
1

Distributed Online Learning in Social Recommender Systems
Cem Tekin*, Member, IEEE, Simpson Zhang, Mihaela van der Schaar, Fellow, IEEE

Electrical Engineering Department, University of California, Los Angeles
Email: cmtkn@ucla.edu, simpsonzhang@ucla.edu, mihaela@ee.ucla.edu

Abstract—In this paper, we consider decentralized sequential
decision making in distributed online recommender systems,
where items are recommended to users based on their search
query as well as their specific background including history
of bought items, gender and age, all of which comprise the
context information of the user. In contrast to centralized
recommender systems, in which there is a single centralized
seller who has access to the complete inventory of items as
well as the complete record of sales and user information, in
decentralized recommender systems each seller/learner only has
access to the inventory of items and user information for its own
products and not the products and user information of other
sellers, but can get commission if it sells an item of another
seller. Therefore the sellers must distributedly find out for an
incoming user which items to recommend (from the set of own
items or items of another seller), in order to maximize the
revenue from own sales and commissions. We formulate this
problem as a cooperative contextual bandit problem, analytically
bound the performance of the sellers compared to the best
recommendation strategy given the complete realization of user
arrivals and the inventory of items, as well as the context-
dependent purchase probabilities of each item, and verify our
results via numerical examples on a distributed data set adapted
based on Amazon data. Our results indicate that decentralized
online recommendation systems can achieve performance close
to centralized recommendation systems, while distributing the
computation and learning over multiple learners. We also show
that cooperating with other sellers increases the revenue of a
seller compared to the case where it only recommends its own
items to its own users. We evaluate the dependence of the
performance of a seller on the inventory of items the seller has,
the number of connections it has with the other sellers, and the
commissions which the seller gets by selling items of other sellers
to its users.

Index Terms—Online learning, multi-agent learning, collabo-
rative learning, regret based learning, distributed recommender
systems, social networks, contextual bandits, similarity measure.

I. INTRODUCTION

One of the most powerful benefits of a social network
is the ability for cooperation and coordination on a large
scale over a wide range of different agents [1]. By forming a
network, agents are able to share information and opportunities
in a mutually beneficial fashion. For example, companies can
collaborate to sell products, charities can work together to raise
money, and a group of workers can help each other search
for jobs. Through such cooperation, agents are able to attain
much greater rewards than would be possible individually.
But sustaining efficient cooperation can also prove extremely
challenging. First, agents operate with only incomplete infor-
mation, and must learn the environment parameters slowly
over time. Second, agents are decentralized and thus uncertain
about their neighbor’s information and preferences. Finally,
agents are selfish and may opt not to reciprocate aid to their
neighbors, favoring personal gain over social gain. This paper
produces a class of mechanisms that effectively addresses all
of these issues: at once allowing decentralized agents to take
near-optimal actions in the face of incomplete information,
while still incentivizing them to fully cooperate within the
network.

The framework we consider is very broad and applicable
to a wide range of social networking situations. We analyze
a group of agents that are connected together via a fixed
network, each of whom experiences inflows of users to its
page. Each time a user arrives, an agent chooses from among
a set of items to offer to that user, and the user will either
reject or accept each item. These items can represent a variety
of things, from a good that the agent is trying to sell, to a
cause that the agent is trying to promote, to a photo that the
agent is trying to circulate. In each application, the action of
accepting or rejecting by the user will likewise have a distinct
meaning. When choosing among the items to offer, the agent
is uncertain about the user’s acceptance probability of each
item, but the agent is able to observe specific background
information about the user, such as the user’s gender, location,
age, etc. Users with different backgrounds will have different
probabilities of accepting each item, and so the agent must
learn this probability over time by making different offers.

We allow for cooperation in this network by letting each
agent recommend items of neighboring agents to incoming
users, in addition to its own items. Thus if the specific
background of the incoming user makes it unlikely for him
to accept any of the agent’s items, the agent can instead
recommend him some items from a neighboring agent with
more attractive offerings. By trading referrals in this fashion,
all of the agents that are connected together can benefit. To
provide proper incentives, a commission will be paid to the
recommending agent every time an item is accepted by a user
from the recommended agent. When defined appropriately, this
commission ensures that both sides will benefit each time a
recommendation occurs and thus is able to sustain cooperation.

However, since agents are decentralized, they do not directly
share the information that they learn over time about user
preferences for their own items. So when the decision to
recommend a neighboring agent occurs, it is done based solely
on the previous successes the agent had when recommending
that neighbor. Thus agents must learn about their neighbor’s
acceptance probabilities through their own trial and error,
unlike in other social learning papers such as [2]–[5], where
agents share information directly with their neighbors.

Another key feature of our algorithm is that it is non-
Bayesian unlike [2], [3]. Instead we model the learning
through contextual bandits, where the context is based on the
user’s background. By building upon the theory of contextual
bandits, we produce a class of mechanisms that allows agents
to take near-optimal actions even with decentralized learning.
We prove specific bounds for the regret, which is the difference
between the total expected reward of an agent using a learning
algorithm and the total expected reward of the optimal policy
for the agent, which is computed given perfect knowledge
about acceptance probabilities for each context. We show that
the regret is sublinear in time in all cases. We further show that
our mechanism can operate regardless of the specific network

2

structure and the degree of connectivity inside the network,
although the performance is better if the network is more
connected since each agent will have access to more items
of other agents.

This work represents a significant departure from the other
works in contextual bandits, which consider only centralized
agents, single arms played at once, and no incentive issues.
Most of the prior work on contextual bandits is focused on
a single agent choosing one arm at a time based on the
context information provided to it at each time step [6]–[9].
In these works the system is centralized, so the agent can
directly access all the arms. Our framework in this paper
differs from the centralized contextual bandit framework in
two important aspects. First, multiple agents who can only
access a subset of arms, and who only get feedback about
this subset, cooperate to maximize their total reward. Second,
each agent can choose multiple arms at each time step, which
makes the arm selection problem combinatorial in the number
of arms. To the best of our knowledge, our work is the first
to provide rigorous solutions for online learning by multi-
ple cooperative agents selecting multiple arms at each time
step when context information is present. We had previously
proposed a multi-agent contextual bandit framework in [10],
[11] where each agent only selects a single arm at each time
step. Different from these works, in this paper we assume that
an agent can select multiple arms, and the expected reward
of the agent from an arm may depend on the other selected
arms. This makes the problem size grow combinatorially in
the arm space, which requires the design of novel learning
algorithms to quicken the learning process. Combinatorial
bandits [12] have been studied before in the multi-armed
bandit setting, but to the best of our knowledge we are the
first to propose the decentralized contextual combinatorial
bandit model studied in this paper. This decentralization is
important because it allows us to analyze a social network
framework and the fundamental challenges associated with it
including commissions, third-party sellers, etc. We are also
able to consider the specific effects of the network structure
on the regret in our model. In contrast, our approach in [10] is
purely theoretical and in [11], we address challenges specific
to Big Data mining, all without the network structure concerns.
Several other examples of related work in contextual bandits
are [13], in which a contextual bandit model is used for
recommending personalized news articles based on a variant
of the UCB algorithm [14] designed for linear rewards. In
[15] the authors solve a classification problem using contextual
bandits, where they propose a perceptron based algorithm that
achieves sublinear regret when the feedback about the rewards
are binary and the rewards are generated by an adversary.

Apart from contextual bandits, there is a large set of
literature concerned in multi-user learning using a multi-
armed bandit framework [16]–[20]. We provide a detailed
comparison between our work and related work in multi-
armed bandit learning in Table I. Our cooperative contextual
learning framework can be seen as an important extension of
the centralized contextual bandits framework [6]. The main
differences are that: (i) a three phase learning algorithm with
training, exploration and exploitation phases is needed instead

[6]–[9] [16], [20], [21] [10], [11] This work
Multi-agent no yes yes yes
Cooperative N/A yes yes yes
Contextual yes no yes yes
Context arrival arbitrary N/A arbitrary arbitraty
process
synchronous(syn), N/A syn both both
asynchronous(asn)
Regret sublinear logarithmic sublinear sublinear
Multi-play for no no no yes
each agent
Combinatorial no no no yes
Action sets of N/A same different different
the agents

TABLE I: Comparison with multi-armed bandit works
of the standard two phase algorithms with exploration and
exploitation phases that are commonly used in centralized
contextual bandit problems; (ii) the adaptive partitions of the
context space should be formed in a way that each learner can
efficiently utilize what is learned by other learners about the
same context; (iii) since each agent has multiple selections
at each time step, the set of actions for each agent is very
large, making the learning rate slow. Therefore, the correlation
between the arms of the agents should be exploited to quicken
the learning process. In our distributed multi-agent multiple-
play contextual bandit formulation, the training phase, which
balances the learning rates of the agents, is necessary since
the context arrivals to agents are different which makes the
learning rates of the agents for various context different.

There is also an extensive literature on recommender sys-
tems that incorporates a variety of different methods and
frameworks. Table II provides a summary of how our work is
related to other work. Of note, there are several papers that also
use a similar multi-armed bandit framework for recommenda-
tions. For example, [22] considers a bandit framework where
a recommender system learns about the preferences of users
over time as each user submits ratings. It uses a linear bandit
model for the ratings, which are assumed to be functions
of the specific user as well as the features of the product.
It then proposes an algorithm that combines exploration and
exploitation steps together in a continuous fashion, which
results in good performance in both the short and the long
run. [23] is another work that utilizes multi-armed bandits
in a recommendation system. It considers a model that must
constantly update recommendations as both preferences and
the item set changes over time. Through its ”Independent
Bandit” Algorithm, the paper is able to show that keeping
independent track of the acceptance probabilities of different
items can prove better than only keeping tracking of which
specific item was chosen first among a specific set of items.

There are also numerous examples of works that do not use
a bandit framework for recommendations. One of the most
commonly used methods for recommendations are collabo-
rative filtering algorithms, which can include non-bandit al-
gorithms. Collaborative filtering algorithms such as [24]–[30]
make recommendations by predicting the user’s preferences
based on a similarity measure with other users. Items with
the highest similarity score are then recommended to each
user; for instance items may be ranked based on the number
of purchases by similar users. There are numerous ways to
perform the similarity groupings, such as the cluster model

3

Item- Memory- Uses Performan- Similarity Central-
based based, context ce distance ized(C),
(IB), model- info. measure Decent-
user- based ralized(D)
based
(UB)

[32] UB Memory- No Ranking - C
based precision

[24] UB Bayesian- No MAE, Pearson C
based latent RMS, correlation

semantic 0/1 loss
model

[25] UB Bayesian- No Precision& Pearson C
based Recall correlation

Markov
model

[26] IB Cluster model No - Cosine C
[27] UB Memory- Yes Precision& - C

based Recall
[28] UB Bayesian No Precision& Pearson C

classifier Recall correlation
model

[29] UB Cluster model No MAE& Pearson C
Coverage correlation

[30] UB MDP model No Recall Self-defined C
similarity

[22] UB MAB model No Reward Lipschitz C
continuous

[23] UB MAB model Yes Regret Lipschitz C
continuous

Our UB MAB model Yes Regret Lipschitz D
work continuous

TABLE II: Comparison with works in recommender systems
in [26], [29] that groups users together with a set of like-
minded users and then makes recommendations based on what
the users in this set choose. Another possibility is presented
in [27], which pre-filters ratings based on context before the
recommendation algorithm is started.

An important difference to keep in mind is that the rec-
ommendation systems in other works are a single centralized
system, such as Amazon or Netflix. Thus the system has
complete information at every moment in time, and does not
need to worry about incentive issues or pay commissions.
However, in this paper each agent is in effect its own separate
recommendation system, since agents do not directly share
information with each other. Therefore the mechanism we
propose must be applied separately by every agent in the
system based on that agent’s history of user acceptances. So
in effect our model is a giant collection of recommendation
systems that are running in parallel. The only cross-over
between these different systems is when one agent suggests
which of its items should be recommended by another agent.
This allows for an indirect transfer of information, and lets
that other agent make better choices than it could without this
suggested list of items.

Also, it is important to note that decentralization in the
context of our paper does not mean the same thing as in
other papers such as [31]. Those papers assume that the users
are decentralized, and develop mechanisms based on trust and
the similarity of different users in order to allow users to
recommend items to each other. We are assuming that the
agents are decentralized, and so each user still only gets a
recommendation from one source, it is just that this source
may be different depending on which agent this user arrives
at. Thus this paper is fundamentally different from the works
in that literature.

The rest of the paper is organized as follows. The problem
formulation is given in Section II. In Section III, we consider
the online learning problem involving multiple decentralized

agents and analyze its regret. In Section III-A we develop an
algorithm to achieve sublinear regret when the purchase prob-
ability of the items depend on the other recommended items,
and in Section III-C we develop a faster learning algorithm
when item purchase probabilities are independent of each
other. The effect of connectivity between the agents is given
in Section IV. In Section V, numerical results demonstrating
the effects of commissions, size of the set of items of agents
and connectivity of agents are given. Finally, we conclude the
paper in Section VI.

II. PROBLEM FORMULATION

There are M decentralized agents/learners which are in-
dexed by the set M := {1, 2, . . . ,M}. Each agent i has an
inventory of items denoted by Fi, which it can offer to its users
and the users of other agents by paying some commission.
For now, we will assume that all the agents in the network
are connected, so that any agent can sell items to the users of
any other agent. Let F := ∪i∈MFi be the set of items of all
agents. We assume that there is an unlimited supply of each
type of item. This assumption holds for digital goods such as
e-books, movies, videos, songs, photos, etc. An agent does not
know the inventory of items of the other agents but knows an
upper bound on |Fj |1, j ∈ M which is equal to Fmax. Let
Ki = Fi ∪M−i be the set of options of agent i.

We note that our model is suitable for a broad range of appli-
cations. The agent can represent a company, an entrepreneur,
a content provider, a blogger, etc., and the items can be goods,
services, jobs, videos, songs, etc. The notion of an item can be
generalized even further to include such things as celebrities
that are recommended to be followed in Twitter, Google+, etc.
And the prices that we introduce later can also be generalized
to mean any type of benefit the agent can receive from a user.
For expositional convenience, we will adopt the formulation
of firms selling goods to customers for most of the paper, but
we emphasize that many other interpretations are equally valid
and applicable.

At each time step t = 1, 2, . . ., a user with a specific
search query indicating the type of item the user wants, or
other information including a list of previous purchases, price-
range, age, gender etc., arrives to agent i. We define all the
properties of the arriving user known to agent i at time t as the
context of that user, and denote it by xi(t). We assume that
the contexts of all users belong to a known space X , which
without loss of generality is taken to be [0, 1]d in this paper,
where d is the dimension of the context space. Most of our
results in this paper will hold without any assumptions on the
contexts of the users. Although the model we propose in this
paper has synchronous arrivals, it can be easily extended to
the asynchronous case where agents have different user arrival
rates, and even when no user arrives in some time slots. The
only difference of this from our framework is that instead of
keeping the same time index t for every agent, we will have
different time indices for each agent depending on the number
of user arrivals to that agent.

In order to incentivize the agents to recommend each other’s
items, they will provide commissions to each other. In this

1For a set A, |A| denotes its cardinality.

4

Fig. 1: Operation of the system for agent i for N = 3
recommendations. At each time a user arrives to agent i with
context xi(t), agent i recommends a set of its own items and
items from other agents.

paper we focus on sales commission, which is paid by the
recommended agent to the recommending agent every time a
user from the recommending agent purchases an item of the
recommended agent. We assume that these commissions are
fixed at the beginning and do not change over time. The system
model is shown in Fig. 1. When there is sales commission, if
agent i recommends an item fj of agent j to its user, and
if that user buys the item of agent j, then agent i obtains a
fixed commission which is equal to ci,j . All of our results in
this paper will also hold for the case when the commission
is a function of the price of the item fj sold by agent j, i.e.,
ci,j(pfj). However we use the fixed commission assumption,
since privacy concerns may cause the agent j or the user to not
want to reveal the exact sales price to agent i. Note that if these
recommendations are made by the agents through an online
marketplace like Amazon or eBay, an additional commission
can be taken by these entities. For example, when a fixed price
C is charged by the marketplace for every item sold, agent i’s
revenue from selling item fi ∈ Fi will be pfi − C and agent
j’s revenue from selling item fj ∈ Fj to agent i’s user will be
pfj − ci,j −C. The following analysis will still hold, as long
as the recommendations continue to be decentralized and not
performed by the marketplace entity itself.

Agent i recommends N items to its user at each time step.
For example, N can be the number of recommendation slots
the agent has on its website, or it can be the number of ads it
can place in a magazine. We assume that N is fixed throughout
the paper. These N items are chosen in the following way:
An item can be chosen from the inventory of agent i, i.e.,
Fi, or agent i can call another agent j and send the context
information of the user xi(t), then agent j returns back an

item fj with price pfj
2 to be recommended to agent i based

on the context information. Let Ni(t) be the set of items
recommended by agent i to the user at time t. We will first
consider the case when the user’s purchase probability for an
item f ∈ Ni(t) depends on Ni(t). Then, we will consider the
case when the user’s purchase probabilities of recommended
items are independent of each other. In general, the purchase
probability of the item will depend on the user’s context as
well as the set of items recommended along with that item.
Let AN be the set of subsets of F with N items. Let N ∈ AN
be a set of N recommended items.

Assumption 1: Dependent purchase probability: For each
item f recommended together with the set of items N ∈ AN ,
a user with context x ∈ X will buy the item with an unknown
probability qf (x,N) for which there exists L > 0, α > 0
such that for all x, x′ ∈ X , we have |qf (x,N)−qf (x′,N)| ≤
L||x− x′||α, where ||.|| denotes the Euclidian norm in Rd.

Assumption 1 indicates that the purchasing probability of
an item for users with similar contexts will be similar to each
other. However, we do not require the purchase probabilities
to be similar for different sets of recommendations N and
N ′ ∈ AN . Even though the Lipschitz condition can hold with
different constants Lf and αf for each item f ∈ F , taking L
to be the largest among Lf and α to be the smallest among
αf we get the condition in Assumption 1. For example, the
context can be the age of the user, and users with ages similar
to each other can like similar items. In order to learn the best
set of items to recommend for each user, the agents need to
estimate the purchase probability of an item separately for each
set of items that the item is recommended together with. We
will also consider a simplified version, in which the purchase
probability of an item is independent of the set of other items
recommended along with that item.

Assumption 2: Independent purchase probability: For
each item f offered along with the items in the set N ∈ AN ,
a user with context x will buy the item with an unknown
probability qf (x), independent of the other items in Ni(t), for
which there exists L > 0, α > 0 such that for all x, x′ ∈ X ,
we have |qf (x) − qf (x′)| ≤ L||x − x′||α, where ||.|| denotes
the Euclidian norm in Rd.

When Assumption 2 holds, the agents can estimate the
purchase probability of an item by using the empirical mean of
the number of times the item is purchased by users with similar
context information. The purchase probabilities of items can be
learned much faster in this case compared with Assumption 1,
since the same empirical mean of the number of purchases will
be updated for an item every time the item is recommended.

The goal of agent i is to maximize its total expected revenue.
The expected revenue of agent i at time t from recommending
a set of items Ni is given by

∑
f∈Ni−Fi ci,j(f)qf (xi(t),Ni)+∑

f∈Ni−(Ni−Fi) pfqf (xi(t),Ni), where j(f) is the agent
who owns item f . Given a user with context x, the set of
items which maximizes the one-step expected reward of agent

2If agent j does not want to reveal the price to agent i, then the
recommendation rule can be modified as follows: Agent j’s item will be
recommended by agent i without a price tag, and when the user clicks to
agent j’s item it will be directed to agent j’s website where the price will be
revealed to the user.

5

i is N ∗i (x) := arg maxN∈AN
∑
f∈N−Fi ci,j(f)qf (x,N) +∑

f∈N−(N−Fi) pfqf (x,N). Since the inventory of other
agents and qf (x,N), x ∈ X ,N ∈ AN are unknown a priori to
agent i, N ∗i (x) is unknown to agent i for all contexts x ∈ X .

The set of actions available to agent i at any time
step is the pair (ui, nui), where ui denotes the item to
be recommended for ui ∈ Fi or another agent to be
recommended for ui ∈ M−i, and nui denotes whether
item ui is recommended (nui = 1) or not (nui = 0) for
ui ∈ Fi, or how many distinct items agent ui should
recommend to agent i for ui ∈M−i. Based on this, let Li =
{(ui, nui) ∈ Fi × {0, 1} or (ui, nui) ∈M−i × {0, 1, . . . , N}
such that

∑
ui∈Ki nui = N

}
, be the set of actions available

to agent i. We assume that |Fj | ≥ N for all j ∈M.
Let αi be the recommendation strategy adopted by agent

i for its own users, i.e., based on its past observations
and decisions, agent i chooses a vector αi(t) ∈ Li at
each time step. Let βi be the recommendation strategy
adopted by agent i when it is called by another agent to
recommend its own items. Let α = (α1, . . . , αM) and
β = (β1, . . . , βM). Let Qiα,β(T) be the expected total reward
of agent i by time T from item sales to its own users and
users of other agents and commissions it gets from item
sales of other agents to its own users. Let Siα,β(T) :=

Eα,β

[∑T
t=1

∑
fi∈Fi pfiqfi(xi(t),Ni(t))I(nαifi (t) = 1)

]
+

Eα,β

[∑T
t=1

∑
j∈M−i I(nαij (t) > 0)

(∑
fj∈Fj ci,j

qfj (xi(t),Ni(t))I(n
βj
fj

(t) = 1)
)]

, where n
βj
fj

(t) = 1,
when j recommends its item fj to agent i when called by
agent i, and 0 otherwise. Siα,β(T) is the total expected reward
agent i can get based only on recommendations to its own
users.

We can see that Qiα,β(T) ≥ Siα,β(T). Agent i’s goal is to
maximize its total reward Siα,β(T) from its own users for any
T . Since agents are cooperative agent i also helps other agents
j ∈ M−i to maximize Sjα,β(T) by recommending its items
to them. Hence the total reward the agent gets, Qiα,β(T), is
at least Siα,β(T).

We assume that user arrivals to the agents are independent
of each other. Therefore, agent j will also benefit from agent
i if its item can be sold by agent i. In this paper, we develop
distributed online learning algorithms for the agents in M,
i.e., (αi, βi)i∈M such that the expected total reward for any
agent Siα,β(T) is maximized for all i ∈ M. In other words,
we define the regret of agent i to be

Ri(T) :=

T∑
t=1

∑
f∈N∗i (xi(t))−Fi

ci,jqf (xi(t))

+
∑

f∈Fi−(N∗i (xi(t)))−Fi)

pfqf (xi(t),N ∗i (xi(t)))− Siα,β(T), (1)

and design online learning algorithms that will minimize the
regret. Note that the regret is calculated with respect to the
highest expected reward agent i can obtain from its own users,
but not the users of other agents. Therefore, agent i does not
act strategically to attract the users of other agents, such as by
cutting its own prices or paying commissions even when an

item is not sold to increase its chance of being recommended
by another agent. We assume that agents are fully cooperative
and follow the rules of the proposed algorithm.

We will show that the regret of the algorithms proposed
in this paper will be sublinear in time, which means that the
distributed learning scheme converges to the average reward
of the best recommender strategy N ∗i (x) for each i ∈ M,
x ∈ X . Moreover, the regret also provides us with a bound
on how fast our algorithm converges to the best recommender
strategy.

III. CONTEXTUAL PARTITIONING ALGORITHMS FOR
MULTIPLE RECOMMENDATIONS

In this section we propose a distributed online learning algo-
rithm called context based multiple recommendations (CBMR)
algorithm. Basically, an agent using CBMR forms a partition
of the context space [0, 1]d, depending on the final time T ,
consisting of (mT)d sets where each set is a d-dimensional
hypercube with dimensions 1/mT ×1/mT × . . .×1/mT . The
sets in this partition are indexed by IT = {1, 2, . . . , (mT)d}.
We denote the set with index l with Il. Agent i learns the
purchase probability of the items in each set in the partition
independently from the other sets in the partition based on
the context information of the users that arrived to agent i
and the users for which agent i is recommended by another
agent. Since users with similar contexts have similar purchase
probabilities, it is expected that the optimal recommendations
are similar for users located in the same set in IT . Since
the best recommendations are learned independently for each
set in IT , there is a tradeoff between the number of sets
in IT and the estimation of the best recommendations for
contexts in each set in IT . We will show that in order to
bound regret sublinearly over time, the parameter mT should
be non-decreasing in T . There are two versions of CBMR:
one for general purchase probabilities given by Assumption
1, i.e., CBMR-d and the other for independent purchase
probabilities given by Assumption 2, i.e., CBMR-ind. The
difference between these two is that CBMR-d calculates the
expected reward from each action in Li for agent i separately,
while CBMR-ind forms the expected reward of each action in
Li based on the expected rewards of the items recommended
in the chosen action. Usually |Li| is exponential in |Ki|, and
thus CBMR-ind provides much faster learning than CBMR-d
when Assumption 2 holds. We explain these algorithms in the
following subsections.

A. Context based multiple recommendations for dependent
purchase probabilities (CBMR-d)

The pseudocode of CBMR-d is given in Fig. 2. The set
of actions available to agent i is given by Li. The action
ki ∈ Li chosen by agent i induces a set of recommendations
Ni(t) ∈ AN along with the items recommended by the
other agents called by agent i when agent i takes action ki,
i.e., Mi(ki). The cardinality of Li is combinatorial in Fi
and M−i. CBMR-d can be in any of the following three
phases at any time step: the training phase in which agent
i trains another agent j by asking it for recommendations and
providing i’s user context information x and i’s action ki so
that agent j will learn to recommend its items with the highest

6

probability of being purchased, the exploration phase in which
agent i updates the estimated reward from the set of actions in
Li by selecting it, and the exploitation phase in which agent
i selects the action in Li with the highest estimated reward.
The pseudocodes of these phases are given in Fig. 3. In all
these phases, when agent i requests recommendations agent j,
it sends its user’s context information and the arm its selected
ki ∈ Li to agent j.

At each time t, agent i first checks which set in the partition
IT xi(t) belong to. Let N i

l (t) be the number of users who
arrived to agent i with contexts in the lth set of the partition of
agent i by time t. We separate the set of actions in Li into two.
Let L̂i = {(k, nk) ∈ Fi × {0, 1} or (k, nk) ∈M−i × {0}
such that

∑
k∈Ki nk = N

}
, be the set of actions in which all

recommendations belong to agent i and L̃i = Li − L̂i, be the
set of actions in which at least one recommendation comes
from an agent in M−i. We have |Li| =

∑N
n=0

(|Fi|
n

)
(M −

1)N−n, which grows exponentially in N and polynomially in
M and |Fi|.

The training phase is required for actions in L̃i, while only
exploration and exploitation phases are required for actions
in L̂i. When agent i chooses an action ki ∈ L̃i, the agents
j ∈ M−i for which nj(ki) > 0 recommend nj(ki) items
from their own set of items to agent i. Recall that Ni(t)
denotes the set of N items that is recommended to agent
i’s user at time t, based on the actions chosen by agent i
and the recommendations chosen by other agents for agent
i. Therefore, the reward agent i gets at time t is Qi(t) =
Si(t) + Oi(t), where Si(t) :=

∑
f∈Ni(t)−Fi ci,j(f)I(f ∈

Fi(t)) +
∑
f∈Ni(t)−(Ni(t)−Fi) pfI(f ∈ Fi(t)), and Oi(t) :=∑

j∈M−i Oi,j(t), where Oi,j(t) :=
∑
f∈Fi∩Nj(t)(pf −

cj,i)I(f ∈ Fj(t)), Fi(t) is the set of items purchased by agent
i’s user at time t.

For ki ∈ L̂i, let N i
ki,l

(t) be the number of times action
ki is selected in response to a context arriving to the set Il
in agent i’s partition IT of X by time t. Note that agent i
does not know anything about agent j’s set of available items
Fj . Therefore, before forming estimates about the rewards of
recommendations of agent j, it needs to make sure that j
will almost always recommend an item which has the highest
probability of being purchased by the user of agent i. This is
why the training phase is needed for actions in L̃i. It is very
important to distinguish between cooperative agents which we
assume in this paper and strategic agents, which we provide
a comparison for in the following remark.

Remark 1: In our cooperative algorithms, an agent j when
called by agent i recommends a set of items that has the
highest probability of being purchased by agent i’s user. This
recommendation may only improve the performance of agent
j, compared to the case when j does not cooperate with any
other agent, since pfj ≥ ci,j for all fj ∈ Fj and i ∈ M−j .
Moreover, the long term benefit to agent j of cooperating
with agent i is that agent j also learns about the purchase
probabilities of its own items from agent i’s users, and thus it
learns at a faster rate than without cooperation. However, when
the commission is fixed, recommending the set of items with
the highest probability of being purchased does not always

maximize j’s reward. For example, j may have another item
which has a slightly smaller probability of being purchased by
agent i’s user, but has a much higher price than the item which
maximizes the purchase probability. Then, it is of interest to
agent j to recommend that item to agent i rather than the
item that maximizes the purchase probability. This problem
can be avoided by charging a commission which is equal to a
percentage of the sales price of the item, i.e., ci,j(pfj) = cjpfj
for some 0 < cj < 1 for fj ∈ Fj . Our theoretical results will
hold for this case as well.

In order to separate training, exploration and exploitation
phases, agent i keeps two counters for actions ki ∈ L̃i. The
first one, i.e., N i

1,ki,l
(t), counts the number of context arrivals

to agent i in set l by time t which are also sent to other agents
j ∈ M−i for which nj(ki) > 0 in the training phases of i.
The second one, i.e., N i

2,ki,l
(t), counts the number of context

arrivals to agent i in set l by time t which are used to estimate
the expected reward of agent i from taking action ki.

When a user with context xi(t) ∈ Il arrives at time t,
in order to make sure that the purchase probabilities of all
the items of all agents are explored sufficiently for each
action in Li agent i checks if the following set is nonempty:
Si,l(t) :=

{
ki ∈ L̂i such that N i

ki,l
(t) ≤ D1(t) or ki ∈ L̃i

such that N i
1,ki,l

(t) ≤ D2,ki(t) or N i
2,ki,l

(t) ≤ D3,ki(t)
}

.

For ki ∈ L̃i, let E iki,l(t) be the set of rewards collected from
selections of action ki when agent i’s user’s context is in set
Il, and all the other agents in M−i are trained sufficiently,
i.e., N i

1,ki,l
(t) > D2,ki(t), by time t. For ki ∈ L̂i, let E iki,l(t)

be the set of rewards collected from action ki by time t. If
Si,l(t) 6= ∅, then agent i explores by randomly choosing an
action αi(t) ∈ Si,l(t). If Si,l(t) = ∅, this implies that all
actions in Li have been explored and trained sufficiently, so
that agent i exploits by choosing the action with the highest
sample mean estimate, i.e., αi(t) ∈ arg maxki∈Li r̄

i
ki,l

(t),
where r̄iki,l(t) is the sample mean of the rewards in set
E iki,l(t). We have r̄ik,l(t) = (

∑
r∈Eik,l(t)

r)/|E ik,l(t)|. When
there is more than one action which has the highest sample
mean estimate, one of them is randomly selected. The
exploration control functions D1(t), D2,ki(t) and D3(t),
ki ∈ L̃i ensure that each action is selected sufficiently many
times so that the sample mean estimates r̄ik,l(t) are accurate
enough.

The other learning algorithm, βi, gives agent i the set of
items to recommend to agent j when agent j takes action
kj ∈ Lj , which calls agent i to recommend at least one
item. In order to recommend the set of items with the
maximum probability of being purchased by the user of agent
j, agent i should learn the purchase probability of its own
items for kj . Let Bi(n) be the set of n item subsets of Fi.
When xj(t) ∈ Il, agent i will explore a set of items in
the set Oi,l,kj (t) := {f i ∈ Bi(ni(kj)) such that N i

kj ,l,f i
≤

D3(t)}, if this set is nonempty. Otherwise, agent i will
exploit the best set of items in Bi(ni(kj)) that maxi-
mizes the purchase probability for agent j, i.e., f∗i,kj ,x :=
arg maxf i∈Bi(ni(kj))

∑
f∈f i

qf (x,f j(kj)), where f j(kj) is
the set of items in Fj recommended by agent j to j’s own

7

user when agent j takes action kj ∈ Lj . In the following
subsection we prove an upper bound on the regret of CBMR.

Context Based Multiple Recommendations for dependent
purchase probabilities (CBMR-d for agent i):

1: Input: D1(t), D2,ki(t), ki ∈ Li, D3(t), T , mT

2: Initialize: Partition [0, 1]d into (mT)d sets, indexed by the
set IT = {1, 2, . . . , (mT)d}. N i

k,l = 0, ∀k ∈ L̂i, l ∈ IT ,
N i

1,k,l = 0, N i
2,k,l = 0, ∀k ∈ L̃−i, l ∈ IT .

3: while t ≥ 1 do
4: Algorithm αi (Send recommendations to own users)
5: for l = 1, . . . , (mT)d do
6: if xi(t) ∈ Il then
7: if ∃k ∈ L̂i such that N i

k,l ≤ D1(t) then
8: Run Explore(k, N i

k,l, r̄
i
k,l)

9: else if ∃k ∈ L̃−i such that N i
1,k,l ≤ D2,k(t) then

10: Run Train(k, N i
1,k,l)

11: else if ∃k ∈ L̃−i such that N i
2,k,l ≤ D3(t) then

12: Run Explore(k, N i
2,k,l, r̄

i
k,l)

13: else
14: Run Exploit(((N i

k,l)k∈L̂i , (N
i
2,k,l)k∈L̃i , r̄

i
l , Li)

15: end if
16: end if
17: end for
18: Algorithm βi (Send recommendations to other agents’

users)
19: for j ∈M−i do
20: receive kj ∈ Lj and xj(t)
21: for l = 1, . . . , (mT)d do
22: if xi(t) ∈ Il then
23: If kj is observed for the first time for a user with

context xj(t), set N i
kj ,fi,l

= 0,
∀f i ∈ Bi(ni(kj)).

24: if ∃ N i
kj ,fi,l

≤ D1(t) such that f i ∈ Bi(ni(kj))
then

25: Run Explore2(f i, N
i
kj ,fi,l

, r̄ikj ,fi,l)
26: else
27: Run Exploit2(Bi(ni(kj)),

(r̄ikj ,fi,l)fi∈Bi(ni(kj)),
(N i

kj ,fi,l
)fi∈Bi(ni(kj)))

28: end if
29: end if
30: end for
31: end for
32: t = t+ 1
33: end while

Fig. 2: Pseudocode for the CBMR-d algorithm.

B. Analysis of the regret of CBMR-d

Let µi,ki(x) be the expected reward agent i gets from
the optimal set of recommendations N ∗i (x) for context x,
ki ∈ Li, and let log(.) denote logarithm in base e. For
each Il ∈ IT let µi,ki,l := supx∈Il µi,ki(x) and µ

i,ki,l
:=

infx∈Il µi,ki(x), for ki ∈ Li. Let x∗l be the context at the
center of the hypercube Il. We define the optimal action of
agent i for set Il as k∗i (l) := arg maxki∈Li µi,ki(x

∗
l). Let

U iθ,l(t) :=
{
ki ∈ Li such that µ

i,k∗i (l),l
− µi,ki,l > a1t

θ
}

, be
the set of suboptimal actions for agent i at time t, where θ < 0,
a1 > 0. The agents are not required to know the values of the
parameters θ and a1. They are only used in our analysis of the
regret. First, we will give regret bounds that depend on values
of θ and a1, and then we will optimize over these values to
find the best bound. Let YR :=

∑
f∈YR pf , where YR is the

set of N items in F with the highest prices. Every time a
suboptimal action is chosen by an agent, the one step regret
is upper bounded by YR.

Train(k, n):
1: Select action k. Receive reward r̃k(t) = Si(t). n+ +.

Explore(k, n, r):
1: Select action k. Receive reward r̃k(t) = Si(t). r = nr+r̃k(t)

n+1
.

n+ +.
Exploit(n, r, Ki):

1: Select action k ∈ arg maxk′∈Li rj . If k ∈ L̃i, ask learners
inMi(ki) to send their recommendations. Recommend items
Ni(t). Receive reward r̃k(t) = Si(t). r̄k = nk r̄k+r̃k(t)

nk+1
. nk+

+.
Explore2(f , n, r):

1: Recommend set of items f . Receive feedback r̃β(t) =∑
f∈fi

I(f ∈ Fj(t)). r = nr+r̃β(t)
n+1

. n+ +.
Exploit2(B, r, N):

1: Recommend set of items f∗ = arg maxf∈B rf . Receive

feedback r̃β(t) =
∑
f∈f∗ I(f ∈ Fj(t)). rf =

nf∗rf+r̃
β
k

(t)

nf∗+1
.

nf∗ + +.

Fig. 3: Pseudocode of the training, exploration and exploitation
modules.

The regret given in (1) can be written as a sum of three
components: Ri(T) = E[Rei (T)] + E[Rsi (T)] + E[Rni (T)],
where Rei (T) is the regret due to training and explorations by
time T , Rsi (T) is the regret due to suboptimal action selections
in exploitations by time T , and Rni (T) is the regret due to near
optimal action selections in exploitations by time T of agent
i, which are all random variables. In the following lemmas
we will bound each of these terms separately. The following
lemma bounds E[Rei (T)]. Due to space limitations we give the
lemmas in this and the following subsections without proofs.
The proofs can be found in our online appendix [33].

Lemma 1: When CBMR-d is run with param-
eters D1(t) = D3(t) = tz log t, D2,ki(t) =

maxj∈M−i

((
Fmax

nj(ki)

))
tz log t, and mT = dT γe3, where

0 < z < 1 and 0 < γ < 1/d, we have E[Rei (T)] ≤
YR2d

(
|Li|+ |L̃i|

(
Fmax

dFmax/2e
))
T z+γd log T + YR2d|Li|T γd.

Proof: We sum over all exploration and training steps by
time T . The contribution to the regret is at most YR in each
of these steps.

From Lemma 1, we see that the regret due to explorations is
linear in the number of hypercubes (mT)d, hence exponential
in parameters γ and z. We conclude that z and γ should be
small enough to achieve sublinear regret in exploration phases.

For any ki ∈ Li and Il ∈ IT , the sample mean r̄iki,l(t)
represents a random variable which is the average of the inde-
pendent samples in set E iki,l(t). Different from classical finite-
armed bandit theory [14], these samples are not identically
distributed. In order to facilitate our analysis of the regret,
we generate two different artificial i.i.d. processes to bound
the probabilities related to r̄ik,l(t), k ∈ Li. The first one is
the best process in which rewards are generated according
to a bounded i.i.d. process with expected reward µi,k,l, the
other one is the worst process in which rewards are generated
according to a bounded i.i.d. process with expected reward
µ
i,k,l

. Let rbest
k,l (τ) denote the sample mean of the τ samples

from the best process and rworst
k,l (τ) denote the sample mean of

3For a number r ∈ R, let dre be the smallest integer that is greater than
or equal to r.

8

the τ samples from the worst process. We will bound the terms
E[Rni (T)] and E[Rsi (T)] by using these artificial processes
along with the Lipschitz condition given in Assumption 1.
The following lemma bounds E[Rsi (T)].

Lemma 2: When CBMR-d is run with parameters D1(t) =

D3(t) = tz log t, D2,ki(t) = maxj∈M−i

((
Fmax

nj(ki)

))
tz log t,

and mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d,
given that 2LYR(

√
d)αt−γα+2(YR+2)t−z/2 ≤ a1tθ we have

E[Rsi (T)] ≤ 2d+1YR|L̂i|β2T γd + 2d+2YR|L̃i|β2T γd+z/2/z .
Proof: This proof is similar to the proof of Lemma

2 in [10]. The difference is that instead of bounding the
probabilities that a suboptimal arm in Fi will be chosen or
another agent j ∈M−i chooses a suboptimal arm in Fj when
called by agent i, we bound the probabilities that a suboptimal
action in L̂i is chosen and a suboptimal action in L̃i is chosen.
Another difference is that every time a suboptimal action is
chosen, the one-step regret can be at most YR.

From Lemma 2, we see that the regret increases exponen-
tially with parameters γ and z, similar to the result of Lemma
1. These two lemmas suggest that γ and z should be as small as
possible, given that the condition 2LYR(

√
d)αt−γα + 2(YR +

2)t−z/2 ≤ a1tθ, is satisfied.
Each time agent i selects action ki for which nj(ki) > 0,

agent j recommends nj(ki) items from Fj to agent i There is
a positive probability that agent j will recommend suboptimal
items, which implies that even if agent j’s best items are near
optimal for agent i, selecting agent j may not yield a near
optimal outcome. We need to take this into account, in order
to bound E[Rni (T)]. The following lemma gives the bound on
E[Rni (T)].

Lemma 3: When CBMR-d is run with parameters D1(t) =

D3(t) = tz log t, D2,ki(t) = maxj∈M−i

((
Fmax

nj(ki)

))
tz log t,

and mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d,
given that 2LYR(

√
d)αt−γα + 2(YR + 2)t−z/2 ≤ a1t

θ, we
have E[Rni (T)] ≤ (2a1T

1+θ)/(1 + θ) + 2YR
(

Fmax

dFmax/2e
)
β2.

Proof: If a near optimal action in L̂i is chosen at time
t, the contribution to the regret is at most a1tθ. If a near
optimal action ki ∈ L̃i is chosen at time t, and if some
of the agents in Mi(ki) choose their near optimal items to
recommend to agent i, then the contribution to the regret
is at most 2a1t

θ. Therefore, the total regret due to near
optimal action selections in Li by time T is upper bounded
by 2a1

∑T
t=1 t

θ ≤ (2a1T
1+θ)/(1 + θ), by using the result

in Appendix A in [10]. Each time a near optimal action in
ki ∈ L̃i is chosen in an exploitation step, there is a small
probability that an item chosen by some agent j ∈Mi(ki) is
a suboptimal one. Using a result similar to Lemma 3 in [10],
the expected number of times a suboptimal arm is chosen is
bounded by 2

(
Fmax

dFmax/2e
)
β2. Each time a suboptimal arm is

chosen, the regret can be at most YR.
From Lemma 3, we see that the regret due to near optimal

actions depends exponentially on θ which is related to the
negative of γ and z. Therefore γ and z should be chosen as
large as possible to minimize the regret due to near optimal
actions. Combining the above lemmas, we obtain the finite
time, uniform regret bound given in the following theorem.

Theorem 1: Let CBMR-d run with exploration control

functions D1(t) = D3(t) = t2α/(3α+d) log t, D2,ki(t) =

maxj∈M−i

((
Fmax

nj(ki)

))
t2α/(3α+d) log t, and slicing parameter

mT = T 1/(3α+d). Then,

Ri(T) ≤ T
2α+d
3α+d

(
4(YR(Ldα/2 + 1) + 1)

(2α+ d)/(3α+ d)
+ YR2dZi log T

)
+ T

α+d
3α+d

2d+2YR|L̃i|β2
2α/(3α+ d)

+ T
d

3α+d 2dYR(2|L̃i|β2 + |Li|) + 2YR

(
Fmax

dFmax/2e

)
β2,

i.e., Ri(T) = O
(
ZiT

2α+d
3α+d

)
, where Zi = |Li| +

|L̃i|
(

Fmax

dFmax/2e
)
.

Proof: The highest orders of regret come from explo-
rations and near optimal actions, which are O(T γd+z) and
O(T 1+θ) respectively. We need to optimize them with respect
to the constraint 2LYR(

√
d)αt−γα + 2(YR + 2)t−z/2 ≤ a1tθ,

which is assumed in Lemmas 2 and 3. The values that mini-
mize the regret for which this constraint hold are θ = −z/2,
γ = z/(2α) a1 = 2YR(Ldα/2 + 1) + 4 and z = 2α/(3α+ d).
The result follows from summing the bounds in Lemmas 1, 2
and 3.

Remark 2: Uniform partitioning of the context may not be
very efficient when the context arrivals are concentrated into
some (unknown) regions of the context space. In such a case, it
is better to explore and train these regions more frequently than
regions with sparse context arrivals. Algorithms that start with
the entire context space as a single set and which adaptively
partition the context space into smaller regions as more and
more users arrive can be developed to recommend multiple
items to the users. Such an algorithm that will work for N = 1
is given in [10].

Theorem 1 indicates that agent i can achieve sublinear regret
with respect to the best recommendation strategy given that
the purchase probabilities of all the items in F are known.
However, the learning rate of CBMR-d can be slow when
M and Fi and Fmax are large since the set of arms is
combinatorial in these parameters. We would also like to note
that the number of trainings and explorations, and hence the
regret, can be significantly reduced when agent i knows |Fj |
for all j ∈ M−i. In this case agent i can use the control
function D2,ki(t) := maxj∈M−i

((|Fj |
nj(ki)

))
t2α/(3α+d) log t

to decide when to train. As a final remark, since regret is
sublinear the average reward of CBMR-d converges to the
average reward of the best recommendation strategy, i.e.,
limT→∞Ri(T)/T = 0.

C. Context based multiple recommendations for independent
purchase probabilities (CBMR-ind)

In this subsection, we propose another learning algorithm
which chooses the actions based on the sum of the expected
rewards of different agents or items selected by the agent.
We call the algorithm in this section context based multi-
ple recommendations for independent purchase probabilities
(CBMR-ind). The pseudocode of CBMR-ind is given in Fig.
4 and Fig. 5. Due to the limited space, we do not include the
pseudocode of the algorithm which agent i uses to recommend

9

items to other agents when called by them. Basically agent i
will either explore one of its own items or exploit its item
with the highest estimated purchase probability in that case.

In order to exploit the independence of the purchase prob-
abilities of the items, we decouple the action space of agent
i, i.e., Li. For this, let Ji,j := {1j , 2j , . . . , Nj} denote the
set of the number of recommendations agent i can request
from agent j, where we use the subscript j to denote that
the recommendations are requested from agent j. Let J̃i :=
∪j∈M−iJi,j , Ji := Fi ∪ J̃i be the set of arms of agent i. We
have |Ji| = |Fi|+ (M − 1)N , which is linear in |Fi|, M , N .

Different from CBMR-d, which estimates the reward of each
action in Li separately, CBMR-ind estimates the reward of the
arms in Ji. Then, in an exploitation step, it chooses the arms
in Ji such that a total of N items are recommended and each
arm in the chosen set offers the highest estimated reward to
agent i among all the arms that are not included in that set.
When the item acceptance probabilities are independent of the
set of items recommended together, as given in Assumption
2, this choice corresponds to choosing the action in Li which
offers the highest estimated reward to agent i. The advantage
of CBMR-ind is that the estimated reward of an arm ui ∈ Ji
can be updated based on the received reward whenever any
action Li that contains arm ui is selected by agent i. Because
of this, the number of explorations is linear in |Ki| (or |Ji|),
instead of being linear in |Li| which is combinatorial in |Ki|.

Unlike CBMR-d, CBMR-ind does not have exploration,
exploitation and training phases for actions ki ∈ Li. Rather
than that, it has exploration and exploitation phases for each
arm u ∈ Fi, and exploration, exploitation and training phases
for each arm u ∈ J̃i. Since a combination of arms is selected
at each time step, arms can be in different phases. CBMR-
ind gives priority to arms that are under-explored or under-
trained. It only exploits arms when there is no other under-
explored or under-trained arm such that when this arm is
added to the set of arms to be selected, the total number
of recommendations agent i makes to its own user does not
exceed N . An arm u ∈ Fi will be given priority to be explored
if N i

u,l ≤ D1(t). An arm u ∈ J̃i will be given priority to be
trained if N i

1,u,l ≤ D2,u(t), and it will be given priority to be
explored if N i

1,u,l > D2,u(t) and N i
2,u,l ≤ D3(t). In order to

analyze the regret of CBMR-ind, we will bound the regret in
exploration and training phases by showing that the number
of explorations and trainings is linear in |Ji|. Then, we will
bound the regret in the exploitation phases by bounding the
regret of sub-optimal and near-optimal arms selections as in
the previous subsection.

D. Analysis of the regret of CBMR-ind

For an arm u ∈ J̃i, let f∗u be the set of n(u) items with the
highest purchase probabilities in Fj(u), where j(u) denotes
the agent selected by agent i when arm u is selected, and
n(u) denotes the number of items agent j(u) recommends
to agent i. For an item fi ∈ Fi, let µi,fi(x) := pfiqfi(x)
be the expected reward of that item for agent i, and for an
item f ∈ F − Fi, let µi,f (x) := ci,jqfi(x) be the expected
reward of that item for agent i. Recall that N ∗i (x) is the set

Context Based Multiple Recommendations for independent
purchase probabilities (CBMR-ind for agent i):

1: Input: D1(t), D2,u(t), u ∈ J̃i, D3(t), T , mT

2: Initialize: Partition [0, 1]d into (mT)d sets, indexed by the
set IT = {1, 2, . . . , (mT)d}. N i

u,l = 0,∀u ∈ Fi, l ∈ IT ,
N i

1,u,l = 0, N i
2,u,l = 0, ∀u ∈ J̃i, l ∈ IT .

3: while t ≥ 1 do
4: Ni = ∅, N et

i = ∅, N e
i = ∅, N t

i = ∅, cnt = 0
5: while |Ni| < N do
6: for l = 1, . . . , (mT)d do
7: if xi(t) ∈ Il then
8: l∗ = l
9: for u ∈ Ji do

10: if u ∈ Fi such that N i
k,l ≤ D1(t) then

11: Ni = Ni ∪ {u}, N e
i = N e

i ∪ {u},
cnt = cnt+ 1

12: else if u ∈ J̃i such that N i
1,u,l ≤ D2,u(t) and

cnt+ u ≤ N then
13: Ni = Ni ∪ {u}, N t

i = N t
i ∪ {u},

cnt = cnt+ u
14: else if u ∈ J̃i such that N i

k,l ≤ D3(t) and
cnt+ u ≤ N then

15: Ni = Ni ∪ {u}, N e
i = N e

i ∪ {u},
cnt = cnt+ u

16: end if
17: end for
18: end if
19: end for
20: end while
21: N ′ = N − |Ni|
22: N et

i = Choose(N ′, Ni, (r̄iu,l∗)u∈Ji)
23: Ni = Ni ∪N et

i

24: Play(Ni,N e
i ,N t

i ,N et
i , (N

i
u,l∗)u∈Fi , (N

i
1,u,l∗)u∈J̃i ,

(N i
2,u,l∗)u∈J̃i , (r̄iu,l∗)u∈Ji)

25: t = t+ 1
26: end while

Fig. 4: Pseudocode for the CBMR algorithm for independent
purchase probabilities.

Choose(N , N , r):
1: Select arms u ∈ Ji−N such that u /∈ Ji,j if ∃ u′ ∈ N∩Ji,j

for j ∈M−i,
∑
u nu ≤ N and

∑
u ru is maximized.

Play(N , N1, N2, N3 N , r):
1: Take action N , get the recommendations of other agents,

recommend Ni(t) to the user.
2: for u ∈ N do
3: if u ∈ Ni(t) ∩ Fi then
4: Receive reward ru(t) = I(u ∈ Fi(t)). ru =

Nu,lru+ru(t)

Nu,l+1
, Nu,l + +.

5: else if u ∈ (N −Fi) ∩N t
i then

6: Receive reward ru(t) =
∑
f∈Fj I(f ∈ Fi(t)), N1,u,l+

+
7: else
8: Receive reward ru(t) =

∑
f∈Fj I(f ∈ Fi(t)), ru =

N2,u,lru+ru(t)

N2,u,l+1
, N2,u,l + + N2,u,l + +

9: end if
10: end for

Fig. 5: Pseudocode of choose and play modules.

of N items in F which maximizes agent i’s expected reward
for context x. Let fn(N) denote the item in N with the nth
highest expected reward for agent i. For an item f ∈ F ,
let µ

i,f,l
:= infx∈Il µi,f (x), and µ̄i,f,l := supx∈Il µi,f (x).

For the set Il of the partition IT , the set of suboptimal
arms for agent i at time t is given by U iθ,l(t) :={
u ∈ Ji such that µ

i,fN (F),l
− µ̄i,fn(u)(Fj(u)),l ≥ a1tθ

}
,

where we will optimize over a1 and θ as we did in Section
III-B. Similar to the approach we took in Section III-B, we

10

divide the regret into three parts: Rei (T), Rsi (T) and Rni (T),
and bound them individually. Different from the analysis of
CBMR-d, here Rsi (T) denotes the regret in exploitation steps
in which agent i chooses at least one suboptimal arm while
Rni (T) denotes the regret in exploitation steps in which all
the arms chosen by agent i are near-optimal. In the following
lemma, we bound the regret of CBMR-ind due to explorations
and trainings.

Lemma 4: When CBMR-ind is run by agent i with param-
eters D1(t) = tz log t, D2,u(t) =

(
Fmax

n(u)

)
tz log t, u ∈ J̃i,

D3(t) = tz log t and mT = dT γe , where 0 < z < 1 and
0 < γ < 1/d, we have

E[Rei (T)] ≤ YR2d(|Ji|+ (M − 1)N)T γd

+ YR2d

(
|Ji|+ (M − 1)

N∑
a=1

(
Fmax

a

))
T z+γd log T.

Proof: For a set Il ∈ IT , the regret due to explo-
rations is bounded by |Ji| dT z log T e. Agent i spends at most∑N
z=1

(
Fmax

z

)
dT z log T e time steps to train agent j. Note that

this is the worst-case number of trainings for which agent j
does not learn about the purchase probabilities of its items in
set Il from its own users, and from the users of agents other
than agent i. The result follows from summing over all sets
in IT .

In the next lemma, we bound E[Rsi (T)].
Lemma 5: When CBMR-ind is run with parameters

D1(t) = tz log t, D2,u(t) =
(
Fmax

n(u)

)
tz log t, u ∈ J̃i, D3(t) =

tz log t and mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d,
given that 2LYR(

√
d)αt−γα+2(YR+2)t−z/2 ≤ a1tθ we have

E[Rsi (T)] ≤ 2d+1YR|Ji|β2T γd+2d+2NYR|J̃i|β2T γd+z/2/z.
Proof: Let Ω denote the space of all possible outcomes,

and let w be a sample path. Let Wi
l (t) := {w : Si,l(t) = ∅}

denote the event that CBMR-ind is in the exploitation phase at
time t. The idea is to bound the probability that agent i selects
at least one suboptimal arm in an exploitation step, and then
using this to bound the expected number of times a suboptimal
arm is selected by agent i. Let Viu,l(t) be the event that a sub-
optimal action u ∈ Ji is chosen at time t by agent i. We have
E[Rs(T)] ≤ YR

∑
l∈IT

∑T
t=1

∑
u∈Uiθ,l(t)

P (Viu,l(t),Wi
l (t)).

Similar to the proof of Lemma 2 in [10], by using a Chernoff
bound it can be shown that for any u ∈ U iθ,l(t)∩Fi, we have
P (Viu,l(t),Wi

l (t)) ≤ 2/t2, and for any u ∈ U iθ,l(t) ∩ J̃i, we
have P (Viu,l(t),Wi

l (t)) ≤ 2/t2 + 2N |Fu(j)|β2/t1−z/2. Here
different from Lemma 2 in [10], N comes from a union bound
which is required to bound the probability that agent j will
recommend an item which is not in the set of the best n(u)
items of agent j when agent i chooses arm u. We get the final
regret result by summing the P (Viu,l(t),Wi

l (t))s over the set
of suboptimal arms in each set in the partition IT , over the
sets in the partition IT , and over time, and then by using the
result in Appendix A in [10].

Different from Lemma 2, E[Rsi (T)] is linear in Ji instead
of Li. In the next lemma, we bound the regret due to near-
optimal arm selections by agent i by time T , i.e., E[Rni (T)].

Lemma 6: When CBMR-ind is run with parameters
D1(t) = tz log t, D2,u(t) =

(
Fmax

n(u)

)
tz log t, u ∈ J̃i, D3(t) =

tz log t and mT = dT γe, where 0 < z < 1 and 0 < γ < 1/d,

given that 2LYR(
√
d)αt−γα+2(YR+2)t−z/2 ≤ a1tθ we have

E[Rni (T)] ≤ (2Na1T
1+θ)/(1 + θ) + 2YRNFmaxβ2.

Proof: Since agent i can choose at most N arms at
each time step, if all arms chosen at time t by agent i and
by the other agents called by agent i are near-optimal, then
the contribution to the regret is bounded by 2Na1t

θ. This is
because for a near optimal arm u ∈ Fi, the contribution to the
regret is at most a1tθ, while for a near optimal arm in u ∈ J̃i,
if agent j(u) chooses its near optimal items to recommend
to agent i, the contribution to the regret is at most 2a1t

θ.
Therefore, the total regret due to near optimal arm selections
by agent i and the agents i calls by time T is upper bounded
by 2Na1

∑T
t=1 t

θ ≤ (2Na1T
1+θ)/(1 + θ) from the result in

Appendix A in [10].
However, each time a near optimal arm in u ∈ J̃i is chosen

in an exploitation step, there is a small probability that an item
chosen recommended by agent j(u) is a suboptimal one. Using
a result similar to Lemma 3 in [10], the expected number
of times a suboptimal arm is chosen by the called agent is
bounded by n(u)Fmaxβ2. Each time a suboptimal item is
chosen by the called agent j(u), the regret can be at most
YR. The result follows from summing these terms.

Combining the above lemmas, we obtain the finite time,
uniform regret bound for agents using CBMR-ind given in
the following theorem.

Theorem 2: Let CBMR-ind run with exploration control
functions D1(t) = D3(t) = t2α/(3α+d) log t, D2,u(t) =(
Fmax

n(u)

)
t2α/(3α+d) log t, u ∈ J̃i, D3(t) = t2α/(3α+d) log t and

slicing parameter mT = T 1/(3α+d). Then,

Ri(T) ≤ T
2α+d
3α+d

(
4N(YR(Ldα/2 + 1) + 1)

(2α+ d)/(3α+ d)
+ YR2dZ ′i log T

)
+ T

α+d
3α+d

2d+2NYR|J̃i|β2
2α/(3α+ d)

+ T
d

3α+d 2dYR(2|Ji|β2 + |Ji|+ (M − 1)N) + 2YRNFmaxβ2,

i.e., Ri(T) = O
(
Z ′iT

2α+d
3α+d

)
, where Z ′i = |Ji| + (M −

1)
∑N
a=1

(
Fmax

a

)
.

Proof: The highest orders of regret come from explo-
rations, trainings and near optimal arms, which are O(T γd+z)
and O(T 1+θ) respectively. We need to optimize them with
respect to the constraint 2LYR(

√
d)αt−γα+2(YR+2)t−z/2 ≤

a1t
θ, which is assumed in Lemmas 5 and 6. This gives us

θ = −z/2, γ = z/(2α) a1 = 2YR(Ldα/2 + 1) + 4 and
z = 2α/(3α+d). The result follows from summing the bounds
in Lemmas 4, 5 and 6.

The result of Theorem 2 indicates that the regret of CMBR-
ind is sublinear in time and has the same time order as
the regret of CBMR-d. However, the regret of CMBR-ind
depends linearly on |Ji|, which is much better than the linear
dependence of the regret of CBMR-d on |Li|.
E. Comparison of CBMR-d and CBMR-ind

In this section we compare CBMR-d and CBMR-ind in
terms of their regret bounds, exploration rates and memory
requirements. Note that the regret bound of CBMR-d depends
on the size of the action space Li, which grows exponentially
with N , and is an N degree polynomial of M and |Fi|. In

11

contrast the size of the arm space Ji grows linearly in M ,
N , and Fi. This is due to the fact that CBMR-d explores
and exploits each action without exploiting the correlations
between different actions. When the purchase probabilities
depend on the set of items offered together, in the worst case
there may be no correlation between rewards of different sets
of recommendations (actions), and therefore the best one can
do is to form estimates of each action independently. However,
when the purchase probabilities are independent of the items
offered together, since the expected reward of agent i from
an action is the sum of the expected rewards of the individual
arms chosen by agent i in that action, substantial improvement
over the regret bound is possible due to smaller number of
explorations and trainings.

Another advantage of CBMR-ind is that it requires a signif-
icantly smaller amount of memory than CBMR-d. CBMR-d
needs to keep sample mean reward estimates for all actions
and for all partitions of the context space, while CBMR-ind
only needs to keep sample mean reward estimates for all
arms and for all partitions of the context space. Therefore
the memory requirement of CBMR-ind is O(|Ji|/|Li|) of
the memory requirement of CBMR-d. The memory savings
become much more important as T increases since memory
scales linearly in |IT |. As a final remark, we would like to
note that the advantage of CBMR-ind over CBMR-d only
holds when the purchase probabilities of items are independent
of each other. In general when the purchase probabilities
depend on each other in an arbitrary way, the regret bound of
any learning algorithm will be linear in |Li| (see e.g., [34]).
However, in Section V, we observe that CBMR-ind have better
performance than CBMR-d in numerical results for dependent
purchase probabilities.

IV. PERFORMANCE AS A FUNCTION OF THE NETWORK

In our analysis in the previous sections we assumed that all
agents are directly connected to each other. In reality some
agents may not be connected to each other. For example,
agents i and j can both be connected to agent j′, but there
may not exist a link between agent i and agent j. This can
happen when, for example, a pair of companies has a trade
agreement between each other, but there is no trade agreement
between i and j. We assume that whenever a trade link exists
between agents i and j it is bidirectional. In this case, even
though i cannot ask j for items to recommend, i can ask j′

and j′ can ask j for an item. Then, if i sells j’s item, agent
i will get commission ci,j′ from j′, while agent j′ will get
commission cj′,j + ci,j′ from agent j so that it recovers the
payment it made to agent i from agent j. We call agent j′ the
relay agent. Let Mi denote the set of agents that are directly
connected to agent i.

Using CBMR-d and CBMR-ind with only Mi, agent i
can achieve the sublinear regret bounds given in Theorems 1
and 2, with respect to the optimal distributed recommendation
policy involving the agents i and Mi. However, since agent
i cannot exploit the advantage of the items of other agents
which are in M−i−Mi, its regret can be linear with respect
to the optimal distributed recommendation policy involving
all the agents. Let dk be the maximum degree of the network,
which is the maximum number of connections an agent can

have. Assume that the network is connected and the longest
path in the network is dh hops for agent i. CBMR-d and
CBMR-ind can be modified in the following way to account
for agents distributed over the network. Let Mi,j(p) be the
set of relay agents between agents i and j when they are
connected through path p. Let j1(p) be the agent that is
connected directly to agent i in path p, let j2(p) be the agent
that is connected directly to agent j1(p), and so on. Then,
the commission framework is modified such that when agent
i sells agent j’s item it gets a commission ci,j1(p) from agent
j1(p), agent j1(p) gets a commission cj1(p),j2(p)+ci,j1(p) from
agent j2(p), and so on, such that cj|p|−2(p),j ≤ pkj , where kj
is the item recommended by agent j to agent i’s user, so that
all agents benefit from this transaction and it is better for them
to cooperate based on the rules of the commission than to act
on their own. We assume that agent j will not recommend an
item to agent j|p|−2 if cj|p|−2(p),j > pkj

4. Assume a connected
network of agents G(M, E) in which the maximum degree
is dk and the longest path has dh hops, where E denotes the
set of links between the agents. Assume that the commissions
ci,j > 0 are given between any agent i and j with direct links.
We define agent i’s regret RG(M,E)

i (T) to be the difference
between the expected total reward of the optimal policy for
which agent i has access to the set of all the items of all
agents in the network G(M, E) (but if the item is in Fj , it
gets the commission from agent j′, which is the agent that
is directly connected to agent i in the smallest commission
path from agent i to agent j) and the expected total reward of
the learning algorithm used by agent i. The exploration and
training control functions are run using (dk)dhFmax instead of
Fmax. This way agent i will help the relay agents learn the
other agent’s recommendations accurately such that sublinear
regret bounds can be achieved. The following theorem gives
a bound on the regret of agents when they use the modified
version of CBMR-ind discussed above (CBMR-ind-N).5

Theorem 3: When Assumption 2 holds, if CBMR-ind-N
is run by all agents in G(M, E), with exploration control
functions D1(t) = D3(t) = t2α/(3α+d) log t, D2,u(t) =(
(dk)

dhFmax

n(u)

)
t2α/(3α+d) log t, u ∈ J̃i, and slicing parameter

mT = T 1/(3α+d) for agent i, and if commissions are such
that all agents j ∈M−i will get a positive reward when their
items are sold by agent i6, we have,

R
G(M,E)
i (T) ≤ T

α+d
3α+d

2d+2NYR|J̃i|β2
2α/(3α+ d)

+ 2YRN(dk)dhFmaxβ2

4However, there is an indirect benefit to agent j by recommending an item
for another agent, which is the benefit of obtaining information about the
purchase probability of its own item for the user with a specific context.
Therefore, in some scenarios it may be better for agent j to recommend an
item to another agent even when the cost of commission is greater than the
price of the item. Since the exploration and training phases of our algorithms
are designed to ensure that an agent’s estimates about purchase probabilities
are accurate enough, the agent’s benefit from taking such an action to improve
its estimates is negligible. However, such a possibility should be investigated
when deriving lower bounds on the regret, which is out of the scope of this
paper.

5A similar bound can also be proven for the modified version of CMBR-d.
6If the commission is greater than the price of the item, then that agent can

be removed from the set of agents which agent i can cooperate with. Then
our results will hold for the remaining set of agents.

12

+ T
2α+d
3α+d

(
4N(YR(Ldα/2 + 1) + 1)

(2α+ d)/(3α+ d)
+ YR2dZ ′i log T

)
+ T

d
3α+d 2dYR(2|Ji|β2 + |Ji|+ (M − 1)N),

i.e., RG(M,E)
i (T) = O

(
Z ′iT

2α+d
3α+d

)
, where Z ′i := |Ji|+(M−

1)
∑N
a=1

(
(dk)

dhFmax

a

)
.

Proof: The proof is similar to the proof of Theorem 2,
but more explorations and trainings are required to ensure that
all agents in all paths learn the purchase probabilities of their
items accurately for all user contexts before exploiting.

Theorem 3 indicates that the regret increases exponentially
in dh and is an N th degree polynomial in dk. While this
makes CBMR − ind − N impractical in non-small world
networks, CBMR − ind − N can achieve small regret in
small world networks in which most agents are not directly
connected to each other but all agents can be reached a with
small number of hops. Because of the additional commission
the relay agent gets, an item which j will recommend when
it is directly connected to agent i may not be recommended
by j when it is connected via agent j′. This results in sub-
optimality compared to the case when all agents are connected.
In Section V we numerically compare the effect of the agents’
commissions on the performance.

More refined versions of Theorem 3 can be derived if we
focus on specific networks. One interesting network structure
is when there is a monopolist agent which is directly connected
to all of the other agents, while other agents are only directly
connected to the monopolist agent. Corollary 1 gives the regret
bound for agent i when it is the monopolist agent (network
G1(M, E)), and Corollary 2 gives the regret bound for agent
i when it is not the monopolist agent (network G2(M, E)).

Corollary 1: When agent i is the monopolist agent, if it
runs CBMR-ind-N with D2,u(t) =

(
Fmax

n(u)

)
t2α/(3α+d) log t,

u ∈ J̃i and everything else remaining the same
as in Theorem 3, it will achieve R

G1(M,E)
i (T) =

O
(

(Fi + (M − 1)N)T
2α+d
3α+d

)
.

Corollary 2: When agent i is a non-monopolist agent, if it
runs CBMR-ind-N with D2,u(t) =

(
M2Fmax

n(u)

)
t2α/(3α+d) log t,

u ∈ J̃i and everything else remaining the same as in Theorem
3, it will achieve RG2(M,E)

i (T) = O
(

(Fi +N)M2NT
2α+d
3α+d

)
.

Corollaries 1 and 2 imply that the learning rate is much
faster and hence the regret is much smaller when an agent has
direct connections with more agents. This is because agent
i learns directly about the purchase probabilities of items in
agent j’s inventory when it is directly connected to it, while
the learning is indirect when there is no direct connection
between agents i and j.

V. NUMERICAL RESULTS

A. Description of the Data Set
The Amazon product co-purchasing network data set in-

cludes product IDs, sales ranks of the products, and for each
product the IDs of products which are frequently purchased
with that product. This data is collected by crawling the
Amazon website [35] and contains 410, 236 products and
3, 356, 824 edges between products that are frequently co-
purchased together. We simulate CBMR-ind and CBMR-d

using the following distributed data sets adapted based on
Amazon data. For a set of N1 chosen products, we take that
product and the F1 products that are frequently co-purchased
with that product.

The set of products that are taken in the first step of the
above procedure is denoted by Ch. The set of all products
F contains these N1 products and the products co-purchased
frequently with them, which we denote by set Cf . We assume
that each item has a unit price of 1, but have different
purchase probabilities for different types of users. Since user
information is not present in the data set, we generate it by
assuming that a user searches for a specific item. This search
query will then be the context information of the user. The
context space is discrete, thus we set IT = Ch. Based on this,
the agent that the user arrives to recommends N items to the
user. The agent’s goal is to maximize the total number of items
sold to the users.

We generate the purchase probabilities in the following way:
For dependent purchase probabilities, when n of the products
recommended for context x are in the set of frequently co-
purchased products, then the purchase probability of each of
these products will be gc(n) = 1− an, where 0 < a < 1/N .
For the other N − n products which are not frequently co-
purchased in context x, their purchase probability is gnc = b,
where 0 < b < 1− a. For independent purchase probabilities,
when a product recommended for context x is in the set of
frequently co-purchased products, the purchase probability of
that product will be gc. When it is not, the purchase probability
of that product will be gnc, for which we have gc > gnc.

We assume that there are 3 agents and evaluate the per-
formance of agent 1 based on the number of users arriving
to agent 1 with a specific context x∗, which we take as the
first item in set Ch. We assume that T = 100, 000, which
means that 100, 000 users with context x∗ arrive to agent 1.
Since the arrival rate of context x∗ can be different for the
agents, we assume arrivals with context x∗ to other agents are
drawn from a random process. We take N1 = 20, F1 = 2
and N = 2. As a result, we get 30 distinct items in F which
are distributed among the agents such that |Fi| = 10. Since
the context space is discrete we have d = 1, and there is no
Lipschitz assumption on the purchase probabilities as given
in Assumptions 1 and 2, hence we take α = 1/13 such that
2α/(3α+ d) = 1/8. Unless otherwise stated, we assume that
gc = 0.1, gnc = 0.01, a = 0.5 and ci,j = 0.5.

B. Comparison of the reward and regret of CBMR-d and
CBMR-ind for dependent purchase probabilities

We run both CBMR-d and CBMR-ind for dependent pur-
chase probabilities when both items that are frequently co-
purchased with context (product) x∗ are in F1. For this case,
the optimal policy for agent 1 will recommend one of the
frequently co-purchased items and another item in agent 1’s
inventory to the user with context x∗. Expected total reward of
the optimal policy, total rewards of CBMR-d and CBMR-ind,
and the number of training steps of CBMR-d and CBMR-ind
are shown in Table III for agent 1. We have |L1| = 68 and
|J1| = 14. We see that the total reward of CBMR-ind is higher
than the total reward of CBMR-d for this case. This is due to

13
Optimal CBMR-d CBMR-ind

Total Reward 11000 8724 9485
Trainings - 5342 12391

TABLE III: Total rewards of the optimal policy, CBMR-d and
CBMR-ind, and number of trainings of CBMR-d and CBMR-
ind for dependent purchase probabilities.

Fig. 6: Time averaged regrets of CBMR-d and CBMR-ind for
dependent purchase probabilities.

the fact that CBMR-d spends more than twice the time CBMR-
ind spends in training steps since it trains actions separately.
The time averaged regrets of CBMR-d and CBMR-ind are
given in Fig. 6. From this, we can observe that CBMR-ind
outperforms CBMR-d in all time steps, and the time averaged
regret goes to 0. From these results it seems that CBMR-ind
is a good alternative to CBMR-d even for dependent purchase
probabilities.
C. Effect of commission on the performance

In this subsection we numerically simulate the effect of
commissions c1,j that agent 1 charges to other agents on
the total reward of agent 1. We consider CBMR-ind for
independent purchase probabilities. We assume that agent 1
has one of the frequently co-purchased items for context x∗,
while agent 3 has the other frequently co-purchased item.
The total reward of agent 1 as a function of the commissions
c1,2 = c1,3 = c is given in Table IV. We note that there is no
increase in the total reward when the commission is increased
to 0.1, because this amount is not enough to incentivize
agent 1 to recommend other agent’s items. However, for
commissions greater than 0.1, the optimal policy recommends
the two frequently co-purchased items together, hence agent 1
learns that it should get recommendations from other agents.
Therefore, when commission is greater than 0.1, the total
reward of the agent is increasing in the commission. Another
remark is that c = 0 corresponds to the case when agent 1 is
not connected to the other agents. Therefore, this example also
illustrates how the rewards change as network connectivity
changes. Since prices of items are set to 1 in this section, the
commission agent 1 charges can increase up to 1. But if the
prices are different, then the commission cannot exceed the
recommended item’s price. In theory, in order to maximize
its total reward from its own users, agent i can adaptively
select its commissions ci,j , j ∈M−i based on what it learned
about the purchase probabilities. CBMR-d and CBMR-ind can
be modified to adaptively select the commissions. Due to the
limited space, we leave this as a future research topic.
D. Effect of the set of items of each agent on the performance

In this subsection we compare three cases for independent
purchase probabilities when agents use CBMR-ind. In C-1
agent 1 has both items that are frequently co-purchased in

Commission c 0 0.1 0.2 0.3 0.4 0.5
Reward (CBMR-ind) 10471 10422 11476 12393 13340 14249

TABLE IV: The total reward of agent 1 as a function of the
commission it charges to other agents.

Fig. 7: Time averaged regret of CBMR-ind for independent
purchase probabilities when agent 1 has both frequently co-
purchased items (C-1), only one of the frequently co-purchased
items (C-2) and none of the frequently co-purchased items (C-
3).

context x∗, in C-2 it has one of the items that is frequently
co-purchased in context x∗, and in C-3 it has none of the
items that are frequently co-purchased in context x∗. The total
reward of agent 1 for these cases is 17744, 14249 and 9402
respectively, while the total expected reward of the optimal
policy is 20000, 15000 and 10000 respectively. Note that the
total reward for C-3 is almost half of the total reward for
C-1 since the commission agent 1 gets for a frequently co-
purchased item is 0.5. The time averaged regret of CBMR-
ind for all these cases is given in Figure 7. We see that the
convergence rate for C-1 is slower than C-2 and C-3. This
is due to the fact that in all of the trainings step in C-1 a
suboptimal set of items is recommended, while for C-2 and
C-3 in some of the training steps the optimal set of items is
recommended.

VI. CONCLUSION

In this paper we have presented two novel algorithms for
multi-agent learning within a decentralized social network,
and characterized the effect of different network structures
on performance. Our algorithms are able to achieve sublinear
regret in all cases, with the regret being much smaller if
the user’s acceptance probabilities for different items are
independent. This paper can be used as a groundwork for
agents in many different types of networks to cooperate in
a mutually beneficial manner, from companies, charities, and
celebrities who wish to generate revenue to artists, musicians,
and photographers who simply want to have their work publi-
cized. By cooperating in a decentralized manner and using our
algorithms, agents have the benefit of retaining their autonomy
and privacy while still achieving near optimal performance.

REFERENCES

[1] K.-C. Chen, M. Chiang, and H. Poor, “From technological networks to
social networks,” Selected Areas in Communications, IEEE Journal on,
vol. 31, no. 9, pp. 548–572, 2013.

[2] V. Krishnamurthy, “Quickest detection pomdps with social learning:
Interaction of local and global decision makers,” Information Theory,
IEEE Transactions on, vol. 58, no. 8, pp. 5563–5587, 2012.

14

[3] V. Krishnamurthy and H. V. Poor, “Social learning and bayesian games
in multiagent signal processing: How do local and global decision
makers interact?” Signal Processing Magazine, IEEE, vol. 30, no. 3,
pp. 43–57, 2013.

[4] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
bayesian social learning,” Games and Economic Behavior, vol. 76, no. 1,
pp. 210–225, 2012.

[5] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” Automatic Control, IEEE Transactions on, vol. 54,
no. 1, pp. 48–61, 2009.

[6] A. Slivkins, “Contextual bandits with similarity information,” arXiv
preprint arXiv:0907.3986, 2009.

[7] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient optimal learning for contextual bandits,” arXiv
preprint arXiv:1106.2369, 2011.

[8] J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual
multi-armed bandits,” Advances in Neural Information Processing Sys-
tems, vol. 20, pp. 1096–1103, 2007.

[9] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual bandits with
linear payoff functions,” in Proc. of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2011.

[10] C. Tekin and M. van der Schaar, “Distributed online learning via
cooperative contextual bandits, arxiv:1308.4568,” submitted to Signal
Processing, IEEE Transactions on,, 2013.

[11] ——, “Decentralized online big data classification - a bandit frame-
work,” arXiv preprint arXiv:1308.4565, 2013.

[12] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Transactions on Net-
working (TON), vol. 20, no. 5, pp. 1466–1478, 2012.

[13] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. of the
19th international conference on World wide web. ACM, 2010, pp.
661–670.

[14] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, p. 235256,
2002.

[15] K. Crammer and C. Gentile, “Multiclass classification with bandit
feedback using adaptive regularization,” 2011.

[16] A. Anandkumar, N. Michael, and A. Tang, “Opportunistic spectrum
access with multiple players: Learning under competition,” in Proc. of
IEEE INFOCOM, March 2010.

[17] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” Signal Processing, IEEE Transactions on, vol. 58,
no. 11, pp. 5667–5681, 2010.

[18] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
Information Theory, IEEE Transactions on, vol. 58, no. 8, pp. 5588–
5611, 2012.

[19] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless
multiarmed bandit with unknown dynamics,” Information Theory, IEEE
Transactions on, vol. 59, no. 3, pp. 1902–1916, 2013.

[20] C. Tekin and M. Liu, “Online learning in decentralized multi-user
spectrum access with synchronized explorations,” in Proc. of IEEE
MILCOM 2012, 2012.

[21] H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Non-
bayesian restless multi-armed bandit,” Techinal Report, UC Davis,
October 2010.

[22] Y. Deshpande and A. Montanari, “Linear bandits in high dimension and
recommendation systems,” in Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on. IEEE, 2012, pp.
1750–1754.

[23] P. Kohli, M. Salek, and G. Stoddard, “A fast bandit algorithm for
recommendations to users with heterogeneous tastes,” 2013.

[24] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 89–115,
2004.

[25] N. Sahoo, P. V. Singh, and T. Mukhopadhyay, “A hidden markov model
for collaborative filtering,” MIS Quarterly, vol. 36, no. 4, pp. 1329–1356,
2012.

[26] G. Linden, B. Smith, and J. York, “Amazon. com recommendations:
Item-to-item collaborative filtering,” Internet Computing, IEEE, vol. 7,
no. 1, pp. 76–80, 2003.

[27] U. Panniello, A. Tuzhilin, and M. Gorgoglione, “Comparing context-
aware recommender systems in terms of accuracy and diversity,” User
Modeling and User-Adapted Interaction, pp. 1–31, 2012.

[28] K. Miyahara and M. J. Pazzani, “Collaborative filtering with the simple
bayesian classifier,” in PRICAI 2000 Topics in Artificial Intelligence.
Springer, 2000, pp. 679–689.

[29] M. OConnor and J. Herlocker, “Clustering items for collaborative
filtering,” in Proceedings of the ACM SIGIR workshop on recommender
systems, vol. 128. UC Berkeley, 1999.

[30] G. Shani, R. I. Brafman, and D. Heckerman, “An mdp-based rec-
ommender system,” in Proceedings of the Eighteenth conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 2002, pp. 453–460.

[31] C.-N. Ziegler, “Towards decentralized recommender systems.” Ph.D.
dissertation, Citeseer, 2005.

[32] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative
recommendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–
72, 1997.

[33] C. Tekin, S. Zhang, and M. van der Schaar, “Dis-
tributed online learning in social recommender systems,”
http://medianetlab.ee.ucla.edu/papers/JSTSPonline.pdf, 2013.

[34] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[35] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of
viral marketing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1,
p. 5, 2007.

