
1

Trend-Aware Video Caching
through Online Learning

Suoheng Li, Student Member, IEEE, Jie Xu, Member, IEEE,
Mihaela van der Schaar, Fellow, IEEE, and Weiping Li, Fellow, IEEE

Abstract—This paper presents Trend-Caching, a novel cache
replacement method that optimizes cache performance according
to the trends of video content. Trend-Caching explicitly learns
the popularity trend of video content and uses it to determine
which video it should store and which it should evict from the
cache. Popularity is learned in an online fashion, requires no
training phase and hence, it is more responsive to continuously
changing trends of videos. We prove that the learning regret
of Trend-Caching (i.e., the gap between the hit rate achieved
by Trend-Caching and that by the optimal caching policy with
hindsight) is sublinear in the number of video requests, thereby
guaranteeing both fast convergence and asymptotically optimal
cache hit rate. We further validate the effectiveness of Trend-
Caching by applying it to a movie.douban.com dataset that
contains over 38 million requests. Our results show significant
cache hit rate lift compared to existing algorithms, and the
improvements can exceed 40% when the cache capacity is limited.
Furthermore, Trend-Caching has low complexity.

I. INTRODUCTION

The rapid growth of rich media-enabled applications has
greatly changed the way that people use the Internet, bringing
the demand for high quality multimedia content into an
unprecedented level. For instance, online social network users
share nowadays not only texts and images, but also audio and
video content. High-quality video is also demanded by the
prevalence of retina-level resolution displays, new content plat-
forms [1], and emerging technologies such as virtual reality.
As a consequence, the video content that needs to be delivered
in real-time has grown significantly in terms of volume, size
and diversity. To provide high Quality-of-Service with limited
network resources while keeping costs low, various network ar-
chitectures and algorithms have been proposed. Among them,
content caching is a key technology due to its effectiveness in
supporting streaming applications [2]. The merits of content
caching are numerous. For instance, content caching avoids
long-distance transmissions of content, thereby enabling fast

S. Li and W. Li are with the School of Information Science and Technology,
University of Science and Technology of China, Hefei, Anhui 230027, P. R.
China. (email: lzzitc@mail.ustc.edu.cn, wpli@ustc.edu.cn)

S. Li, and M. van der Schaar are with the Department of Electri-
cal Engineering, University of California, Los Angeles, USA. (email: mi-
haela@ee.ucla.edu)

J. Xu is with the Department of Electrical and Computer Engineering,
University of Miami, Coral Gables, USA. (email: jiexu@miami.edu)

This research is supported by CSC. Weiping Li and Suoheng Li acknowl-
edge the partial support from Intel Collaborative Research Institute on Mobile
Networking and Computing. Jie Xu and Mihaela van der Schaar acknowledge
the support of NSF CCF 1524417. (This work was performed when Suoheng
Li was visiting UCLA and Jie Xu was at UCLA.)

content delivery to end-users; content caching offloads inter-
network traffic to intra-network, thereby reducing transit ser-
vice payments for Internet service providers. In fact, content
caching is now considered as a basic network functionality
in emerging network architectures such as Content-Centric
Networking [3] and Information-Centric Networking [4].

Content caching is not a new technology - Akamai [5] and
its competitors have been providing content distribution and
caching services for decades. However, the recent rapid growth
of video traffic has led both the industry and the academia to
re-engineer content caching systems in order to accommodate
this vast traffic. Cloud providers now start to launch their
own caching services [6] and many websites also build their
own caching systems to accelerate content distribution [7]. To
improve content caching efficiency, a significant amount of
research effort has been devoted to optimizing the network
architecture, e.g., path optimization [8], server placement [9],
content duplication strategy [10], etc. However, less attention
has been paid to improving caching strategies, i.e., which
content should be cached, where and when. Today’s content
distribution network (CDN) providers still use simple cache
replacement algorithms such as Least Recently Used (LRU),
Least Frequently Used (LFU), or their simple variants [11].
These algorithms are easy to implement but may suffer major
performance degradation since they ignore the evolving trends
of video content, which may alter the future traffic pattern on
the network, thereby resulting in a low cache hit rate. Thus,
an efficient content caching scheme should be trend-aware,
meaning that it should explicitly incorporate the trend, i.e. the
future popularity of content, into the caching decision making.

Trend-aware caching is not only very difficult but also
inefficient for traditional web caching because web pages have
small and diverse sizes and hence, estimating the trend for
each web page would significantly increase the complexity.
However, trend-aware caching is perfect fit for video content
distribution since multimedia content is large enough so that
estimating for each content would bring much less overhead.
Moreover, modern practice tends to split multimedia content
into several equal-sized chunks, relieving the caching system
from jointly considering the popularity and the content size
when making caching decisions. However, designing trend-
aware caching schemes still faces many challenges. Firstly,
the trend of a content is not readily available at the caching
decision time but rather needs to be forecasted. Secondly,
the trend of a content changes over time and hence, the
content caching schemes should continuously learn, in an
online fashion, in order to track such changes and adjust

2

forecasts. Thirdly, using the estimated popularity of content
to derive the optimal caching decision represents yet another
challenge.

In this paper, we rigorously model how to use the trend
of video content to perform efficient caching and propose
an online learning algorithm, Trend-Caching, that learns the
short-term popularity of content (i.e., how much traffic due
to a content is expected in the near future) and, based on
this, optimizes the caching decisions (i.e., whether to cache
a content and which existing content should be replaced if
the cache if full). The algorithm requires neither a priori
knowledge of the popularity distribution of content nor a
dedicated training phase using an existing training set which
may be outdated or biased. Instead, it adapts the popularity
forecasting and content caching decision online, as content is
requested by end-user and its trend is revealed over time. The
contributions of this paper are summarized below:

• We propose Trend-Caching, an online algorithm that
learns the relationship between the future popularity of a
content and its recent access pattern. Using the popularity
forecasting result, Trend-Caching knows the trend of each
content and makes proper cache replacement decisions to
maximize the cache hit rate. The amortized time com-
plexity of Trend-Caching is logarithmic in the number of
received requests.

• We rigorously analyze the performance of Trend-Caching
in terms of both popularity forecasting accuracy and
overall cache hit rate. We prove that the performance loss,
compared with the optimal strategy that knows the future
popularity of every content when making the caching
decision, is sublinear in the number of content requests
received by our system. This guarantees fast convergence
and implies that Trend-Caching asymptotically achieves
the optimal performance.

• We propose Collaborative Trend-Caching (CoTrend-
Caching) for caching decisions making among multiple
geographically distributed cache nodes. Each node learns
not only the future popularity of content but also, during
the process, the best neighbor cache nodes that it can
consult when it receives novel content.

• We demonstrate the effectiveness of Trend-Caching
through experiments using real-world traces from
movie.douban.com, the largest Rotten Tomatoes-like
website in China. Results show that our algorithms are
able to achieve significant improvements in cache ef-
ficiency against existing methods, especially when the
cache capacity at the cache server is limited (more than
100% improvement).

The remainder of the paper is organized as follows. Section II
provides a review of related works. Section III introduces the
system architecture and operational principles. In Section IV
we formally formulate the cache replacement problem. The
Trend-Caching algorithm is proposed in Section V. Section VI
presents theoretical analysis of the algorithm. Simulation re-
sults are shown in Section VIII. Finally, Section IX concludes
the paper.

II. RELATED WORK

The common approaches for content caching that have
already been adopted in the Internet nowadays are summarized
in [12]. As mentioned in the introduction, a significant amount
of research effort was devoted to optimizing the network
architecture, including path selection [8], content duplication
strategy [13] [10], server placement [9], etc. For instance, [8]
systematically describes the design of the Akamai Network.
Authors in [13] assume that content popularity is given and
then propose light-weight algorithms that minimize bandwidth
cost. In [10], an integer programming approach to designing
a multicast overlay network is proposed. [9] utilizes the geo-
graphic information extracted from social cascades to optimize
content placement. However, much less attention has been
devoted in literature to developing efficient caching schemes.
The most commonly deployed caching schemes include Least
Recently Used (LRU), Least Frequently Used (LFU) and their
variants [11], which are simple but do not explicitly consider
the trend of content when making caching decisions.

Forecasting popularity of online content has been exten-
sively studied in the literature [14] [15]. Various solutions are
proposed based on time series models such as autoregressive
integrated moving average [16], regression models [17] and
classification models [18]. Propagation features of content
derived from social media are recently utilized to assist
popularity prediction, leading to an improved forecasting
accuracy [19] [20] [21]. While these works suggest ways
to forecast the popularity of multimedia content, few works
consider how to integrate popularity forecasting into caching
decision making. In [22], propagation information of content
over social media is utilized to optimize content replication
strategies. An optimization-based approach is proposed in [23]
to balance performance and cache replacement cost. These
works develop model-based popularity forecasting schemes in
which model parameters are obtained using training datasets.
However, relying on specific models may be problematic in a
real system since some information may not be fully available
to the caching infrastructure. Moreover, because the popularity
distribution of content may vary over time, relying on existing
training sets, which may be outdated, may lead to inaccurate
forecasting results.

To adapt to the changing popularity of content, several
learning methods for content caching are proposed. In [24],
each requested content is fitted into a set of predetermined
models using the historical access patterns of the content.
The best model that produces the smallest error is selected
to predict the future popularity of the content and determine
whether to cache this content. There are two main drawbacks
of this method. First, the model fitting procedure is carried
out independently for each content and hence, similarity
information between content cannot be utilized to facilitate and
improve popularity forecasting. Second, this method incurs a
high training complexity if the number of content is large since
the training process needs to be run periodically for every
content. In [25], the content replacement problem is modeled
as a multi-armed bandit problem and online algorithms are
designed to learn the popularity profile of each content.

3

However, this algorithm requires an explicit assumption on
the distribution of content popularity, which greatly limits
its practical value since this popularity distribution is not
know a priori and may change over time. Moreover, this
work also learns the popularity independently across content,
ignoring the similarity between content, thereby resulting in
a slow learning speed. In contrast, Trend-Caching does not
make any assumption on the popularity distribution of content.
Instead, Trend-Caching exploits the similarity between content
and gradually learns the expected popularity of content given
their current context information (i.e. features that characterize
the situation under which the content is requested such as
access patterns in the past day and the type of the content).
In addition to these works, [26] proposes an online learning
method that uses bandits to predict the relevance between
multimedia content. [27] presents a mixed caching strategy
that considers both the age and popularity of content. [28]
studies the collaboration between distributed cache nodes and
proposes optimization-based algorithms. [29] presents an epi-
demic model based cache replacement algorithm that utilizes
social propagation information. Compared to our previous
work [30], this paper provides more experimental results and
an extension (CoTrend-Caching) to further improve cache
performance.

Our proposed Trend-Caching algorithm exploits the similar-
ity information between content in a similar way as an online
k-Nearest Neighbors (kNN) algorithm and its variants [31].
However, there are several important distinctions. First, online
kNN algorithms fail to synthesize the relationship between
contexts and popularity of content, resulting in large time
and space complexity (e.g. the time complexity is linear to
K for each request where K is the number of received
content requests). In contrast, Trend-Caching builds an explicit
mapping from context space to popularity and refines this
mapping over time as new requests are received. Thus, Trend-
Caching incurs a much smaller time and space complexity (the
amortized time complexity is O(logK)). Second, online kNN
algorithms exploit the similarity information in a heuristic
way and hence are not able to provide any performance
guarantee on the forecasting accuracy or speed of learning.
In contrast, Trend-Caching utilizes the similarity information
only when the confidence is sufficiently high. As a result,
Trend-Caching provides a rigorous performance guarantee on
the popularity forecasting performance as well the cache hit
rate. In particular, we prove that the performance loss incurred
by Trend-Caching due to uncertainty is sublinear in the number
of received content requests, compared to the optimal oracle
caching scheme that knows the future popularity of all content.
This implies that Trend-Caching is able to achieve the optimal
performance asymptotically.

Table I summarizes the difference of Trend-Caching from
existing works on cache replacement with popularity estima-
tion.

III. SYSTEM OVERVIEW

A. Architecture
Fig. 1 illustrates the overall architecture of Trend-Caching.

It shows that our Trend-Caching algorithm can be deployed in

TABLE I
COMPARISON WITH EXISTING WORKS ON CACHE REPLACEMENT WITH

POPULARITY ESTIMATION.

Trend-Caching
(This paper) [25] [24] [22] [23]

Model-free Yes No No No No
Online/offline learning Online Online Offline Offline Online

Performance guarantees Yes Yes No No Yes
Tracks changing trends Yes No Retrains Yes Yes

Time complexity Log Linear Linear Log Polynomial

a variety of caching scenarios. Since the complexity of Trend-
Caching is relatively low, it can even be deployed on devices
with limited storage space and computation power, such as
wireless access points which provide content caching capa-
bility support. The Trend-Caching can be easily configured
such that it can be deployed in servers/access points having
different computation/storage capacities. Since caching nodes
make caching decisions in a distributed way, they can use
different configurations and parameters.

Several cache servers are set up in different locations to
serve local users with content from their local cache. When a
requested content does not exist in its local cache, the cache
server forwards the request to back-end storage servers or other
cache servers. According to the decision of cache replacement
algorithm, the cache server may keep a copy of the content
in its local cache and drop old content to make room for the
new one.

���������������� �

����-�

-��-���

����������

-��-��������
��-����������

������������������

��-����
�������

-��-���

 	������
��-����������
������������

������-���

������-���
������-���

������-���

Fig. 1. Overall architecture of Trend-Caching. Since Trend-Caching has
low complexity, it can even be deployed on devices with limited hardware
resources, such as access points.

For economic and operational considerations, service
providers may only have their storage servers deployed at a
limited number of locations, or even in only one location.
To provide services with high quality, they set up their own
caching systems at multiple locations or use 3rd-party caching
services to deliver their content to end users.

The modules of a single trend-aware cache node is depicted
in Fig. 2. In addition to the basic modules (i.e. Cache
Management, Local Cache, and Request Processor) in a
conventional cache node, the trend-aware cache node also
implements Feature Updater, Learning Interface, and two
databases (i.e. Feature Database and Learning Database) to
enable the learning capability.

4

• The Feature Updater module is responsible for updating
the raw features (e.g. the view count history) of a content,
which is stored in the Feature Database. These features
will be used to generate the context vector of a content
request, which captures the situation under which the
request is made. For instance, the context vector may
include the number of times the content is requested in
the last hour, the last day or the last week.

• The Learning Interface module implements the Trend-
Caching algorithm. For each request, the Learning In-
terface is invoked twice. When a reqeuest is received,
the Learning Interface decides whether to store the re-
quested content into local cache based on the forecasted
popularity of content. After the popularity of the content
is revealed, the Learning Interface updates the Learning
Database which maintains the mapping from the context
space to the popularity space.

7#��D��DCI�CI�

4�F-�+I�3*D��++D*�

1�8*C#C!M
�CI�* 8���

1D�8A��8�"��

/�8I-*�M
-8I898+��

��
�8�"��28C8!�B�CI�

5*�C���8�"#C!�

1�8*C#C!�
-8I898+��

��

��

/�8I-*�M
6E�8I�*�

��

��

	�
� /�

�� -�

�

��
��

��

��

��

5*#!!�*�
7#��D�*�F-�+I+�

�CI�* 8���L �
+ID*8!��+�*.�*+�
8C��C�#!"9D*�

CD��+���

�CI�* 8���L �
C�#!"9D*�

CD��+�

Fig. 2. Modules of a single cache node in a caching system. A typical work
flow is also presented.

Remark: The learning algorithm forecasts the future popu-
larity of a requested content based on the context information
of the request. We limit the context vector to contain only
recent activities but not the full access history of the requested
content. In this way, outdated information is eliminated and
thus the learning algorithm is able to track changes more
quickly. Therefore, Feature Database is not necessarily a
persistent database. In our implementation, a sliding window
is used to filter out outdated data.

B. Operational Principles

Each content request involves three sequential procedures.
First, when a request arrives to the cache node, Trend-Caching
updates the Feature Database to keep up-to-date features of
the requested content. Second, Trend-Caching sends a query
to the Learning Database with the request’s context vector
to get a popularity forecast of the requested content, based
on which the caching decision is made. Third, when the real
popularity of the content is revealed after the request has been
served, Trend-Caching learns the relationship between the

context vector and the popularity of content and then encodes
this knowledge into the Learning Database. Such knowledge
will be used in future requests for content with similar context
vectors. The detailed operations of the trend-aware cache node
are described below. However, we note that our main focus is
on the modules that enable the learning capability.
• Update:

1) A request from an end user is received by the
Request Processor.

2) The Request Processor initiates an update procedure
with information of the received request.

3) The Feature Updater calculates the latest feature
values and writes them into the Feature Database.

• Query:
4) The Cache Management module reports whether the

requested content is in local cache.
5) If the requested content is not found, the Trend-

Caching algorithm decides whether or not to cache
the content.

6) The Trend-Caching algorithm extracts the context
vector from the Feature Database.

7) The Trend-Caching algorithm searches the Learning
Database with the context vector to forecast the
popularity of the requested content.

8) The algorithm may also consult other cache nodes
about their popularity estimations for the same
request.

9) The Trend-Caching algorithm makes a caching de-
cision based on the forecasted popularity of the
content.

A) Based on the caching decision, the requested content
is either cached locally or not (e.g. the node acts as
a proxy, or redirects the user to another server).

B) If the content is decided to be cached, Cache Man-
agement module obtains the content from upstream
servers, push the content into the local cache, and
removes staled items from the local cache.

C) The request is served.
• Learn:

D) The Request Processor triggers a learning process.
E) The Trend-Caching algorithm extracts the context

vector and revealed popularity from the Feature
Database.

F) Trend-Caching updates the Learning Database with
the context vector and revealed popularity.

IV. SYSTEM MODEL

Consider the setting where a content provider has a set
of video content C = {1, 2, ..., C} that can be requested by
end users.1 In practice, this set may be very large and we
may have millions of content. The caching system aims to
offload requests to its local cache at its best effort. In this
paper, we first focus on the single-node case where each cache
node operates independently. The multiple-node case where

1While we use C to denote the total number of content, it is used for
theoretical analysis and our algorithm does not need to know this number.

5

inter-node communication is allowed will be discussed later
in Section VII. Let s < C be the capacity of the node, i.e., the
maximum number of content the node can store in its local
cache. We assume that all content are of the same size,23

so the node can hold up to s content. We denote requests
for content by Req = {req1, req2, ..., reqk, ..., reqK}, which
come in sequence. Each request in this set is represented by
reqk = 〈c(k), x(k), t(k)〉,∀1 ≤ k ≤ K, where c(k) ∈ C is
the content being requested, t(k) is the time of the request
(e.g. when the end user initiates the request), and x(k) is
the context vector of the request. The context x ∈ Rd is a
d-dimensional vector that describes under what circumstance
the request is made, which may include features like the user’s
profile, the property of the requested content, and system
states. For example, we may use the number of times c(k)
being requested during the last hours and the number of
times c(k) being requested during the last day to form a 2-
dimensional context vector for each request. Without loss of
generality, we normalize the context and let x ∈ [0, 1]d , X .

For each coming request reqk, we first check if it can be
handled by the node’s local cache. Formally, let Yk(c(k)) ∈
{0, 1} represent whether content c(k) is in the local cache
at the time when reqk needs to be served. For instance,
Yk(c(k)) = 1 means that reqk can be served by the
local cache. Furthermore, we use a binary vector Yk =
[Yk(1), Yk(2), ..., Yk(C)] to denote the whole cache status at
time t(k), where Yk(c) is the c-th element in Yk. We want to
emphasize that Yk is only used for analysis and our algorithm
does not require storing the whole Yk.

When c(k) is not found in the local cache, the node
retrieves it from the storage servers and decides whether
to store c(k) in its local cache. Specifically, the node may
replace an existing content with the new content c(k). Let
cold(k) ∈ {c : Yk(c) = 1} denote the old content that is
replaced by c(k). Hence, the cache status vector is changed
to Yk+1 according to the following equation:

Yk+1(c) =

0 if c = cold

1 if c = c(k)

Yk(c) otherwise

A caching policy prescribes, for all k, whether or not
to store a content c(k) that is not in the local cache and,
if yes, which existing content cold(k) should be replaced.
Formally, a caching policy can be represented by a function
π : ({0, 1}C , C,X) 7−→ {0, 1}C that maps the current cache
status vector, the requested content and the context vector of

2This same size assumption can be justified as follows: each content is split
into chunks of a fixed size and each chuck is then considered as a content.
This is a common practice in real world systems and we use this assumption
to simplify the theoretical analysis. We want to emphasize that our algorithm
can also be used to cache unequal-sized chunks, e.g. using evicting strategy
in [32].

3Chunks that belong to the same video may have strong mutual dependency
in their access patterns (e.g. users will request these chunks in sequence).
Our algorithm can fully utilize this dependency because the context vectors
of these chunks will have similar values, which will lead to similar forecasted
popularity.

TABLE II
NOTATIONS USED IN PROBLEM FORMULATION AND TREND-CACHING

ALGORITHM.

c, c(k), C, C content, content requested in the k-th request,
set of all content, total number of content

reqk , Req k-th request, set of all requests
K number of requests
s capacity of the local cache

t(k) time when the k-th request is initiated

x, x(k), X context vector, context vector of the k-th request,
context space (x ∈ X)

Yk, Yk(c)
size C binary vector describing the cache status,
c-th element in Yk indicating whether c is cached

H(K,π), H(π)
cache hit rate of the first K requests under
policy π, long-term cache hit rate under π

d dimension of the context space (X = [0, 1]d)
φ time interval between popularity re-estimations

θ
time between receiving a request and learning
from it

π(Y |c, x) caching strategy that describes how local cache
is updated after serving a request with context x

π∗, π0 the optimal policy, Trend-Caching

Mk, M̃k
request rate of content c(k) ,
forecasted request rate of content c(k)

Msort
i , M̃sort

i
request rate of the i-th popular content,
forecasted request rate of the i-th popular content

Q
priority queue that stores all cached content
in increasing order of their popularity

cleast, M̃ least top element in Q, forecasted request rate of cleast

Pi, P(k)
hypercube, partition of the context space when
processing the k-th request

li level of hypercube Pi

P ∗(k) the hypercube that x(k) belongs to

M(Pi), N (Pi)
variable that counts the sum of request rate in Pi

variable that counts the number of requests in Pi,

ζ(li), z1, z2
threshold for hypercube splitting (ζ(li) = z12z2·li),
algorithm parameter, algorithm parameter

Nthresh
threshold in Collaborative Trend-Caching, for
deciding whether to consult neighbor nodes

the request to the new cache status vector. Whenever a request
reqk is served, the cache status is updated according to π:

Yk+1 = π(Yk|c(k), x(k)) (1)

To evaluate the efficiency of the caching system, we use
cache hit rate H(K,π), which is defined as the percentage of
requests that are served from the local cache up to the K-th
request. In addition, H(π) denotes the long-term average hit
rate, which is defined as follows:

H(π) = lim
K→∞

H(K,π) = lim
K→∞

1

K

K∑
k=1

Yk(c(k)) (2)

In this way, H(π) describes how the caching system performs
in the long term by adopting the caching policy π. Note that
even though π is not explicitly written on the right hand side
of (2), the evolution of the cache status vector Yk is governed
by π.

Our objective is to find a policy π that maximizes the overall
cache hit rate so that we achieve the highest cache efficiency.

π∗ = arg max
π

H(π) (3)

A summary of notations is presented in Table II.

6

1: procedure PROCESSONEREQUEST(reqk)
2: Update the feature database for c(k)
3: if c(k) is in the local cache then
4: Serve the end user from the local cache
5: else
6: Fetch c(k) from the storage servers
7: Serve the end user with c(k)
8: Extract x(k) from the feature database
9: M̃k ← Estimate(x(k))

10: 〈M̃ least, cleast〉 ← the top element in Q
11: if M̃k > M̃ least then . update local cache
12: Remove the top element from Q
13: Insert 〈M̃k, c(k)〉 into Q
14: Replace cleast with c(k) in the local cache
15: end if
16: end if
17: if k mod φ = 0 then
18: Re-estimate the request rate for all content in Q
19: Rebuild the priority queue Q
20: end if
21: c(k)’s popularity Mk is revealed after time θ
22: Run Learn(x(k), Mk)
23: end procedure

Fig. 3. Procedure of processing a single request. Learn and Estimate are
two procedures defined in Section V-B.

V. TREND-CACHING ALGORITHM

A. Algorithm Overview

The Trend-Caching algorithm is presented in Fig. 3. For
each incoming request reqk, we first extract the features of the
request and update the Feature Database module. Specifically,
we use a sliding window to log the recent access history of
each content. We then examine the local cache to see whether
the requested content c(k) has already been cached. If c(k)
exists in the local cache, then the end user is served using
the content copy in the local cache; otherwise, we fetch c(k)
from the storage servers to serve the end user. In the second
case, Trend-Caching makes a forecast on the future popularity
of c(k) and decides whether or not to push c(k) in the local
cache and which existing content should be removed from the
local cache. To do this, Trend-Caching extracts the context
vector x(k) associated with the current request from the
Feature Database and issues a forecast of the request rate for
c(k), denoted by M̃k, using the popularity forecast algorithm
that will be introduced in the next subsection. Then, Trend-
Caching compares M̃k with the popularity estimate of the least
popular content already in the local cache, denoted by M̃ least.
To quickly find the least popular content, Trend-Caching
maintains a priority queue Q that stores the cached content
along with their estimated request rates. The top element of
Q is simply the least popular content. If M̃k > M̃ least, then
Trend-Caching replaces the least popular content cleast with
c(k) in the local cache and updates Q accordingly; otherwise,
Trend-Caching does nothing to the local cache. To keep the
popularity estimates of content in the local cache up to date,
Trend-Caching periodically updates the forecast for the cached
content after every φ requests.

1: procedure LEARN(x(k),Mk) . Learn from reqk
2: Determines P ∗(k) that x(k) belongs to
3: N (P ∗(k))← N (P ∗(k)) + 1
4: M(P ∗(k))←M(P ∗(k)) +Mk

5: SPLIT(P ∗(k))
6: end procedure
7: procedure ESTIMATE(x(k)) . Estimate M̃k

8: Determines P ∗(k) that x(k) belongs to
9: return M(P ∗(k))/N (P ∗(k))

10: end procedure
Fig. 4. Procedures of Learn and Estimate for a single request.

1: procedure SPLIT(Pi)
2: if N (Pi) ≥ z12z2·li then
3: Split Pi into 2d hypercubes {Pj}
4: Set M(Pj)←M(Pi) for each Pj
5: Set N (Pj)← N (Pi) for each Pj
6: Set level lj ← li + 1 for each Pj
7: end if
8: end procedure

Fig. 5. The procedure of adaptive context space partitioning.

B. Popularity Forecasting

Each request reqk is characterized by its context vector
x(k) of size d and hence, it can be seen as a point in the
context space X = [0, 1]d. At any time, the context space X
is partitioned into a set of hypercubes P(k) = {Pi}. These
hypercubes are non-overlapping and X =

⋃
Pi∈P(k) Pi for

all k. The partitioning process will be described in the next
subsection. Clearly, x(k) belongs to a unique hypercube in the
context space partition, denoted by P ∗(k). For each hypercube
Pi ∈ P(k), we maintain two variables N (Pi) and M(Pi) to
record the number of received requests in Pi and the sum of
the revealed future request rate for those requests, respectively.
The forecasted future popularity for requests with contexts in
this partition Pi is computed using the sample mean estimate
M̃(Pi) =M(Pi)/N (Pi).

The popularity forecasting is done as follows. When a
request reqk with context x(k) is received, Trend-Caching
first determines the hypercube P ∗(k) that x(k) belongs to in
the current partitioning P(k). The forecasted popularity for
reqk is simply M̃(P ∗(k)). After the true popularity Mk of
the content of reqk is revealed, the variables of P ∗(k) are
updated toM(P ∗(k))←M(P ∗(k))+Mk and N (P ∗(k))←
N (P ∗(k))+1. Depending on the new value of N (P ∗(k)), the
hypercube may split into smaller hypercubes and hence, the
partitioning of the context space evolves. The next subsection
describes when and how to split the hypercubes.

C. Adaptive Context Space Partitioning

This subsection describes how to build the partition P
as requests are received over time. Let li denote the level
of a hypercube Pi which can also be considered as the
generation of this hypercube. At the beginning, the partition
P contains only one hypercube which is the entire context
space X and hence, it has a level 0. Whenever a hypercube
Pi accumulates sufficiently many sample requests (i.e. N (Pi)
is greater than some threshold ζ(li)), we equally split it along

7

#"reqs"during"the"last"hour"
10# 20# 30#

Popularity+forecas0ng+ Learning+

M(P*(k)) + = Mk

N (P*(k)) + = 1

Trend2Caching"receives"a"
request"with"context"x(k)"

hypercube"

M(P*(k))

 N (P*(k))

P*(k)

!Mk =
M(P*(k))
N (P*(k))

Split"if"there"
are"enough"
samples"

The"hypercube"
is"divided"into"
2d"smaller"ones#

The+original+context+space+ The+new+par00on+

Fig. 6. An illustration of popularity forecasting and adaptive context space partitioning in which, for illustration purposes, we suppose that the context space
is two-dimensional (d = 2).

each dimension to create 2d smaller hypercubes. Each of these
child hypercubes Pj has an increased level of lj ← li + 1
and inherits the variables M(Pi) and N (Pi) from its parent
hypercube, i.e. M(Pj)←M(Pi) and N (Pj)← N (Pi). Due
to this splitting process, a hypercube of level li has length 2−li

along each axis.
The threshold ζ(li) determines the rate at which the context

space is partitioned. On one hand, if we partition the context
space very slowly, then each hypercube will cover a large area
in the context space (e.g. in the extreme case, the context
space never splits). The popularity estimate of a hypercube
can be very inaccurate since the requests in this hypercube
can be very different. On the other hand, if we partition
the context space very quickly, then each hypercube covers
a very small area in the context space (e.g. in the extreme
case, each context point is a hypercube and hence the context
space has a infinite number of hypercubes). The popularity
estimate of a hypercube can be very inaccurate as well since
the number of requests in the hypercube is small. Therefore,
ζ(li) must be carefully designed in order to obtain an accurate
popularity forecast. Inspired by [21] and [33], we design ζ(li)
to have the form z12z2·li , where z1 > 0 and z2 > 0 are
two parameters of the algorithm. In Section VI, we will show
that by carefully selecting the parameters, Trend-Caching can
achieve the optimal performance asymptotically. The detailed
algorithm of adaptive context space partitioning is shown in
Fig. 5.

As a simple illustration, Fig. 6 shows how Trend-Caching
makes a forecast of the popularity of a requested content,
learns from that request after its popularity is revealed, and
updates the partition of the context space accordingly.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the Trend-
Caching algorithm. We first bound the popularity forecasting
error, and then use it to derive the bound on the overall cache
hit rate H(π).

A. Upper Bound on the Popularity Forecast Error
To enable rigorous analysis, we make the following widely

adopted assumption [34] [35] that the expected popularity of
similar content are similar. This is formalized in terms of a
uniform Lipschitz continuity condition.

Assumption 1. (Uniform Lipschitz continuity) There exists a
positive real number β > 0 such that for any two requests k
and k′, we have E|Mk −Mk′ | ≤ β||x(k)−x(k′)|| where || · ||
represents the Euclidean norm.

We now bound the forecast error made by the Trend-
Caching algorithm. The proof can be found in Appendix B.

Proposition 1. The expected total forecast error for the first
K requests, E

∑K
k=1 |M̃k−Mk|, is upper bounded by Õ(Kµ)

for some µ < 1. If we choose z2 = 0.5, then µ = d
d+0.5 .

The error bound proved in Proposition 1 is sublinear in K,
which implies that as K →∞, E

∑K
k=1 |M̃k −Mk|/K → 0.

In other words, Trend-Caching makes the optimal prediction
as sufficiently many content requests are received. The error
bound also tells how much error would have been incurred
by running Trend-Caching for any finite number of requests.
Hence, it provides a rigorous characterization on the learning
speed of the algorithm.

B. Lower Bound on the Cache Hit Rate

In the previous subsection, we showed that the popularity
forecast error is upper-bounded sublinearly in K. In this sub-
section, we investigate the lower bound on the cache hit rate
that can be achieved by Trend-Caching and the performance
loss of Trend-Caching compared to an oracle optimal caching
algorithm that knows the future popularity of all content.

We first note that the achievable cache hit rate H(π)
depends not only on the caching policy π but also the access
patterns of requests. For instance, a more concentrated access
pattern implies a greater potential to achieve a high cache hit
rate. To bound H(π), we divide time into periods with each
period containing φ requests 4. In the m-th period (i.e. requests
k : mφ < k ≤ (m + 1)φ), let Msort be the sorted vector of
the popularity of all content in {k : mφ < k ≤ (m + 1)φ}.
The normalized total popularity of the j most popular content
in this period is thus

∑j
i=1M

sort
i∑C

i=1M
sort
i

. Recall that C is the total
number of content files. Let the function

f(j) = 1−
∑j
i=1M

sort
i∑C

i=1M
sort
i

. (4)

4For analysis simplicity, we assume that K is a multiple of φ. Generaliza-
tion is straightforward.

8

be the normalized total rate of the (C − j) least popular
content. Clearly, f(j) is a monotonically decreasing function
and f(C) = 0. Note that (1) in different periods, f(j) can
be different; (2) we do not make any assumption on the
popularity distribution and 1− f(j) is simply the probability
mass function of Msort.

The next proposition connects the popularity forecasting
error to the achievable cache hit rate. The proof again can
be found in Appendix C.

Proposition 2. For any time period m, if the popularity
forecasting error satisfies |M̃sort

i − Msort
i | ≤ ∆M, ∀i ∈

{1, 2, ..., C}, then the achieved cache hit rate is at least
1− f(s)− 2s

φ −
2s·∆M∑C
i=1M

sort
i

in that period.

To understand the bound in 2, we split it into two parts.
The first part 1−f(s)− 2s

φ depends on the access pattern f(·)
and the cache capacity s but not the forecasting error ∆M .
Therefore it represents how well a caching policy can perform
in the best case (i.e. when it makes no popularity forecasting
errors). As expected, if the access pattern is more concentrated
(i.e. f(s) is smaller), the cache hit rate is higher. When the
period φ is sufficiently long, then as the cache capacity s→ C,
the cache hit rate (1 − f(s) − 2s

φ) → 1. The second part
2s·∆M∑C
i=1M

sort
i

measures the cache hit rate loss due to popularity
forecasting errors. A larger forecasting error ∆M leads to a
bigger loss.

By combining Proposition 1 and Proposition 2, we show in
Theorem 1 that Trend-Caching achieves the optimal perfor-
mance asymptotically.

Theorem 1. Trend-Caching achieves a cache hit rate that
asymptotically converges to that obtained by the oracle opti-
mal strategy, i.e., EH(π∗) = EH(π0). 5

Proof. Since f(j) and ∆M may vary among different time
periods, we now use fm(j) and ∆Mm to denote their cor-
responding values in the m-th period. Let M inf be the
infimum of

∑C
i=1M

sort
i over all time periods. According to

Proposition 2 and utilizing φ� s:

E(H(π∗)−H(π0)) ≤ lim
K→∞

φ

K
E

K
φ −1∑
m=0

2s ·∆Mm∑C
i=1M

sort
i

≤ lim
K→∞

2sφ

K
· E
∑K
k=1 |M̃k −Mk|

M inf

= lim
K→∞

Õ(K
d

d+1/2)

K
= 0 (5)

C. Complexity of Trend-Caching

Both time complexity and space complexity are very impor-
tant design considerations of Trend-Caching. In this section,
we provide the complexity analysis of Trend-Caching and
discuss practical issues.

5We have made an implicit assumption here that all requests during a time
period is randomly distributed. Hence it is less likely to see consecutive
requests for unpopular content and the best caching strategy π∗ is to just
store the most popular ones during that period.

We analyze the time and space complexity of Trend-
Caching in this subsection. For the k-th request, the amor-
tized time complexity for updating Features Database,
querying Learning Database, updating Learning Database,
and operating the priority queue are O(1), O(log k),
O(log k), and O(log s), respectively. The re-estimation pro-
cedure adds a O(s log k) time complexity every φ requests.
Hence the amortized time complexity for each request is
O((2 + s/φ) logK + log s+ 1) ≈ O(logK). This complex-
ity can be reduced to O(log s) if we stop splitting hypercubes
at a certain level. In this case we trade off time complexity with
performance: the long-term cache hit rate will not converge to
the optimum; instead it will stay within a small range near the
optimum.

The space complexity of Trend-Caching is slightly more
difficult to analyze. In general, there are two procedures that
require large memory space, one is to store the learned knowl-
edge to Learning Database, and the other is to keep the access
history of active videos to Feature Database. For Learning
Database, the worst-case space complexity is O(K

d
d+z2),

which is derived for the case where context vectors have
uniformly distributed values. The best-case space complexity
is O(logK), which is derived for the case where all requests
have similar context vectors. Since the value in a context
vector already represents the density of the distribution, in a
real system the context vector will always follow a nonuniform
distribution, and the complexity should be closer to O(logK).
For Feature Database, its complexity is linear in the number
of active videos that are recently requested. Although this
complexity depends on access patterns of all videos and is
hard to analyze, it is clear that it does not increase as more
requests are observed. As a result, the overall space complexity
is approximately O(logK) in the long-term.

In practice, if space and search complexity are a concern,
one can easily implement an extension of Trend-Caching in
which the context space is partitioned up to a certain level
(i.e. once a hypercube reaches a predefined smallest size, the
splitting stops). In this way, the storing and searching com-
plexity is bounded. This extension may reduce the forecasting
performance since learning is stopped at a certain point but the
performance loss will be very small if the terminal hypercube
is small enough.

VII. MULTIPLE CACHE NODES

A real world caching system usually consists of multiple ge-
ographically distributed nodes. In such a setting, we may run a
Trend-Caching instance on each node separately, which should
provide good performance since the analysis in Section VI
is still effective for each node. However, the similarity of
access patterns among different nodes is not exploited if each
cache node operates separately, which could lose potential
performance. In this subsection, we extend Trend-Caching
and propose Collaborative Trend-Caching (CoTrend-Caching)
to utilize this similarity by allowing limited communications
between nodes, i.e. step 8 in Fig. 2.

The idea is to let each cache node not only searches its
own Learning Database but also consults neighbor nodes
when the node is not confidence with its local estimation,

9

4�����

4�����

4���	�

 � ����������������������

��
4�����43��1����.��34����.�����4�����
�.��24���43����3������2���43��

��
4�����43��1�������3�421��.4��3�
34���4�.����.�3����3�����

��
4�������2�2������.��34����.���
�����3����24���43����3������1���
�

4�����2��������.�������43�
������43��4�.�14�1��3����24���
����2���43���
�

4�������������.�����������

Fig. 7. Basic idea of CoTrend-Caching.

1: procedure ESTIMATEEX(x(k)) . Extended estimation
2: Determines P ∗(k) that x(k) belongs to
3: if N (P ∗(k)) ≤ Nthresh then
4: NB1 ← NB(P ∗(k))
5: NB2 ← a random cache node except NB1

6: Sends x(k) to NB1 and NB2

7: Obtains M1, N1 from NB1

8: Obtains M2, N2 from NB2

9: if N2 > N1 then
10: (N1,M1,NB1)← (M2,N2,NB2)
11: end if
12: NB(P ∗(k))← NB1

13: return
M1 +M(P ∗(k))

N1 +N (P ∗(k))
14: else
15: return M(P ∗(k))/N (P ∗(k))
16: end if
17: end procedure

Fig. 8. Procedure of the extended Estimate for multi-node case.

e.g. very little similar requests have been observed. In this
way, a better popularity forecast can be made. The consulted
node will provide the consulting node with popularity estimate
based on its own experience but not update its own Learning
Database. The reason is that the consulted node does not have
the realized popularity of this requested content to update its
Learning Database. The final decision is then made according
to both estimation sources.

To help a node find good neighbors, each time two neighbor
nodes are consulted, and the one with higher confidence
is remembered. The next time the node will consult the
remembered neighbor node and a randomly picked node. This
procedure is illustrated in Fig. 7. More specifically, we add
a variable NB to each hypercube to track the last chosen
neighbor and initialize it to any possible neighbor node. Let
NB(P ∗(k)) denote the variable NB in the hypercube that
x(k) belongs to. When a new request is received, the cache
node extracts the context vector of the request and finds the
hypercube P ∗(k) in the same way as normal Trend-Caching.
The algorithm then selects two different neighbor nodes to
consult. The first node NB1 is NB(P ∗(k)) and the second
node NB2 is randomly chosen from all available nodes except

NB(P ∗(k)). For each of these two nodes, the algorithm sends
the context vector and requests the value of the two counters
M and N . Upon receiving the consult request, a neighbor
node finds the hypercube according to the context vector
contained in the consult request and returns the values of the
counters M and N in the hypercube. This step is similar to
the normal estimate procedure that we previously described
in Fig. 4, but the difference is that this time a node directly
returns the raw values of the two counters instead of the
estimated popularity. The reason is that we need N as an
indication of the confidence of the popularity estimation: a
larger N means more observed samples and thereby implies
higher confidence. After obtaining the values of the two
counters from both neighbors, the original node stores them
in M1, N1, M2, and N2 respectively. The algorithm then
selects the more confident node and swap all obtained values
between the two neighbors if N2 > N1, so that NB1 always
represents the node that is more confident about its estimation.
After remembering NB1 in the hypercube, the algorithm esti-
mates the future popularity of the requested content by using
information from both local and NB1. Note that, the intention
of CoTrend-Caching is to help increase learning speed by
using information from neighbor nodes. However, while using
this external information, a node’s local estimates may also
be damaged if the requested video has significantly different
popularity distributions between the neighbor node and local.
To avoid this issue and prevent an already confident local result
being polluted during collaboration, a node may choose to
use the external information only when its confidence of local
estimate is low, e.g. N (P ∗(k)) ≤ Nthresh. Fig. 8 presents the
detailed popularity estimation process in CoTrend-Caching.

VIII. EXPERIMENTAL RESULTS

A. Dataset

We use data crawled from movie.douban.com as our main
dataset for the evaluation of Trend-Caching and CoTrend-
Caching. The website movie.douban.com is one of the largest
social platforms devoted to film and TV content reviews in
China. On top of traditional functionalities of a social network
platform, it provides a Rotten Tomatoes-like database, where
a user can post comments (e.g. short feedback to a movie),
reviews (e.g. a long article for a movie), ratings, etc. In our
experiments, we suppose that there is an online video provider
who provides video content to users on movies.douban.com.
To simulate the content request process, we take each comment
on a video content by a user as the request for this content.
More specifically, we assume that every movie comment in
our dataset is a downloading/streaming request towards our
hypothesized video provider and the time when the comment
is posted is considered as the time when the request is initiated.
Even though movie.douban.com may not actually store any
encoded video, using the comment process to simulate the
request process can be well justified: it is common that people
post comments on the video content right after they have
watched it and hence, the comment data should exhibit similar
access patterns to those of content request data observed by
an online video provider.

10

To obtain data from movie.douban.com, we implemented a
distributed crawler to enumerate videos, accessible comments6

and active users (i.e., users who have posted at least one
comment.) To guarantee the correctness of the main dataset,
we also wrote a random crawler to get a small dataset and
cross-checked with the main dataset. As an overview, the
main dataset contains 431K (431 thousand) unique videos,
among which 145K are active (i.e., videos having at least one
comment), 46M (46 million) accessible comments, and 1.3M
active users.

B. Simulator Setup

We build a discrete event simulator according to Fig. 2
and evaluate the performance of Trend-Caching. The context
vector in this experiment has four dimensions (d = 4): how
many times the content is requested during the last 5 hours, 30
hours, 5 days, and 30 days respectively. Besides, there are four
parameters in our algorithm, θ, φ, z1, and z2. The simulation
results presented in this section are all obtained with θ = 1000
seconds, φ = 10000, z1 = 2, and z2 = 0.5 if not explicitly
clarified.

C. Benchmarks

We compare the performance of Trend-Caching with bench-
marks listed below:
• Modified Combinatorial Upper Confidence Bounds

(MCUCB) [25]. The algorithm learns the popularity of
cached content through their view counts and updates the
local cache after serving every U requests. All content
files are ranked according to the estimated upper bound
of their popularity, among which top s content are cached.
There are two parameters in this algorithm, U and F γ .
In our simulations, we set U = 100, which is the same
value used in [25], and F γ = 150. We have tuned F γ by
trying a wide range of values under s = 250 and picked
the best one that achieves the highest cache hit rate.

• First In First Out (FIFO) [36]. The cache acts as a
pipe: the earliest stored content is replaced by the new
content when the cache is full.

• Least Recently Used (LRU) [37]. The cache node
maintains an ordered list to track the recent access of
all cached content. The least recently accessed one is
replaced by the new content when the cache is full.

• Least Frequently Used (LFU) [38]. The cache node
maintains an ordered list to track the numbers of access
of all content. The least frequently used one is replaced
by the new content when the cache is full. Note that
LFU may have very poor long-term performance due to
a cache pollution problem: if a previously popular content
becomes unpopular, LFU may still hold it for a long time,
resulting in inefficient utilization of the cache.

• Least Frequently Used with Dynamic Aging
(LFUDA) [32]. LFUDA is a variant of LFU that
tries to solve the cache pollution problem by maintaining

6A comment may be deleted by its owner or administrators. An inaccessible
comment has a unique ID but cannot be downloaded.

a cache age counter that punishes the access frequency of
old content that is initialized to 0 and updated whenever
a content is evicted. The cached content are ranked
according to the values of their keys. When a content is
requested, its key is updated to the sum of the number
of access and the value of the cache age counter. When
a content is evicted, the cache age counter is updated
to the value of the content’s key. The content with the
lowest rank is replaced by the new content when the
cache is full.

• Optimal Caching. The cache node runs Belady’s MIN
algorithm [39] that achieves theoretically optimal perfor-
mance with hindsight. Note that Belady’s algorithm is
not implementable in a real system due to the fact that it
needs future information.

D. Performance Comparison

Fig. 9 shows the overall average cache hit rates achieved by
Trend-Caching and the benchmark algorithms under various
cache capacity. As can be seen, Trend-Caching significantly
outperforms all the other algorithms in all the simulations. In
particular, the performance improvement against the second
best solution exceeds 100% when the cache capacity is small.
This is because the benchmark algorithms does not take the
future popularity of content into account when making the
caching decisions. They consider only the current popularity
of the content which may differ from the future popularity,
thereby causing more cache misses. Moreover, the benchmark
algorithms treat each content independently without trying
to learn from the past experience the relationship between
popularity and the context information. For instance, when
a content is evicted from the local cache, all knowledge about
this content is lost and cannot be used for future decision
making. Instead, Trend-Caching learns continuously and stores
the learned knowledge into the learning database which can
be utilized in the future. The learning is also refined over
time when more content requests are received. By considering
the future popularity of content, Trend-Caching makes smarter

Cache capacity
101 102 (0.1%) 103 (1.2%) 104 (11.7%)

C
ac

he
 h

it
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal
Trend-Caching
LRU
FIFO
LFU
LFUDA
MCUCB

Trend-Caching

Performance bound
with hindsight

Fig. 9. Cache hit rate under different cache capacity. The percentage number
in brackets along the x-axis is the ratio of the cache capacity to the total
number of content, i.e., s/C.

11

Date
2014-03-01 2014-03-07 2014-05-01 2014-08-09

C
ac

he
 h

it
ra

te

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Optimal
Trend-Caching
LRU
FIFO
LFU
LFUDA
MCUCB

Performance bound
with hindsight

Trend-Caching

Fig. 10. Cache hit rate over time for the first 3 million requests starting from
1 March 2014. Cache capacity is 250 (s = 250). Each point in the figure
represents the percentage of cache hit within the window between itself and
its proceeding point.

decisions on which content should be cached and which
content should be replaced. The advantage of Trend-Caching
becomes greater when the cache capacity is smaller since
more careful caching decisions need to be made. To illustrate
the enormous improvement by adopting Trend-Caching on
reducing the cache storage requirement, consider a common
target cache hit rate of 0.5. In this case, Trend-Caching
requires a cache capacity of 300 while LFU needs a cache
capacity of 3000.

In Fig. 10, we plot the cache hit rate versus the date
that a request is initiated in order to show how the caching
performance varies over time. Each point of a curve in the
figure represents the percentage of cache hit within the time
window between itself and the proceeding point. We draw the
figure for only a time duration of 180 days because afterwards
the cache hit rates of all algorithms converge (except LFU
and LFUDA). Several points are worth noting: (1) On the
first day, all algorithms show similar performance. This is
because the distribution of content popularity is relatively
stable during a single day, thus making it easy to make caching
decisions. Then, the advantage of Trend-Caching becomes
obvious as more requests arrive. In this time, Trend-Caching
successfully learns from the large volume of requests and
hence makes accurate popularity predictions. (2) The cache
hit rate achieved by Trend-Caching shown in this figure is
not always increasing. This is due to the fact that the curve
is generated for a single realization of the request arrival
process. When averaging over a large number of realizations,
the expected cache hit rate is expected to be non-decreasing.
Unfortunately, our dataset lacks a large number of independent
realizations and hence, we are not able to plot such a figure.
Nevertheless, Fig. 10 is still useful to illustrate the learning
behavior of Trend-Caching and its superior performance over
the existing solutions. (3) LFU and LFUDA fail to track
the changing trends of content popularity: the cache hit rate
of both algorithms drop rapidly after a few tens of days.
This is because LFU makes caching decisions using the past
popularity of content which becomes outdated as time goes
by. LFUDA alleviates this problem by introducing a cache
age counter but does not completely eliminate it. In contrast,
Trend-Caching responses quickly to the changes in popularity

TABLE III
CACHE HIT RATE OF TREND-CACHING UNDER DIFFERENT VALUES OF φ.

φ s = 100 s = 1000 s = 10000
102 37.56 63.73 91.05
103 37.57 63.78 91.05
104 37.52 63.95 91.06
105 37.06 63.99 90.97

TABLE IV
NUMBER OF CACHE REPLACEMENT UNDER DIFFERENT CACHE CAPACITY.
LOWER VALUE MEANS THAT LESS NETWORK TRAFFIC IS USED TO PULL

VIDEO CONTENT FROM UPSTREAM SERVERS.

s = 10 s = 250 s = 10000
Trend-Caching 6.4 ×103 118 ×103 237 ×103

LRU 7331 ×103 5179 ×103 795 ×103
FIFO 7407 ×103 5478 ×103 1103 ×103
LFU 7742 ×103 6841 ×103 1676 ×103

LFUDA 7747 ×103 6175 ×103 873 ×103
MCUCB 193 ×103 1495 ×103 220463 ×103
Optimal 855 ×103 1120 ×103 208 ×103

distribution, and therefore maintains a steady cache hit rate.
Table III shows the impact of choosing different algorithm

parameters on the achievable caching performance for various
cache capacity. As we can see, the cache hit rate does not
significantly change even if different φ is used. This is much
desired in practice since the algorithm is robust to different
system settings.

Table IV lists the number of cache replacement that each
algorithm has performed during the simulation. The number
of cache replacement is proportional to the amount of traffic
the cache node has consumed to fetch video content from
upstream servers. Although we do not explicitly consider
it in our objective function, this metric is still importance
because it provides a clear estimation of operational cost
that an algorithm could incur. From the results we see that
Trend-Caching needs very few cache replacement compared to
other algorithms. Trend-Caching even outperforms the optimal
caching strategy when the cache capacity is small. This is not
surprising since the optimal strategy seeks all opportunities to
increase its cache hit rate, which may lead to frequent cache
updates when the cache capacity is small. We also notice
that MCUCB makes a large amount of cache replacement
when the cache capacity is large. This is due to an intrinsic
drawback of the algorithm: when the cache capacity is large
enough that some pieces of cached content get rarely accessed,
the algorithm will replace them with similarly popular ones.
However, if those new pieces of content still receive few
access in the next period, the algorithm will switch again to
other similarly popular ones, possibly the old content that was
replaced in the previous period, thereby generating a lot of
redundant traffic.

To investigate the performance of Collaborative Trend-
Caching in the multi-node case, we set up a six-node environ-
ment and split all requests based on their originated locations.
All nodes run different instances of the same algorithm at
the same time. Requests are dispatched towards the node that
they are geographically close to. Results under this setting
are shown in Fig. 11. Clearly, CoTrend-Caching outperforms

12

Optimal CoTrend-
Caching

 Trend-
Caching

LRU FIFO LFU LFUDA MCUCB

C
ac

he
 h

it
ra

te
 a

t e
ac

h
no

de

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6 Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Fig. 11. Cache hit rate for multi-node case. The six bars in each cluster
represent the cache hit rates on these nodes. The cache capacity of each node
is set to 250.

TABLE V
PERFORMANCE COMPARISON BETWEEN TREND-CACHING AND

COTREND-CACHING. WE LIST THE PROPORTION OF REQUESTS, CACHE
HIT RATES, AND HIT RATE IMPROVEMENT OF EACH NODE. THE

IMPROVEMENT IS CALCULATED AS THE REDUCTION OF HIT RATE GAP
BETWEEN TREND-CACHING AND THE OPTIMAL STRATEGY.

Node 1 2 3 4 5 6
Distribution 0.34 0.13 0.08 0.24 0.11 0.09

Optimal Strategy 57.10 55.74 56.98 56.64 57.11 52.91
Trend-Caching 45.88 42.97 42.89 44.31 43.87 38.94

CoTrend-Caching 46.91 44.64 45.27 45.69 45.72 41.53
Improvement (%) 9.18 13.12 16.90 11.15 13.96 18.54

all other algorithms. To further compare CoTrend-Caching
with Trend-Caching, we list the detailed simulation results in
Table. V. The first row in the table shows the distribution
of requests, i.e. the percentage of number of requests that are
received by each cache node. The following rows represent the
overall cache hit rate for the optimal strategy, Trend-Caching,
and CoTrend-Caching respectively. The last row shows the
improvement of CoTrend-Caching over Trend-Caching. We
calculate the improvement as the reduction of cache hit rate
gap between Trend-Caching and the optimal strategy. E.g.,
on node 1, CoTrend-Caching improves the cache hit rate by
(57.10− 46.91)− (57.10− 45.88)

57.10− 45.79
∗ 100% = 9.18%. From

Table. V we can see that nodes with fewer requests benefit
more from collaboration. For instance, node 3 and node 6 (bold
numbers in the table) receive the least number of requests, and
have the highest cache hit rate improvement. This phenomenon
is expected since the few requests a node receives, the more
information it can gain from collaboration.

Finally, we compare the running speed of Trend-Caching
with the benchmarks in Table VI. In our implementations, all
algorithms are written in pure Python [40] and are single-
threaded. LRU is implemented in ordered dictionary and LFU
in double-linked list with dictionary. All results are measured
on a mainstream laptop with a 2.8GHz CPU. As we can see
in Table VI, Trend-Caching processes more than 20 thousand
requests per second and outperforms both LFU and LFUDA.
This means that Trend-Caching can be integrated into existing
systems without introducing a significant overhead. Note that
constant time algorithms such as LRU have an obvious ad-
vantage in this comparison, but they may not benefit a content
caching system much since in such a system the bottleneck of

TABLE VI
COMPARISON OF RUNNING SPEED (INCLUDING SIMULATOR OVERHEAD)
UNDER DIFFERENT CACHE CAPACITY. RESULTS ARE SHOWN IN NUMBER

OF REQUESTS PER SECOND.

s = 100 s = 10000
Trend-Caching 28.9 ×103 25.8 ×103

LRU 127.9 ×104 72.5 ×104
FIFO 146.3 ×104 86.4 ×104
LFU 24.5 ×103 9.4 ×103

LFUDA 17.3 ×103 5.3 ×103
MCUCB 1.6 ×103 0.7 ×103

Fig. 12. Verification of Assumption 1 by using the real data trace from
movie.douban.com. Each blue point represents a pair of two samples (i.e. k
and k′). Each red dashed line in the figure represents a different value of β,
and we expect all blue points to be below the line.

running speed is usually not the caching algorithm.

E. Verification of Assumption 1

In Assumption 1, we try to bound the maximum expected
difference of two videos’ future request rates (E|Mk −Mk′ |)
based on the Euclidean distance of these two requests’ context
vectors (||x(k) − x(k′)||). To verify if this assumption holds
in practice, we illustrate the relationship between request
rates and context vectors using our dataset. Specifically, we
randomly select 1000 time points in our dataset, and for
each time point, we randomly select 1000 unique videos and
calculate the context vector and future request rate of each
video at each selected time point. When calculating the context
vector and the future request rate, we use the same method
and parameters used in previous experiments. The above data
processing results in a total of 1000 ∗ 1000 = 106 samples,
each sample consisting of a context vector and a realized
future request rate. Next, we construct 106 pairs of samples
by randomly picking samples from the sample pool. For each
pair of samples, we calculate the absolute difference of request
rates and the Euclidean distance of context vectors. The
results are visualized in Fig. 12 with x-axis representing the
Euclidean distance of context vectors (||x(k)−x(k′)||) and y-
axis representing the absolute difference of future request rates
(|Mk −Mk′ |). For a better representation, we use logarithmic
scale for both x-axis and y-axis. In the figure, each blue dot
represents a pair of samples. Since we use the logarithmic
scale in the figure, Assumption 1 is equivalent to the following
statement: there exists a straight line with a 45-degree angle
to the x-axis such that all blue dots are below the line (i.e.

13

log |Mk −Mk′ | ≤ log ||x(k)− x(k′)||+ log β). To verify our
assumption, we draw several red dashed lines in the figure,
each representing a different β. We can see that 99.5% pairs
can be covered with β = 1, and even with a relatively small
β (e.g. 0.1), more than 95% pairs are covered. This result
provides strong evidence to the validity of Assumption 1.

IX. CONCLUSION

This paper proposed a novel online learning approach to
performing efficient and fast cache replacement. Our algorithm
(Trend-Caching) forecasts the trend (i.e., future popularity) of
video content and makes cache replacement decisions based
on forecasted trend. Trend-Caching does not directly learn the
popularity of each content. Instead, the algorithm learns the
relationship between the future popularity of a content and
the context in which the content is requested, thus utilizing the
similarity between the access patterns of different content. The
learning procedure takes place online and requires no a priori
knowledge of popularity distribution or a dedicated training
phase. We prove that the performance loss of Trend-Caching,
when compared to the optimal strategy, is sublinear in the
number of processed requests, which guarantees a fast speed
of learning as well as the optimal cache efficiency in the long
term. We also provide an extension to the original proposed
algorithm, Collaborative Trend-Caching, that can exploit the
trend similarity among multiple locations. Extensive simula-
tions with real world traces validate the effectiveness of our
algorithms, as well as the insensitivity to parameters and fast
running speed.

One future direction is to consider a more complex setting
where multiple parties are involved. In such setting, cache
nodes can be managed by different parties and may have
different configurations and parameters. E.g., a node may
cache only predefined content categories in order to comply
with hardware limitations and caching policies. The challenge
in such scenario is how to design cooperative algorithms that
have low communication complexity and align the interests of
all parties.

APPENDIX A
SOME LEMMAS

Lemma 1. For any request that falls into hypercube P , the
expected estimation error for that request is upper bounded

by β
√
d

2z2 · 2−
√

2
2 +(1−2z2)2(z2−

1
2
)l+4(1−2z2−

1
2)/z1

2lz2 (1−2z2−
1
2)

for l ≥ 1 and

β
√
d for l = 0, where l is the level of P .

Proof. For l = 0, there is only one hypercube, so the estima-
tion error is bounded by E|M̃k −Mk| ≤ β||x(k′)− x(k)|| ≤
β
√
d. For l ≥ 1, since P = P (x(k)) is at level l, it contains

dz12z2e samples at level 0, dz122z2e − dz12z2e samples at
level 1, ..., and NP − dz12z2e samples at level li. Let

∑
k′

denotes the summation over all requests k′ that are in P or P ’s
ancestors, the expected estimation error for reqk is bounded
by

E|M̃k −Mk|
=E |MP /NP −Mk|

=E
∣∣∣∣∑k′Mk′

NP
−Mk

∣∣∣∣

≤
∑
k′ β||x(k′)− x(k)||

NP

=β
√
d

dz12z2e+
∑l−1
i=1(dz12(i+1)z2e − dz12i·z2e)2−i/2

+ ...+ (NP − dz12l·z2e)2−l/2
NP

≤β
√
d
dz12z2e+

∑l−1
i=1(dz12(i+1)z2e − dz12i·z2e)2−i/2

dz12z2e+
∑l−1
i=1(dz12(i+1)z2e − dz12i·z2e)

≤β
√
d
dz12z2e+

∑l−1
i=1(dz12(i+1)z2e − dz12i·z2e)2−i/2

z12l·z2

<β
√
d
z12z2 +

∑l−1
i=1(z12(i+1)z2 − z12i·z2)2−

i
2 +

∑l−1
i=0 2−

i
2

z12l·z2

<β
√
d
z12z2 +

∑l−1
i=1(z12(i+1)z2 − z12i·z2)2−i/2 + 4

z12l·z2

=β
√
d

2z2 · 2−
√

2
2 + (1− 2z2)2(z2− 1

2)l + 4(1− 2z2−
1
2)/z1

2lz2(1− 2z2−
1
2)

=β
√
d · (C1 · 2−z2l + C2 · 2−

1
2 l) (6)

where C1 and C2 are constant numbers that are only related
to system parameters z1 and z2:

C1 =
2z2 · 2−

√
2

2

1− 2z2−
1
2

+
4

z1

C2 =
1− 2z2

1− 2z2−
1
2

APPENDIX B
PROOF OF PROPOSITION 1

Proof. From (6) we know that the upper bound of the expected
estimation error is related to the level of the hypercube, where
higher level leads to smaller error. Consider the worst case
scenario when each coming request always hits the hypercube
with the least level. Let l be the highest level of all hypercubes.
Then there will be dz12z2e samples entering the hypercube
at level 0, 2id(dz12(i+1)z2e − dz12i·z2e) samples entering
hypercubes at level i (1 ≤ i ≤ l − 1), and remaining samples
entering level l.

E
K∑
k=1

|M̃k −Mk|

<β
√
d{dz12z2e+

l−1∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)(C12−z2i + C22−
i
2)]+

(K − dz12z2e −
l−1∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)])·

(C12−z2l + C22−
l
2)}

≤β
√
d{dz12z2e+

l∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)(C12−z2i + C22−
i
2)]}

14

<β
√
d{z12z2 + 1 +

l∑
i=1

[2id(z12(i+1)z2 − z12i·z2 + 1)(C12−z2i + C22−
i
2)]}

<β
√
d{z12z2 + 1 + C1

2d−z2

1− 2d−z2
+ C2

2d−
1
2

1− 2d−
1
2

+

z1(2z2 − 1)[2dC1
2dl − 1

2d − 1
+ 2d+z2− 1

2C2
2(d+z2− 1

2)l − 1

2d+z2− 1
2 − 1

]}

=β
√
d(C3 + C42dl + C52(d+z2− 1

2)l)

≤β
√
d(C3 + |C4|2dl + |C5|2(d+z2− 1

2)l) (7)

Meanwhile, we also derive the relationship between K and l:

K ≥dz12z2e+

l−1∑
i=1

[2id(dz12(i+1)z2e − dz12i·z2e)]

>z12z2 +

l−1∑
i=1

[2id(z12(i+1)z2 − z12i·z2 − 1)]

>[z1(2z2 − 1)− 1]2(d+z2)l (8)

thereby

2l < [z1(2z2 − 1)− 1]−
1

d+z2 ·K
1

d+z2 (9)

By combining (7) and (9) we have:

E
K∑
k=1

(M̃k −Mk)

<β
√
d

(
C3 + |C6|K

d
d+z2 + |C7|K

d+z2−1/2
d+z2

)
(10)

where
C3 = z12z2 + 1 + C1

2d−z2

1−2d−z2
+ C2

2d−
1
2

1−2d−
1
2

C6 = z1
(2z2 − 1)2d

2d − 1
C1[z1(2z2 − 1)− 1]−

d
d+z2

C7 = z1
(2z2 − 1)2d+z2− 1

2

2d+z2− 1
2 − 1

C2[z1(2z2 − 1)− 1]−
d+z2−

1
2

d+z2

The equation shows that the sum of the expected estimation
error is upper bounded by Õ(|C6|K

d
d+z2 + |C7|K

d+z2−1/2
d+z2),

and when we choose z2 = 1
2 , it becomes Õ(K

d
d+1/2).7

APPENDIX C
PROOF OF PROPOSITION 2

Proof. In this proof we only consider the case where the
capacity of cache is smaller than the number of all content,
that is s < C. When s ≥ C, we can just cache all content and
always achieve the best cache hit rate, where our conclusion
in this proof still holds but is not meaningful.

Based on our algorithm, we always try to fill the cache
with the s-most popular content. Normally we would choose
{Msort

1 ,Msort
2 , ...,Msort

s }, but due to estimation error, we
may not correctly choose the s-largest values. Assuming we
have chosen {Msort

i1
,Msort

i2
, ...,Msort

is
} based on the esti-

mated sorting below:

7when z2 = 1
2

the bound actually becomes Õ(K
d

d+1/2 logK), but due
to Õ notation, the logarithmic term is suppressed.

M̃sort
i1 ≥ M̃sort

i2 ≥ ... ≥ M̃sort
is ≥ ... ≥ M̃sort

iC (11)

Since the sum of s-largest elements in a set should be no
less than the sum of any s elements in the set, we have:

s∑
j=1

M̃sort
ij ≥

s∑
i=1

M̃sort
i (12)

According to (4) and M̃sort
i ≥ Msort

i − ∆M , we
know

∑s
i=1 M̃

sort
i ≥

∑s
i=1(Msort

i − ∆M) ≥ (1 −
f(s))

∑C
i=1M

sort
i − s · ∆M , which intuitively means that

we can always find s elements in {M̃sort
i1

, M̃sort
i2

, ..., M̃sort
iC
}

where the sum of them is at least (1 − f(s))
∑C
i=1M

sort
i −

s ·∆M . Combining this with (12), we have
s∑
j=1

M̃sort
ij ≥

s∑
i=1

M̃sort
i ≥ (1− f(s))

C∑
i=1

Msort
i − s ·∆M

(13)
At each time period (e.g. mφ < k ≤ mφ + φ), each

corresponding content of {Msort
i1

,Msort
i2

, ...,Msort
is
} is cached

either before this time period or after its first cache miss.
Hence we bound the worst case cache hit rate during each
time period as

1

φ

mφ+φ∑
k=mφ+1

Yk(c(k))

=

∑s
j=1bMsort

ij
∆t− 1c∑C

j=1M
sort
j ∆t

≥
∑s
j=1(Msort

ij
− 2/∆t)∑C

j=1M
sort
j

≥
∑s
j=1(M̃sort

ij
−∆M − 2/∆t)∑C

j=1M
sort
j

≥
(1− f(s))

∑C
j=1M

sort
j − 2s(∆M + 1/∆t)∑C

j=1M
sort
j

=(1− f(s))− 2s ·∆M∑C
j=1M

sort
j

− 2s

φ
(14)

REFERENCES

[1] S. Ren and M. van der Schaar, “Pricing and investment for online tv
content platforms,” IEEE Transactions on Multimedia, vol. 14, no. 6,
pp. 1566–1578, Dec 2012.

[2] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the impact of video quality on user
engagement,” in Proc. SIGCOMM’11, 2011, pp. 362–373.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. Braynard, “Networking named content,” Communications of the
ACM, vol. 55, no. 1, pp. 117–124, 2012.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[5] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,
“Globally distributed content delivery,” IEEE Internet Computing, vol. 6,
no. 5, pp. 50–58, 2002.

[6] Amazon CloudFront. [Online]. Available: http://aws.amazon.com/
cloudfront/details/

http://aws.amazon.com/cloudfront/details/
http://aws.amazon.com/cloudfront/details/

15

[7] Google Global Cache. [Online]. Available: https://peering.google.com/
about/ggc.html

[8] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[9] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft, “Track glob-
ally, deliver locally: Improving content delivery networks by tracking
geographic social cascades,” in Proc WWW’11, 2011, pp. 457–466.

[10] K. Andreev, B. M. Maggs, A. Meyerson, and R. K. Sitaraman, “Design-
ing overlay multicast networks for streaming,” in Proc. SPAA’03, 2003,
pp. 149–158.

[11] M. Z. Shafiq, A. X. Liu, and A. R. Khakpour, “Revisiting caching in
content delivery networks,” in Proc. SIGMETRICS’14, 2014, pp. 567–
568.

[12] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Over-
lay networks: An akamai perspective,” in Advanced Content Delivery,
Streaming, and Cloud Services, 2014, ch. 16, pp. 305–328.

[13] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. INFOCOM’10, 2010, pp. 1–9.

[14] G. Gursun, M. Crovella, and I. Matta, “Describing and forecasting video
access patterns,” in Proc. INFOCOM’11, 2011, pp. 16–20.

[15] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Communications of the ACM, vol. 53, no. 8, pp. 80–88, 2010.

[16] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance
prediction in peer-assisted on-demand streaming systems,” in Proc.
INFOCOM’11, 2011, pp. 421–425.

[17] Z. Wang, L. Sun, C. Wu, and S. Yang, “Guiding internet-scale video
service deployment using microblog-based prediction,” in Proc. INFO-
COM’12, 2012, pp. 2901–2905.

[18] M. Rowe, “Forecasting audience increase on YouTube,” in Workshop on
User Profile Data on the Social Semantic Web, 2011.

[19] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu, “On popularity prediction of
videos shared in online social networks,” in Proc. CIKM’13, 2013, pp.
169–178.

[20] S. Roy, T. Mei, W. Zeng, and S. Li, “Towards cross-domain learning for
social video popularity prediction,” IEEE Transactions on Multimedia,
vol. 15, no. 6, pp. 1255–1267, 2013.

[21] J. Xu, M. van der Schaar, J. Liu, and H. Li, “Forecasting popularity of
videos using social media,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 2, pp. 330–343, 2015.

[22] Z. Wang, W. Zhu, X. Chen, L. Sun, J. Liu, M. Chen, P. Cui, and S. Yang,
“Propagation-based social-aware multimedia content distribution,” ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions, vol. 9, no. 1, pp. 52:1–52:20, 2013.

[23] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling social media
applications into geo-distributed clouds,” IEEE/ACM Transactions on
Networking, vol. 23, no. 3, pp. 689–702, 2015.

[24] J. Famaey, F. Iterbeke, T. Wauters, and F. De Turck, “Towards a
predictive cache replacement strategy for multimedia content,” Journal
of Network and Computer Applications, vol. 36, no. 1, pp. 219–227,
2013.

[25] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. ICC’14, 2014, pp. 1897–1903.

[26] C. Tekin and M. van der Schaar, “Contextual online learning for
multimedia content aggregation,” IEEE Transactions on Multimedia,
vol. 17, no. 4, pp. 549–561, Feb 2015.

[27] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video popularity dynamics
and its implication for replication,” IEEE Transactions on Multimedia,
vol. 17, no. 8, pp. 1273–1285, Aug 2015.

[28] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical caching
with dynamic request routing for massive content distribution,” in Proc.
INFOCOM’12, 2012, pp. 2444–2452.

[29] H. Li, Y. Le, F. Wang, J. Liu, and K. Xu, “Snacs: Social network-aware
cloud assistance for online propagated video sharing,” in Proc. Cloud’15,
2015, pp. 877–884.

[30] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. INFOCOM’16, 2016.

[31] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[32] J. Dilley and M. Arlitt, “Improving proxy cache performance: analysis
of three replacement policies,” IEEE Internet Computing, vol. 3, no. 6,
pp. 44–50, 1999.

[33] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric
spaces,” in Proc. STOC’08, 2008, pp. 681–690.

[34] A. Slivkins, “Contextual bandits with similarity information,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 2533–2568, 2014.

[35] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: Why it mat-
ters and how to model it,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 5, pp. 5–12, 2013.

[36] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more).” Technical report,
Telecom Paris-Tech, 2011.

[37] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the performance of lru caches under non-stationary traffic
patterns,” arXiv:1301.4909, 2013.

[38] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in Proc. ISCA’10, 2010, pp. 60–71.

[39] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[40] pypy. [Online]. Available: http://pypy.org

Suoheng Li received his B.S. and Ph.D. degrees in
electronic engineering from University of Science
and Technology of China (USTC), Hefei, China, in
2011 and 2016, respectively. From 2014 to 2015,
he was a visiting scholar at UCLA. In 2016, he
joined Yitu Technology, a Shanghai-based startup,
as a researcher. His research interests include mul-
timedia transmission, software-defined netowrking,
and online learning.

Jie Xu received the B.S. and M.S. degrees in
electronic engineering from Tsinghua University,
Beijing, China, in 2008 and 2010, respectively, and
Ph.D. in 2015 from the Department of Electric
Engineering Department, University of California,
Los Angeles (UCLA). He is currently an Assis-
tant Professor at the Department of Electrical and
Computer Engineering, University of Miami, Coral
Gables, USA. His primary research interests include
game theory, online learning and networking.

Mihaela van der Schaar is Chancellor’s Professor
of Electrical Engineering at University of California,
Los Angeles. She is an IEEE Fellow, was a Dis-
tinguished Lecturer of the Communications Society
(2011-2012), the Editor in Chief of IEEE Transac-
tions on Multimedia (2011-2013) and a member of
the Editorial Board of the IEEE Journal on Selected
Topics in Signal Processing (2011). Her research
interests include engineering economics and game
theory, multi-agent learning, online learning, deci-
sion theory, network science, multi-user networking,

Big data and real-time stream mining, and multimedia.

Weiping Li (S’84-M’87-SM’97-F’00) received the
B.S. degree in electrical engineering from University
of Science and Technology of China (USTC), Hefei,
China, in 1982, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1983 and 1988, respectively.
In 1987, he joined Lehigh University, Bethlehem,
PA, USA, as an Assistant Professor with the De-
partment of Electrical Engineering and Computer
Science. In 1993, he was promoted to Associate
Professor with tenure. In 1998, he was promoted to

Full Professor. From 1998 to 2010, he worked in several high-tech companies
in the Silicon Valley (1998-2000, Optivision, Palo Alto; 2000-2002, Webcast
Technologies, Mountain View; 2002-2008, Amity Systems, Milpitas, 2008-
2010, Bada Networks, Santa Clara; all in California, USA). In March 2010, he
returned to USTC and is currently a Professor with the School of Information
Science and Technology.

https://peering.google.com/about/ggc.html
https://peering.google.com/about/ggc.html
http://pypy.org

	Introduction
	Related Work
	System Overview
	Architecture
	Operational Principles

	System Model
	Trend-Caching Algorithm
	Algorithm Overview
	Popularity Forecasting
	Adaptive Context Space Partitioning

	Performance Analysis
	Upper Bound on the Popularity Forecast Error
	Lower Bound on the Cache Hit Rate
	Complexity of Trend-Caching

	Multiple Cache Nodes
	Experimental Results
	Dataset
	Simulator Setup
	Benchmarks
	Performance Comparison
	Verification of Assumption 1

	Conclusion
	Appendix A: Some Lemmas
	Appendix B: Proof of Proposition 1
	Appendix C: Proof of Proposition 2
	References
	Biographies
	Suoheng Li
	Jie Xu
	Mihaela van der Schaar
	Weiping Li

