (608 control and 139 treated),
and there are 25 features associated with each subject.

B. Benchmarks

We compared our algorithm with various causal models and
standard machine learning benchmarks which we list in what
follows: ♣ Tree-based methods (BART [8], [16], [22], causal
forests (CF) [7], [36], ♠ Balancing counterfactual regression
(balancing neural networks (BNN) [18], and counterfactual
regression with Wasserstein distance metric (CFRW) [28]), ⋆
Propensity-based and matching methods (k nearest-neighbor
(kNN), propensity score matching (PSM)), a ♢ nonparametric
spline regression model (causal MARS [19]), and ⊙ Doubly-
robust methods (Targeted maximum likelihood (TML) [50]).
We also compared the performance of our model with stan-
dard machine learning benchmarks, including linear regression
(LR), random forests (RF), AdaBoost, XGBoost, and neural
networks (NN). We evaluated two different variants of all the
machine learning benchmarks: a � Type-I regression structure,
in which we use the treatment assignment variable as an input
feature to the machine leaning algorithm, and a ⊗ Type-II
regression structure, in which we fit two separate models for
treated and control populations. We compare all these bench-
marks with our proposed model: a Type-II multi-task GP prior
(MTGP) with a Matérn kernel optimized through information-
based empirical Bayes. We also compare the proposed model
with a Type-I multi-task GP model (with a Matérn kernel)
optimized through likelihood-based empirical Bayes in order
to verify the conclusions drawn from our analyses.

All machine learning benchmarks had their hyperparameters
optimized via grid search using a held-out validation set.
Hyper-parameter optimization was using the mean square error
in the observed factual outcomes as the optimization objective.
For BART, we used the default prior as in [8], and did not tune
the model’s hyper-parameters. For BNN and CFRW, we used
the neural network configurations reported in [18] and [28].
Causal MARS was implemented as described in [19]. PSM
was implemented as described in [8], and its performance was
obtained by assuming that every patient’s estimated ITE is
equal to the average treatment effect estimated by PSM. All
benchmarks were implemented in Python, with the exception
of BART, causal forests and TMLE, all of which were imple-
mented in R. We used the R libraries bartMachine, grf,
and tmle for the implementation of BART, causal forests
and TMLE, respectively. Our method was implemented in
Python using GPy, an open source library for Gaussian
processes [51].

C. Evaluation

We evaluate the performance of all benchmarks by reporting
the square-root of the PEHE. The empirical PEHE is estimated
as PEHE = 1

n

∑n
i=1((f1(Xi)−f0(Xi))−E[Y (1)

i −Y (0)
i |Xi =
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TABLE II: SIMULATION RESULTS FOR THE IHDP DATASET. NUMERICAL VALUES CORRESPOND TO THE AVERAGE PEHE ± 95%
CONFIDENCE INTERVALS.

In-sample Out-of-sample In-sample Out-of-sample√
PEHE

√
PEHE

√
PEHE

√
PEHE

♡ MTGP (Type-II) 0.59 ± 0.01 0.76 ± 0.01 ♢ Causal MARS 1.66 ± 0.10 1.74 ± 0.10
GP (Type-I) 1.85 ± 0.12 2.10 ± 0.16 � NN-1 3.56 ± 0.20 3.64 ± 0.20

♣ BART 2.0 ± 0.13 2.2 ± 0.15 AdaBoost-1 4.53 ± 0.31 4.56 ± 0.31
CF 2.4 ± 0.14 2.8 ± 0.18 XGBoost-1 2.97 ± 0.21 3.04 ± 0.21

RF-1 2.7 ± 0.24 2.9 ± 0.25 LR-1 5.06 ± 0.35 5.05 ± 0.35
RF-2 1.4 ± 0.07 2.2 ± 0.16 ⊗ NN-2 3.36 ± 0.13 3.46 ± 0.14

♠ BNN 2.1 ± 0.11 2.2 ± 0.13 AdaBoost-2 2.40 ± 0.17 2.79 ± 0.20
CFRW 1.0 ± 0.07 1.2 ± 0.08 XGBoost-2 1.46 ± 0.08 1.98 ± 0.15

⋆ kNN 2.69 ± 0.17 4.0 ± 0.21 LR-2 1.85 ± 0.10 1.94 ± 0.12
PSM 4.9 ± 0.31 4.9 ± 0.31 ⊙ TMLE 5.27 ± 0.35 5.27 ± 0.35

x])2, where f1(Xi) − f0(Xi) is the estimated treatment ef-
fect. We evaluate the PEHE of all algorithms via a Monte
Carlo simulation with 1000 realizations of the IHDP semi-
synthetic model, where in each experiment/realization we
run all the benchmarks with a 60/20/20 train-validation-test
splits. (For models that do not need hyper-parameter tuning,
such as BART and our GP models, the entire training set
is used to compute the posterior distributions.) We report
both the in-sample and out-of-sample PEHE estimates: the
former corresponds to the accuracy of the estimated ITE in
a retrospective cohort study, whereas the latter corresponds
to the performance of a clinical decision support system that
provides out-of-sample patients with ITE estimates [28]. The
in-sample PEHE results are non-trivial since we never observe
counterfactuals even in the training phase. Recall that, from
Theorem 1, we know that the achieved information rate by
a Bayesian inference procedure is equivalent to the PEHE
estimation rate. Thus, the PEHE performance is a direct proxy
of the achieved information rate, and since it is an essentially
frequentist quantity, we can use it to compare the performance
of our model with the frequentist benchmarks.

D. Results

As can be seen in Table II, the proposed Bayesian inference
algorithm (Type-II MTGP) outperforms all other benchmarks
in terms of the (in-sample and out-of-sample) PEHE. This re-
sult suggests that the proposed model was capable of adapting
its prior to the data, and may have achieved the optimal (or
a near-optimal) information rate. The PEHE results in Table
II are the averages of 1000 experiments with 1000 different
random realizations of the semi-synthetic outcome model. This
means that our algorithm is consistently outperforming all
other benchmarks as it is displaying a very tight confidence
interval.

The benefit of the information-based empirical Bayes
method manifests in the comparison with the Type-I MTGP
prior optimized via likelihood-based empirical Bayes. The per-
formance gain of the Type-II MTGP prior with respect to the
Type-I MTGP prior results from the fact that the two response
surfaces in the synthetic outcomes model have different levels
of heterogeneity (the control response is non-linear whereas
the treated response is linear. See the description of Response
surface B in [8]). Our algorithm is also performing better than

all other nonparametric tree-based algorithms. This is expected
since, as we have discussed earlier in Subsection VI-B, an
oracle BART prior can only achieve the optimal information
rate up to a logarithmic factor. With the default prior, it is
expected that BART would display a slow information rate as
compared to our adapted, information-optimal Matérn kernel
prior. Similar insights apply to the frequentist random forest
algorithms, which approximates the true regression functions
through non-differentiable, piecewise functions (trees), and
hence is inevitably suboptimal in terms of the achievable
minimax estimation rate.

Our model also outperforms all the standard machine learn-
ing benchmarks, whether the ones trained with a Type-I regres-
sion structure, or those trained with a Type-II structure. We
believe that this is because our model outperforms the standard
machine learning benchmarks since the information-based
empirical Bayes method provides a natural protection against
selection bias (via the counterfactual variance regularization).
Selection bias introduces a mismatch between the training and
testing datasets for all the machine learning benchmarks (i.e. a
covariate shift [18]), and hence all machine learning methods
exhibit high generalization errors.

IX. CONCLUSIONS

In this paper, we studied the problem of estimating the
causal effect of an intervention on individual subjects using
observational data in the Bayesian nonparametric framework.
We characterized the optimal Kullback-Leibler information
rate that can be achieved by any learning procedure, and
showed that it depends on the dimensionality of the feature
space, and the smoothness of the “rougher” of the two poten-
tial outcomes. We characterized the priors that are capable of
achieving the optimal information rates, and proposed a novel
empirical Bayes procedure that is adapts the Bayesian prior
to the causal effect function through an information-theoretic
criterion. Finally, we used the conclusions drawn from our
analysis and designed a practical Bayesian causal inference
algorithm with a multi-task Gaussian process, and showed that
it significantly outperforms the state-of-the-art causal inference
models through experiments conducted on a standard semi-
synthetic dataset.
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APPENDIX A
PROOF OF THEOREM 2

Let δω be the solution for H(δω; Fαω ) ≍ n δ2ω, ω ∈ {0, 1}.
We will prove that the optimal rate is Θ(δ20 ∧ δ21) by first
showing that I∗n(Fα0 ,Fα1) = Ω(δ20 ∧ δ21), and then showing
that I∗n(Fα0 ,Fα1) = O(δ20 ∧ δ21). We start by observing that
the causal inference problem can be described through the
following Markov chain

(f0, f1) → Dn → (f̂0, f̂1) → T̂ .

The amount of information shared between the true function
T (.) and the estimate T̂ (.) can be quantified by the mutual
information I(T ; T̂ ). Given the Markov chain above, we can
upper bound I(T ; T̂ ) as follows

I(T ; T̂ )
(∗)
≤ I(T ;Dn)

(⋆)

≤ sup
Π
I(T ;Dn), (A.12)

where (∗) follows from the data processing inequality [31],
and the supremum in (⋆) is taken over all possible priors.
I(T ; T̂ ) is bounded below by the rate-distortion function

I(T ; T̂ ) ≥ inf
T,T̂ :E∥T−T̂∥2

2 ≤R∗
Π

I(T ; T̂ ), (A.13)

for any T̂ satisfying E∥T − T̂∥22 ≤ R∗
Π, where the infimum is

taken over all joint distributions of (T, T̂ ), and with ∥.∥22 being
the L2(P) norm. Combining (A.12) and (A.13), we can upper
and lower bound the mutual information I(T ; T̂ ) as follows

inf
E∥T−T̂∥2

2 ≤R∗
Π

I(T ; T̂ ) ≤ I(T ; T̂ ) ≤ sup
Π
I(T ;Dn). (A.14)

The lower bound in the chain of inequalities above is in-
tractable, and hence we further lower bound I(T ; T̂ ) using
Fano’s method [30], [52]. That is, we take discrete subsets
F̃α0 and F̃α1 of the function spaces Fα0 and Fα1 , and convert
the estimation problem to a testing problem. The spaces

F̃αω = {f̃1ω, . . ., f̃M̃ω
ω }, F̃αω ⊂ Fαω , ω ∈ {0, 1},

are constructed such that ∥f̃ iω − f̃ jω∥ ≥ δ, ∀i ̸= j. Let Q be
a quantizer that maps elements of Fαω to F̃αω , ω ∈ {0, 1}.
Thus, the causal inference problem can be described through
the following Markov chain:

(f0, f1) → Dn → (f̂0, f̂1) → Q(f̂0, f̂1). (A.15)

Let T̃ = f̃u1 − f̃v0 , where f̃v0 and f̃u1 are the functions in F̃α0

and F̃α1 that are closest to the true response surfaces f0 and
f1. The discrete element T̃ belongs to a set {T̃ 1, . . ., T̃ M̃T },
which corresponds to a discretized version of the function
space to which T belongs. Using the data processing inequal-
ity, we have that

I(T̃ ; T̂ ) ≥ I(T̃ ;Q(T̂ )). (A.16)

An “error event” is an event where Q(T̂ ) does not correspond
to the true discretized function T̃ , i.e. the event {T̃ ̸= Q(T̂ )}.
The error event occurs when

∥T̂ −Q(T̂ )∥ ≤ ∥T̂ − T̃∥. (A.17)

Thus, the error event implies that δ ≤ ∥Q(T̂ )− T̃∥. Using the
triangular inequality, (A.17) can be further bounded as follows:

δ ≤ ∥Q(T̂ )− T̃∥ = ∥Q(T̂ )− T̂ + T̂ − T̃∥
≤ ∥Q(T̂ )− T̂∥+ ∥T̂ − T̃∥

≤ 2 ∥T̂ − T̃∥ =⇒ ∥T̂ − T̃∥ ≥ δ

2
. (A.18)

Let Pe be the probability of the error event {T̃ ̸= Q(T̂ )}.
From (A.18), the probability of the error event can be bounded
above as follows

Pe := P({T̃ ̸= Q(T̂ )})
= P(∥Q(T̂ )− T̃∥ ≥ δ) = P(∥T̂ − T̃∥ ≥ δ/2)

= P(∥T̂ − T̃∥22 ≥ δ2/4)

(•)
≤ 4

δ2
E[∥T̂ − T̃∥22] ≤

4

δ2
R∗

Π, (A.19)

where (•) is an application of Markov’s inequality. By com-
bining (A.16) with the result in (A.19), the lower bound in
(A.14) can be further bounded below as follows

inf
E∥T−T̂∥2

2 ≤R∗
Π

I(T ; T̂ ) ≥ inf
E∥T−T̂∥2

2 ≤R∗
Π

I(T̃ ; T̂ )

= inf
Pe≤ 4

δ2
R∗

Π

I(T̃ ; T̂ )

≥ inf
Pe≤ 4

δ2
R∗

Π

I(T̃ ;Q(T̂ )).

The mutual information I(T̃ ;Q(T̂ )) can be bounded above as
follows

I(T̃ ;Q(T̂ )) = I(f̃1 − f̃0;Q(f̂1 − f̂0))

(⊙)

≤ I(f̃0, f̃1;Q(f̂1 − f̂0))

≤ I(f̃0, f̃1;Q(f̂0), Q(f̂1))

= I(f̃0;Q(f̂0)) + I(f̃1;Q(f̂1))

≤ 2max{I(f̃0;Q(f̂0)), I(f̃1;Q(f̂1))}, (A.20)

where (⊙) follows from the data processing inequality. The
mutual information I(T̃ ;Q(T̂ )) can be written in terms of the
KL divergence as [31]

I(T̃ ;Q(T̂ )) = D(P(T̃ ;Q(T̂ )) ||P(T̃ ) · P(Q(T̂ )))

≥ D(Bern(Pe) ||Bern(1− 1/n))

= Pe log

(
Pe

1− 1/M̃T

)
+ (1− Pe) log

(
1− Pe

1/M̃T

)
= −h(Pe) + log(M̃T )− Pe log(M̃T − 1)

≥ − log(2) + log(M̃T )− Pe log(M̃T ), (A.21)

where h(.) is the binary entropy. From (A.21), we have that

Pe ≥ 1− I(T̃ ;Q(T̂ )) + log(2)

log(M̃T )
, (A.22)

which is an incarnation of Fano’s inequality. By combining
(A.20) with (A.22), we have the following inequality

Pe ≥ 1− I(f̃0;Q(f̂0)) ∨ I(f̃1;Q(f̂1)) + log(2)
1
2 log(M̃T )

. (A.23)
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From (A.19), the minimax risk R∗
Π is bounded below as

follows

R∗
Π ≥ δ2

4

(
1− I(f̃0;Q(f̂0)) ∨ I(f̃1;Q(f̂1)) + log(2)

1
2 log(M̃T )

)
.

The discretization F̃αω = {f̃1ω, . . ., f̃M̃ω
ω } corresponds to a δ-

packing of the function space Fαω , and hence M̃ω is given
by the covering number N(δ,Fαω ), for ω ∈ {0, 1}. It follows
that M̃T ≥ N(δ,Fα0) ∨N(δ,Fα1), and hence we have that

R∗
Π ≥ δ2

4

(
1− I(f̃0;Q(f̂0)) ∨ I(f̃1;Q(f̂1)) + log(2)

1
2 log(N(δ,Fα0) ∨N(δ,Fα1))

)
.

The mutual information I(f̃ω;Q(f̂ω)) can be bounded via the
KL divergence as

I(f̃ω;Q(f̂ω)) ≤
1

N2(δ,Fαω )

∑
i,j

D(P(f̃ iω) ||P(f̃ jω))

≤ 2n δ2.

Thus, the minimax risk can be bounded below as follows

R∗
Π ≥ δ2

4

(
1− 4n δ2 + log(2)

log(N(δ,Fα0) ∨N(δ,Fα1))

)
.

From Theorem 1, we have that

R∗
Π ≤ 2(σ2

0 + σ2
1) · I∗n,

and hence we have that

I∗n ≥ δ2

8(σ2
0 + σ2

1)

(
1− 4n δ2 + log(2)

log(N(δ,Fα0) ∨N(δ,Fα1))

)
.

& δ2 − δ4 n+ δ2

log(N(δ,Fα0) ∨N(δ,Fα1))
. (A.24)

Since I∗n is strictly positive, then the information rate is
bounded below by δ2, where δ is the solution to the tran-
scendental equation

δ2 ≍ δ4 n

log(N(δ,Fα0) ∨N(δ,Fα1))
,

or equivalently

log(N(δ,Fα0) ∨N(δ,Fα1)) ≍ δ2 n. (A.25)

The metric entropy of a function space Fαω is given by
H(δ,Fαω ) = log(N(δ,Fαω ), and hence (A.25) is written as

H(δ,Fα0) ∨H(δ,Fα1) ≍ δ2 n. (A.26)

Since the metric entropy H(δ,Fαω ) is a decreasing function of
the smoothness parameter αω, then it follows that the solution
δ∗ of the transcendental equation in (A.26) is given by δ∗ =
δ0 ∧ δ1, where δω is the solution to the equation

H(δω,Fαω ) ≍ δ2ω n, ω ∈ {0, 1}. (A.27)

The equation in (A.27) has a solution for all n when the
function space Fαω has a polynomial or a logarithmic metric
entropy [29], which is the case for all function spaces of
interest (see Table I for evaluations of δ0 ∧ δ1 for various
function spaces). It follows from (A.24) and (A.27) that

I∗n = Ω(δ20 ∧ δ21), H(δω,Fαω ) ≍ δ2ω n, ω ∈ {0, 1}. (A.28)

We now focus on upper bounding I∗n. From [52], we know
that the minimax information rate is upper bounded by the
channel capacity in (A.12), which is further bounded above
by the covering numbers as follows

I∗n . 1

n

(
log(N(δ,Fα0)) ∨ log(N(δ,Fα1)) + n δ2

)
.

For δ satisfying (A.27), we have that

log(N(δ,Fα0)) ∨ log(N(δ,Fα1)) = δ2 n,

and hence In . δ20 ∧ δ21 . It follows that

I∗n = O(δ20 ∧ δ21), H(δω,Fαω ) ≍ δ2ω n, ω ∈ {0, 1}. (A.29)

By combining (A.28) and (A.29), we have that I∗n = Ω(δ20∧δ21)
and I∗n = O(δ20 ∧ δ21), and hence it follows that

I∗n = Θ(δ20 ∧ δ21), H(δω,Fαω ) ≍ δ2ω n, ω ∈ {0, 1}. (A.30)

APPENDIX B
PROOF OF THEOREM 3

When f0 ∈ Hα0

P0
and f1 ∈ Hα1

P1
, the metric entropy of the

function spaces Hα0

P0
and Hα1

P1
are given by

H(δ,Hα0

P0
) ≍ δ

−|P0|
α0 , H(δ,Hα1

P1
) ≍ δ

−|P1|
α1 .

From Theorem 2, we know that the optimal information rate
is given by I∗n(H

α0

P0
,Hα1

P1
) ≍ δ20 ∧ δ21 , where δ0 and δ1 are the

solutions for

δ
−|P0|

α0 ≍ n δ20 , δ
−|P1|

α1 ≍ n δ21 ,

and hence we have that

δω ≍ n
−2αω

2αω+|Pω| , ω ∈ {0, 1},

and thus the optimal information rate is given by

I∗n(H
α0

P0
,Hα1

P1
) ≍ n

−2α0
2α0+|P0| ∧ n

−2α1
2α1+|P1| .

From Theorem 1, we know that

Dn(Π; f0, f1, γ) ≍
1

2(σ2
0 + σ2

1)
E
[
∥EΠ[T | Dn ]− T ∥22

]
.

The term E
[
∥EΠ[T | Dn ]− T ∥22

]
on the right hand side can

be upper bounded as follows [28]:

E
[
∥E[T | D ]− T ∥22

]
≤ 2 γ̄ E

[
∥E[ f0 | D ]− f0 ∥22

]
+ 2 (1− γ̄)E

[
∥E[ f1 | D ]− f1 ∥22

]
,

where γ̄ = Ex[γ(x)]. For a Type-II prior Π◦◦
β0,1

over the two
Hölder spaces Hα0

P0
and Hα1

P1
, with β0 = α0 and β1 = α1,

we achieve the minimax estimation rates for nonparametric
regression over f0 and f1 as follows

E
[
E[ f0 | D ]− f0 ∥22

]
≍ n

−2α0
2α0+|P0| ,

E
[
E[ f1 | D ]− f1 ∥22

]
≍ n

−2α1
2α1+|P1| ,

and it follows that

Dn(Π
◦◦
β0,1

; f0, f1, γ) = O
(
n

−2α0
2α0+|P0| ∧ n

−2α1
2α1+|P1|

)
,
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which matches the optimal information rate. Similarly, for a
Type-I prior Π◦

β over a Hölder space Hβ
P0∪P1

, the achieved
information rate is

Dn(Π
◦
β ; f0, f1, γ) ≍ n

−2(β∧α0∧α1)

2β+|P0|+|P1|+1 ,

where the number of feature dimensions |P0| + |P1| + 1
correspond to all the relevant dimensions for the regression
function f(x, ω). Since the rate n

−2β
2β+|P0|+|P1|+1 is strictly

slower than the optimal rate of n
−2α0

2α0+|P0| ∧ n
−2α1

2α1+|P1| for all
β > 0, it follows that

Dn(Π
◦
β ; f0, f1, γ) . I∗n(H

α0

P0
,Hα1

P1
).

APPENDIX C
PROOF OF THEOREM 4

From Appendix B (and Theorem 1), we know that

Dn(Π; f0, f1, γ) ≍
1

2(σ2
0 + σ2

1)
E
[
∥EΠ[T | Dn ]− T ∥22

]
,

and the L2(P) risk E
[
∥EΠ[T | Dn ]− T ∥22

]
is upper

bounded as follows:

E
[
∥E[T | D ]− T ∥22

]
≤ 2 γ̄ E

[
∥E[ f0 | D ]− f0 ∥22

]
+ 2 (1− γ̄)E

[
∥E[ f1 | D ]− f1 ∥22

]
,

From Lemma 4 in [27], we know that

E
[
∥E[ fω | D ]− fω ∥22

]
. (ψ−1

ω (n))2,

where

ψω(δ) =
1

n2
log(N(δ,Fβω )) +

1

n2
δ

2βω+d−2αω
αω ,

for ω ∈ {0, 1}, which for a Hölder space Hαω with metric
entropy of log(N(δ,Hβω )) = δ

−d
βω is given by

ψω(δ) =
1

n2
δ

d
βω +

1

n2
δ

2βω+d−2αω
αω .

Thus, an upper bound on the minimax estimation rate for fω
is given by

E
[
∥E[ fω | D ]− fω ∥22

]
. n

−2βω
2βω+d + n

−2αω
2βω+d = n

−2(αω∧βω)
2βω+d .

Hence, the achieved information rate is upper bounded by

In . 2(1− γ̄)n
−2(α0∧β0)

2β0+d + 2γ̄ n
−2(α1∧β1)

2β1+d

≍ n
−2(α0∧β0)

2β0+d + n
−2(α1∧β1)

2β1+d .

The tightness of these upper bounds have been demonstrated
by Castillo in [53].

APPENDIX D
PROOF OF THEOREM 5

The empirical smoothness estimate β̂n is obtained by min-
imizing the objective

Qn = Ef0,f1∼dΠβ(. | Dn)[Dn(Πβ ; f0, f1) | Dn ]. (D.31)

From the capacity-redundancy theorem [54], we know that the
Bayesian risk above is upper bounded by the minimax risk
(i.e. the information rate) and decays at the same rate. Hence,

the optimal solution to β̂∗
n = α0 ∧ α1 also minimizes Qn. If

the estimate β̂n that maximizes the empirical objective Qn is
obtained by searching over values in a compact set [0, β̄] for
some β̄ > 0 that contains the optimal solution α0∧α1, then we
know, by the consistency of M -estimators, that β̂n

p→ α0∧α1

if Qn satisfies Wald’s regularity conditions [29].

APPENDIX E
SOME CONCRETE PRIORS

APPENDIX F
PROOF OF THEOREM 6

Minimizing the objective in (D.31) is equivalent to minimz-
ing the posterior Bayesian L2(P) risk R(θ, f̂ ;D) for a point
estimate f̂ , which is given by

R(θ, f̂ ;D) = Eθ

[
L̂(f̂ ;Kθ,Y

(W),Y(1−W))
∣∣∣ D] ,

where the expectation in is taken with respect to Y(1−W)|D.
The Bayesian risk can be written as

R(θ, f̂ ;D) =

∫
L̂(f̂ ;Kθ,Y

(W),Y(1−W)) dPθ(Y
(1−W)|D).

The loss function L̂ conditional on a realization of the coun-
terfactual outcomes is given by

L̂(f̂ ;Kθ,Y
(W),Y(1−W)) =

1

n

n∑
i=1

(
f̂T (Xi)e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2
.

The optimal hyper-parameter and interpolant (f̂∗, θ∗) are
obtained through the following optimization problem in (F.1).
The optimization problem can solved separately for θ and f̂ ;
we know from Theorem 1 that for any given θ, the optimal
interpolant f̂ = Eθ[f | D]. Hence, the optimal hyper-parameter
θ∗ can be found by solving the optimization problem in (F.2).
The objective function R can thus be written as in (F.3) and
further reduced as in (F.4).

Note that since Y (Wi)
i = fWi(Xi)+ϵi,Wi , then we have that

Eθ[fWi(Xi) | D] = Eθ[Y
(Wi)
i | D] and Eθ[f1−Wi(Xi) | D] =

Eθ[Y
(1−Wi)
i | D]. Therefore, we can evaluate the terms R1,

R2 and R3 as follows

R1 =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi

(Xi) | D])2 dPθ(Y
(1−W )
i |D)

=
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[Y

(Wi)
i | D])2 dPθ(Y

(1−W )
i |D)

=
1

n
∥Y(W) − Eθ[f | D]∥22, (F.36)

and

R2 =
1

n

n∑
i=1

∫
(Y

(1−Wi)
i − Eθ[f1−Wi | D])2 dPθ(Y

(1−W )
i |D)

=
1

n

n∑
i=1

∫
(Y

(1−Wi)
i − Eθ[Y

(1−Wi)
i | D])2 dPθ(Y

(1−W )
i |D)

=
1

n

n∑
i=1

Var[Y (1−Wi)
i | D ],

=
1

n
∥Var[Y(1−W) | D ]∥1, (F.37)
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(f̂∗, θ∗) = argmin
f̂ ,θ

∫
1

n

n∑
i=1

(
f̂T (Xi)e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2
dPθ(Y

(1−W )
i |D). (F.32)

θ∗ = argmin
θ

∫
1

n

n∑
i=1

(
Eθ[f

T (Xi) | D]e− (1− 2Wi)
(
Y

(1−Wi)
i − Y

(Wi)
i

))2
dPθ(Y

(1−W )
i |D). (F.33)

R =
1

n

n∑
i=1

∫ (
(1− 2Wi)

(
(Y

(Wi)
i − Eθ[fWi(Xi) | D])− (Y

(1−Wi)
i − Eθ[f1−Wi | D])

))2
dPθ(Y

(1−W )
i |D). (F.34)

R =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi(Xi) | D])2 dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R1

+

∫
(Y

(1−Wi)
i − Eθ[f1−Wi | D])2 dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R2

− 2

∫
(Y

(Wi)
i − Eθ[fWi(Xi) | D]) (Y

(1−Wi)
i − Eθ[f1−Wi | D]) dPθ(Y

(1−W )
i |D)︸ ︷︷ ︸

R3

. (F.35)

and

R3 =
1

n

n∑
i=1

∫
(Y

(Wi)
i − Eθ[fWi | D])

(Y
(1−Wi)
i − Eθ[f1−Wi | D]) dPθ(Y

(1−W )
i |D) = 0

Therefore, θ∗ is found by minimizing ∥Y(W)−Eθ[f | D]∥22+
∥Var[Y(1−W) | D ]∥1.
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