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Abstract

Demand-side load management is able to significantly improve the energy efficiency of smart grids.
Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an
important incentive problem emerges: self-interested consumers want to increase their own utilities
by consuming more than the socially optimal amount of energy during peak hours since the increased
cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the
socially optimal scheduling actions, we design a new class of protocols based on review strategies.
These strategies work as follows: first, a review stage takes place in which a statistical test is performed
based on the daily prices of the previous billing cycle to determine whether or not the other consumers
schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a
punishment phase in which, for a certain time, they adjust their energy scheduling in such a way
that everybody in the consumer set is punished due to an increased price. Using a carefully designed
protocol based on such review strategies, consumers then have incentives to take the socially optimal
load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of
deploying protocols based on review strategies on the system’s as well as the users’ performance and
determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid
deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis
provides important and useful insights for designing incentive-compatible demand-side management
schemes based on aggregate energy usage information in a variety of practical scenarios.

1 Introduction

Governments and relevant industries are making a significant effort to develop next-generation energy
grids (“smart grid”) which meet new environmental requirements as well as increased usage
demands [1]. To address these challenges, demand-side management (DSM) techniques for smart grids
(see e.g., [1, 2]) were proposed as a way to significantly save energy. In a typical configuration, the
energy producer (e.g., a utility company) periodically receives usage information from the smart meter
affiliated with consumers via a communication network. The energy producer then manages the energy
generation/purchase/transmission and bills the consumer based on this usage information. To save
energy, reduce cost, and increase reliability, the energy producer can use for instance smart pricing to
encourage consumers to transfer peak-hour consumptions to off-peak hours [3].

In this paper, we focus on DSM which operates based on the knowledge of aggregate information of
real-time energy usage of a set of consumers instead of each individual consumer (see Fig. 1). The use
of aggregate information instead of individual consumers’ information may be due to various reasons,



e.g., high cost for large-scale deployment of smart meters for individual houses. Specifically, the utility
company generates/purchases/transmits electricity according to the real-time aggregate usage
information of a set of consumers and charges the consumers for their electricity usage at a price
proportional to the cost due to energy generation/purchase/transmission. Since the cost incurred in
peak hours is higher than that in off-peak hours, the price is higher if consumers schedule more loads in
peak hours. If consumers were cooperative, then such a pricing scheme would result in a socially
optimal load scheduling by the consumers, meaning that the sum utility of consumers is maximized.
However, the self-interested nature of individual consumers imposes some important challenges for the
deployment of such solutions. Because the consumers’ utilities (i.e., the benefit from energy
consumption minus the payment) depend on other consumers’ scheduling actions, an energy
consumption game emerges: self-interested consumers may want to consume more energy in peak
hours while paying a relatively lower cost since this cost is shared among all the participating
consumers. Therefore, a crucial problem for such smart grid systems becomes how to incentivize
individual consumers to perform the socially optimal load scheduling in order to maximize the overall
grid performance. In this paper, we augment existing DSM schemes by proposing a novel technology
which incentivizes consumers to reduce their consumption in peak hours. This technology is general
and can be deployed in conjunction with many DSM schemes proposed in smart grids based on utility
functions so that selfish consumers find it in their self-interest to follow the DSM scheme.

Fig. 1 Smart grid system based on aggregate usage information of a set of consumers

We model participating consumers’ interactions as a repeated game [4] in which the energy
consumption game is played repeatedly (e.g., every day). We assume that the energy delivery system is
deploying a protocol which is designed by the utility company or a third party aiming to maximize the
system efficiency (i.e., the sum utility of the consumers in this paper). Besides designing a smart
pricing scheme that is based on the aggregate usage pattern of the consumers, this protocol designer
also constructs a protocol which recommends a set of scheduling actions to consumers based on the
past prices, which depend on the history of all the consumers’ energy consumption and scheduling.
The protocol designer is only active during the design stage of the protocol and it is passive at run time.
In implementing the protocol, the utility company observes every day the (aggregate) energy
consumption pattern of the consumer set and based on this performs billing every billing cycle. The
consumers use the past prices to determine their future energy consumption scheduling actions in a
self-interested and completely decentralized manner. Note that the protocol designer is passive at run
time, and hence, it cannot oblige the consumers to follow the recommended energy scheduling. The
consumers will only adopt the recommended consumption scheduling if it is in their self-interest to do
so, i.e., if they are better off following the recommended protocol rather than deviating from it. Such a
protocol is called incentive-compatible (IC).

To ensure that the self-interested consumers will take the recommended scheduling actions, a
punishment phase is incorporated in the recommendation of the protocol designer upon observing
deviations. The protocol designer designs review strategy-based protocol which consist of two phases:
the review phase and the punishment phase. (Its operation is depicted in Fig. 2.) In the review phases,
the consumers are recommended to take the socially optimal scheduling actions. At the end of each
review phase, a statistical test is performed (either by the consumers or the utility company) on the
prices announced by the utility company. If the test fails (i.e., there is an evidence that some consumers
did not follow the recommendation), the system goes into a punishment phase in which consumers
perform for a certain time the strongest punishment which can be imposed on a self-interested
consumer. The punishment is implemented by the participating consumers using a different energy
consumption scheduling. In particular, upon a deviation, all consumers shift more of their energy
consumption to peak hours and, hence, the prices for the next billing cycles will be raised. Therefore,
the consumer who deviated will be punished by receiving a low utility.



Fig. 2 Operation of protocols based on review strategies

There are two important points that are worth noting. First, even though the consumers who did not
deviate will also receive low utilities due to the raised prices, the protocol is designed in such a way that
consumers still want to carry out such a punishment. Second, the utilities obtained by the consumers in
the punishment phase are lower than those in the review phase. However, they are the same as in the
scenario where there was no review strategy protocol being deployed. Therefore, the review strategy-
based protocol is guaranteed to achieve better system performance than that which can be obtained
without deploying the protocol. Importantly, the protocol designer needs to carefully design the protocol
such that this punishment does not take place too frequently since it reduces all consumers’ utilities. We
rigorously characterize the performance of deploying review strategies and determine the optimal design
(optimal billing cycle, punishment phase length, etc.) for various smart grid deployment scenarios. It is
also important to note that the proposed review strategy-based protocol can be deployed in conjunction
with any DSM scheme besides the smart pricing scheme which is used for illustration in this paper,
which may take into account find-grained load scheduling (e.g., hourly scheduling). The scheduling
results of any DSM scheduling schemes can serve as the input of our design framework, and the output
is the review strategy-based protocol.

The rest of this paper is organized as follows. In Section 2, related works are discussed. Section 3
models the repeated energy consumption game and formulates the design problem of the DSM with
usage data aggregation. Section 4 formally introduces the proposed incentive protocol based on review
strategies. Section 5 determines the optimal protocol parameters and evaluates its performance. Section
6 provides simulation results. Section 7 concludes the paper.

2 Related works

A main issue for the efficient deployment of smart grids is the design of DSM [5]. A large body of
literature assumes the deployment of smart meters and designs smart pricing schemes to encourage
individual consumers to manage their own loads (e.g., by shifting their energy consumption from peak
hours to off-peak hours). Among them, real-time pricing (RTP) [6], time-of-use pricing (TOUP) [7],
and critical-peak pricing (CPP) [8] represent popular options.

Recent works [3, 9–14] considered consumers’ discomfort costs and aimed to jointly minimize the
consumers’ billing and discomfort costs, by assuming some utility functions. These works can be
classified into two categories. In the first category, consumers are assumed to be price-taking, meaning
that they do not consider how their consumption will affect the prices. In this case, the decision-making
of a single foresighted consumer is formulated as a stochastic control problem aiming to maximize its
long-term utility [11–13]. Alternatively, in [15, 16], multiple myopic consumers aim to maximize their
utility, and their decisions are formulated as static optimization problems among cooperative users.

The second category assumed that consumers are myopic and price-anticipating, meaning that they take
into account how their consumption will affect the prices. In this case, each consumer’s electricity
usage affects the other consumers’ billing costs. These works [3, 17, 18] model the interaction emerging
among myopic consumers as one-shot games and studied the Nash equilibrium (NE) of the emerging
game. In this paper, we also model the consumers as price-anticipating. However, consumers interact
with each other repeatedly and are foresighted, thereby engaging in a repeated game. It is well-known
that the Nash equilibrium in one-shot games with myopic players is often inefficient. In this paper, we
design a novel class of incentive protocols based on review strategies in order to achieve the socially
optimal load scheduling in smart grid systems. Prior work [19] also studied DSM in a repeated game
setting. However, that work assumes that each individual consumer’s action can be perfectly observed,



while in this work, only the aggregate scheduling of a set of participating consumers can be observed
with noise.

This paper adopts a similar pricing method as in [3] where pricing is performed based on the aggregate
usage pattern of a set of consumers and consumers are charged proportional to their total daily energy
consumption. It is argued in [3] that this proportional charging model is consistent with the existing
residential metering models. Nevertheless, our work can be used in conjunction with a variety of existing
DSM scheduling methods [6–8]. Augmenting these methods with our proposed incentive protocols is
especially important when consumers have incentives to deviate from the optimal scheduling given by a
DSM scheme (e.g., when it is performed on the aggregate energy usage information).

The approach proposed in this paper contributes to both the smart grid and the game-theoretic literature
dedicated to engineering applications. Review strategies have been adopted in the principal-agent
games with discounting in [20] in economics, and such games differ significantly from the smart grid
deployment scenario considered in this paper. In [20], the game is played between only two players
(i.e., a principal and an agent). However, in the considered smart grid scenario, there are multiple
players (i.e., a set of consumers) and their utilities exhibit negative externalities.

Table 1 provides a comparison with existing works.

Table 1 Comparison with existing works
Price-taking or Myopic or Model Observe individual

price-anticipating foresighted or aggregate usage
[15, 16] Price-taking Myopic Optimization Individual
[3, 17, 18] Price-anticipating Myopic One-shot game Individual
[19] Price-anticipating Foresighted Repeated game Individual
This work Price-anticipating Foresighted Repeated game Aggregate

3 System model

3.1 Power system

We consider a smart grid system with multiple consumers and one energy producer, e.g., a utility
company. These consumers receive electricity from the same aggregator which distributes electricity to
the consumers. Each consumer is equipped with an energy consumption scheduler (ECS) for
scheduling the household energy consumption. A smart meter is connected to the set of consumers
from which it collects and analyzes the energy consumption. This smart meter gathers (almost)
accurate readings automatically, at requested time intervals, and relays them to the utility company.
Using this information, the aggregator (utility company) can adjust its energy generation, purchase, and
transmission accordingly. The communication between the utility company and the consumers’ smart
meters is done through the local area network (LAN) by using appropriate communication protocols.
Let N denote the set of consumers that share the same aggregator, where the number of consumers is
N . Figure 1 illustrates the system model.

Time is discrete and each time slot represents 1 day. Everyday, there are peak hours when consumers’
energy consumption demand is high and off-peak hours when consumers’ energy consumption demand
is low. Nevertheless, our analysis can be easily extended to include finer-grained demand intensities,
e.g., hourly scheduling. For consumer n ∈ N , we assume that its daily schedulable demand does not
change and is denoted by dn. We also denote the schedulable demand vector of all consumers in the
set N by d. Consumers can schedule these portions of loads in different hours within a day. Since we
consider only peak hours and off-peak hours, we write an as the fraction of load that is scheduled in



peak hours for consumer n and 1 − an as the fraction of its load that is scheduled in off-peak hours
1. Consumers prefer consuming energy in peak hours to off-peak hours. For consumer n, its energy
consumption benefit per day is

bn(an) = B(bpeakandn + boff-peak(1− an)dn) (1)

where bpeak > boff-peak > 0 and B(·) is a benefit function.

The utility company charges the consumers for their electricity consumption at a price
p(Dpeak, Doff-peak) which is set depending on the electricity usage in peak hours and off-peak hours,
where Dpeak =

∑

n andn is the total consumption in peak hours and Doff-peak =
∑

n(1 − an)dn is the
total consumption in off-peak hours. Clearly, Dpeak + Doff-peak =

∑

n dn is the total usage of all
consumers. Let Cpeak(x) and Coff-peak(x) represent the costs of generating and distributing x units of
electricity by the energy source in peak hours and off-peak hours, respectively. The price
p(Dpeak, Doff-peak) is set to be proportional to the average unit cost of electricity generation and
distribution, i.e.

p(Dpeak, Doff-peak) = κ
Cpeak(Dpeak) + Coff-peak(Doff-peak)

Dpeak +Doff-peak
(2)

where κ is the revenue/cost ratio. If κ = 1, then the billing system is budget-balanced and the utility
company charges the consumers only the generating/providing energy costs for the utility (i.e., the utility
company does not make money and it serves simply as a benevolent energy provider). If κ > 1, then
the difference between the total charges to the consumers and the total energy cost represent the profit
made by the utility company. In this paper, the protocol designer is considered to be benevolent and
represent the consumer’s interests rather than maximizing the utility company’s profit. Thus, κ = 1 in
the subsequent analysis.

We make the following standard assumptions on the benefit function and cost functions throughout this
paper.

Assumption 1. (1) The benefit function B(x) is increasing and concave in x. B(0) = 0. (2) The cost
functions Cpeak(x) and Coff-peak(x) are increasing and strictly convex in x. Cpeak(0) = Coff-peak(0) and
C ′

peak(x) ≥ C ′
off-peak(x), ∀x ≥ 0.

Because the smart meter only periodically sends the usage information to the utility company,
monitoring the usage pattern (Dpeak, Doff-peak) is imperfect due to the monitoring noise. Hence, the
price is also a noisy function of (Dpeak, Doff-peak). In particular, we model this by adding a noise term
to the price function

p̂(Dpeak, Doff-peak) = p(Dpeak, Doff-peak) + ε (3)

where ε is induced by the monitoring noise of the usage pattern. Because we assume that the
schedulable demand vector d is fixed, the price p(Dpeak, Doff-peak) only depends on the consumption
scheduling actions a of the consumers. Therefore, we alternatively write the price p(a) as a function of
the scheduling action profile p(a). Note that p(a) is the expected price if a is taken and p̂(a) is the
actual realized price if a is taken in the noisy environment. When consumers are making scheduling
decisions, only p(a) is important since consumers can only compute the expected price but not the
actual price which has not been realized yet.

By taking both energy consumption benefit and payment into consideration, consumer n’s (expected)
utility can be written as 2

un(a) = bn(an)− p(a)dn. (4)



A billing cycle consists of L days. At the beginning of each billing cycle, the consumers determine
the consumption scheduling actions for the next L days. At the end of each billing cycle, the utility
company posts bills as well as the electricity price of the previous cycle. Using the pricing information,
the consumers are able to infer the aggregate daily usage pattern in the last L days. However, since
the price does not perfectly reflect the aggregate usage pattern due to the noise term, the consumers’
knowledge of the aggregate usage pattern is imperfect.

3.2 Energy consumption game: stage game

The consumers’ energy consumption scheduling action profile a determines the price at which the
consumers will be charged, thereby leading to the following non-cooperative game
G = 〈N ,A, {un(·)}n∈N 〉 among consumers. The elements of this game are elaborated below:

• Players: consumers in the set N .

• Actions: each consumer n ∈ N selects its energy consumption scheduling action an ∈ A = [0, 1],
i.e., the fraction of its energy consumption in peak hours 3.

• Payoffs: the utility for consumer n is the benefit obtained by the energy consumption minus
the payment to the utility company as in (4). By separating consumer n’s action from other
consumers’ actions, the utility can also be written as

un(an;a−n) = bn(an)− p(an,a−n)dn (5)

where a−n, by convention, is the action profile of consumers except consumer n.

Since consumers are self-interested, they will want to selfishly maximize their own utilities. We use
Nash equilibrium as the solution concept of this energy consumption game.

Definition 1 (NE). A Nash equilibrium action profile a
NE is such that, ∀n ∈ N , ∀ãn,

un(a
NE
n ,aNE

−n ) ≥ un(ũn,a
NE
−n ).

In NE, no agent can improve its own utility by unilaterally changing its own action. Theorem 1 proves
the existence of NE of the considered energy consumption game.

Theorem 1. There exists at least one NE in the energy consumption game.

Proof. We will show that energy consumption game is a strictly concave N -person game. The existence
of NE for this type of games then directly results from [21].

In order to show that the game is concave, consider any consumer n. We need to show that the utility
function un(a) is strictly concave in an. We investigate the two parts consisting the utility function
separately as follows.

(1) By Assumption 1, we know that B(·) is a concave function. It is then straightforward to see that
bn(an) is concave in an.

(2) Now consider the price term. We perform second-order derivative with respect to an,

∂p(a)

∂a
=

d2n(C
′′
peak(Dpeak) + C ′′

off-peak(Doff-peak))
∑

n dn
> 0 (6)

Hence, the payment term is strictly convex in an.



In sum, un(a) is strictly concave in an. Thus, there exists at least one NE in the energy consumption
game.

It is well known that NE is often not efficient in terms of Pareto-optimality. If an action profile is Pareto-
optimal, then no consumer can gain a higher utility without decreasing at least one other consumer’s
utility by using a different action profile. We provide a formal definition as follows.

Definition 2 (Pareto-optimal (PO)). An action profile a is Pareto-optimal if there does not exist any
other action profile ã such that un(ã) ≥ un(a), ∀n.

Even though a PO action profile a
PO is superior to a

NE, consumers do not have incentives to
automatically adopt this action profile in the energy consumption game since they are self-interested.
This is because for any action profile that is not a NE, there will always be some consumers who want
to schedule a different amount of energy consumption in peak hours to increase their own utilities. In
order to provide incentives for the consumers to play the PO action profile, in this paper, we will design
a protocol that exploits the ongoing nature of consumers’ energy consumption interactions. For
notational simplicity, we denote un(a

NE) as uNE
n and un(a

PO) as uPOn . Before we proceed to that, we
provide a simple example to illustrate the difference between a

NE,aPO, and the inefficiency of aNE.

Example (Two consumers). Consider two consumers: N = 2. Let κ = 1, bpeak = 2, boff-peak = 1,
d1 = d2 = 1 and B(x) = x. The cost functions are simple quadratic functions as in [22]: Cpeak(x) =
x2, Coff-peak = 0.5x2. The utility of consumer n is therefore un(a1, a2) = 1 + an − 0.5[(a1 + a2)

2 +
0.5(2− a1 − a2)

2].

In this two-consumer game example, the unique symmetric NE action profile is aNE
1 = aNE

2 = 2/3.
That is, both consumers schedule 2/3 of their energy consumption in peak hours and no one wants to
unilaterally schedule a different amount since that will only reduce its own utility. Thus, the
corresponding utilities are uNE

1 = uNE
2 = 2/3. However, the sum utility is maximized when both users

choose the action profile aPO1 = aPO2 = 0.5, which is the unique symmetric PO action profile. The
corresponding utilities are uPO1 = uPO2 = 5/4. The sum utility obtained when taking this action profile
is 87.5 % higher than that by taking the NE action profile (i.e., 4/3), thereby indicating the inefficiency
of NE.

3.3 Repeated energy consumption game

In the repeated energy consumption game, consumers play the energy consumption stage game
repeatedly. At the beginning of each billing cycle, the consumers determine the scheduling actions for
this billing cycle based on the previous energy consumption history. Specifically, consumer n
determines atn for t = mL + 1,mL + 2, ..., (m + 1)L at the beginning of billing cycle L based on the
prices ptn, t = (m − 1)L + 1, (m − 1)L + 2, ...,mL of the previous billing cycle. Alternatively,
consumer n can also determine amL+τ

n when day mL+ τ comes. However, because consumers do not
obtain additional information about the past energy consumption histories during one billing cycle (i.e.,
prices are announced only at the end of each billing cycle), these two methods are equivalent for
analysis. In this paper, we consider that consumers determine the scheduling actions at the beginning
of each billing cycle. Consumers do not directly know the energy consumption history of other
consumers. They can only infer this history according to a public signal z ∈ Z . In this paper, the public
signal is binary, representing whether the statistical test is passed or not. Based on this information, the



consumers take actions to maximize their long-term utilities, which is defined as follows

Un = (1− δ)
∞
∑

t=0

δtE{un(a
t)} (7)

That is, the long-term utility is the normalized sum of the discounted expected stage utilities which are
induced by the strategy where the expectation is taken over the probability over different sequences of
action profiles {at}∞t=1.

Figure 3 illustrates the timeline of the system and the decision flow of consumers.

Fig. 3 Timeline and decision flow

3.4 Problem formulation

In this paper, we assume a benevolent designer (i.e., κ = 1) who aims to design a protocol that
maximizes the expected sum utility of all consumers, i.e.,

∑

n

E{un(a)}. Nevertheless, other

performance criteria can also be used in our framework. Formally, the designer wants to achieve an
action profile a

PO that solves the optimization below:

maximize
∑

n un(a)
subject to un(a) ≥ un(a

NE), ∀n
a is Pareto-optimal

(8)

The first constraint requires that no consumer’s utility is decreased by applying such a protocol than
NE. The second constraint requires the solution be Pareto-optimal. To provide consumers with
incentives to take this action profile, the designer designs a protocol that exploits the ongoing
interactions of consumers. Let Ψ denote a protocol and V (Ψ) =

∑

n

E{un(Ψ)} as the protocol

efficiency where E{un(Ψ)} is the expected utility of consumer n if all consumers follow the protocol
Ψ. The protocol design problem is then formally presented as follows

maximize V (Ψ)
subject to Ψ is incentive compatible

(9)

The constraint requires that all consumers have incentives to follow the protocol Ψ.

4 Protocol based on review strategies

A possible incentive compatible protocol is the grim-trigger strategy [4] which uses the strongest
punishment that can be imposed upon deviation. In the trigger strategy, following any point in time at
which there is any evidence that any consumer had deviated from any previous recommendation, the
protocol designer recommends that each consumer consumes afterwards a large amount of energy in
peak hours (i.e., revert to NE action profile forever afterwards). In the two-consumer example, the
protocol designer recommends both consumers to take the PO actions aPO1 = aPO2 = 0.5 in each
billing cycle. If there is a deviation, the protocol designer recommends both consumers to take the NE
actions aNE

1 = aNE
2 = 2/3 forever (i.e., all the way until the consumers unsubscribe from this service).

Therefore, the long-term utility that consumer 1 can receive by following the recommendation is
uPO1 +

∑∞
t=1 δ

tuPOt , and the long-term utility by deviation is ud1 +
∑∞

t=1 δ
tuNE

t where ud1 > uPO1 is the
one-shot utility by deviation. Because uPO1 > uNE

1 , the grim-trigger strategy may provide sufficient
incentives for the consumers to play the PO actions. Since no users want to deviate, the system never
enters the NE equilibrium phase, thereby leading to the highest social welfare. However, if there is



noise in the prices, the designer will determine that some users have deviated by accident almost
surely, and hence, the system will eventually enter the punishment phase with probability one and stay
there indefinitely. This leads to the lowest social welfare. Therefore, a protocol which allows stopping
the punishment after a certain time is needed in such imperfect monitoring scenarios.

4.1 Protocols based on review strategies

In a protocol based on review strategies, there are two types of phases: review phases and punishment
phases. Each review phase consists of one billing cycle. Since the length of the billing cycle is designed
by the protocol designer, the length of a review phase is a design parameter. Each punishment phase
consists of a certain integer number K of billing cycles, and hence, it has KL time slots (i.e., days). The
protocol designer recommends a review strategy σR for all consumers as follows: the recommended
scheduling action profile is aPO for each day in the review phase; the recommended scheduling action
profile is a

NE for each day in the punishment phase. At the end of each billing cycle in the review
phase, a statistical test is performed (either by the consumers themselves or the utility company) on the
prices of the previous cycle to determine whether other consumers followed or not the recommended
strategy. A signal z ∈ Z = {0, 1} is generated based on the test results with z = 1 representing
that all consumers followed the recommended strategy and z = 0 representing that some consumers
deviated from the recommended strategy. If z = 1, the system moves to another review phase; if z = 0,
the system moves to the punishment phase. When a punishment phase ends, the system automatically
moves to a new review phase. This is the protocol based on review strategies depicted in Fig. 4.

Fig. 4 Phase transitions in protocol based on review strategies

Importantly, note that the utilities obtained by the consumers in the punishment phase are lower than in
the review phase and they are the same as in the scenario where there was no review strategy protocol
being deployed. Therefore, the review strategy-based protocol is guaranteed to achieve better system
performance than that which can be obtained without deploying the protocol. However, the designer
still needs to carefully design the protocol such that the system enters the punishment phase as rarely as
possible.

Given this review strategy structure, the protocol can be fully characterized by the length of the review
phase (i.e., the billing cycle length) L, the length of the punishment phase KL and the statistical test G.
Therefore, we write a protocol based on review strategies as Ψ(L,K,G).

In Table 2, we summarize what information the designer and the consumers have and what
computations that they need to perform. Note that when performing appliance level load scheduling,
consumer takes into account the specific electricity demands. However, since the protocol will be
designed to be incentive-compatible, consumers will perform scheduling according to a

PO in the
review phases and according to a

NE in the punishment phases.



Table 2 Information and computation of protocol based on review strategies
The design stage
1. Each consumer reports dn and B(·) to designer.
2. Designer computes aPO and a

NE.
3. Designer determines the protocol φ(L,K,G).
4. Designer informs each consumer about aPO,aNE, p(aPO), and Ψ(L,K,G).

The operation stage (each billing cycle m):
1. Each consumer performs its load schedule atn, ∀t = mL+ 1, ..., (m+ 1)L.
2. Designer determines p̂t, ∀t = mL+ 1, ..., (m+ 1)L based on the actual load schedule.
3. Each consumer is charged according to its load dn and the price p̂t, ∀t = mL+1, ..., (m+1)L at

the end of the current cycle.
4. The statistical test G is performed using p̂t, ∀t = mL+1, ..., (m+1)L to determine which phase

(review or punishment) the next billing cycle is in.

4.2 Performance metrics

To evaluate the protocols based on review strategies, we need to define several performance metrics.
First, the protocol should be IC since the consumers are self-interested and will only follow
recommendations when this is in their self-interest. Particularly, consumers should have incentives to
take the PO scheduling actions in the review phase.

Proposition 1. In a PO action profile, a self-interested consumer will not want to schedule less than the
recommended energy consumption in peak hours in the stage game.

Proof. If consumer n can increase its stage utility by choosing adn < aPO
n , then all other consumers’

utilities are also increased because the price is reduced as the aggregate usage in peak hours decreases.
This causes a contradiction to the definition of “Pareto-optimality”.

Proposition 1 states that, given the daily desired energy demand of a consumer, if the designer
recommends to it the PO scheduling action, then the self-interested consumer will schedule no less
than the PO energy consumption in peak hours in order to maximize its own utility assuming other
consumers are complying with the recommended PO scheduling. Note that this applies even in the case
when the consumer’s daily demand is low since the consumer is simply re-scheduling its desired
amount of energy consumption to different hours. In the two-consumer example, given the
recommended PO action profile a1 = a2 = 0.5, a consumer can only increase its utility by scheduling
more than half of its energy consumption in peak hours to increase its own utility. Therefore, we only
need to focus on the case adn > aPOn when considering consumers’ incentive problems and denote the
corresponding utility by udn for consumer n. Note that consuming more energy in peak hours increases
the price and, hence, consumer n’s own payment is increased. However, because the costs are shared
among the entire consumer set, consumer n is still able to receive a higher utility udn > uPOn by
unilaterally increasing its own consumption in peak hours when ∇nun(a

PO) > 0.

At the beginning of each billing cycle, the consumers determine the scheduling actions for this billing
cycle based on the previous energy consumption history. We will focus on constant strategies during
a billing cycle, i.e., consumer n chooses a constant scheduling action every day during a billing cycle.
However, our analysis can also be extended to more sophisticated strategies (i.e., the consumer may use
different scheduling actions during a billing cycle) by taking the equivalent average scheduling action.
Let Un(σ

R|s = 1) and Un(σ
R|s = 0) denote the long-term utilities of consumer n at the beginning

of a review phase and a punishment phase, respectively, if all consumers follow the strategy σ. Let σ̃R
n

denote a strategy where consumer n deviates to some adn > aPOn in the current review phase and follow



the review strategy afterwards and all consumers follow σR all the time. The following proposition
characterizes the IC condition of a protocol.

Proposition 2. A protocol based on a review strategy σR is IC against a strategy σ̃n with the deviation
action adn > aPOn for consumer n if and only if

Un(σ
R|s = 1) ≥ Un(σ̃n|s = 1) (10)

Proof. This directly results from one-shot deviation principle in repeated games [4].

Proposition 2 uses the one-shot deviation principle in repeated games and shows that if a consumer
cannot gain by unilaterally deviating from the recommended strategy σR in the current billing cycle and
following afterwards, it cannot gain by switching to any other strategies either and vice versa. In the
punishment phase, the recommended strategy is the NE scheduling action profile a

NE, and hence, the
consumers will not have incentives to deviate from the recommended action. Therefore, we only need to
check whether the consumers have incentives to take the recommended PO profile aPO, i.e., whether the
one-shot deviation principle holds in the review phase. The left-hand side of (10) represents the long-
term utility by following σR, and the right-hand side represents the long-term utility for consumer n by
deviating to adn only in the current review phase while all other consumers follow σR. In Section 4.2,
we will use Proposition 2 to construct IC protocols based on review strategies.

The goal of the protocol designer is to maximize the sum utility of all the users. The maximum sum
utility is achieved when all consumers take the PO scheduling actions in each time slot, denoted by
V ∗ =

∑

n u
PO
n . We call V ∗ the “first-best” utility which yields the maximum sum utility for the

consumers. The efficiency loss of a protocol is defined by C(Ψ) = (V ∗ − V (Ψ))/V ∗.

Definition 3. A protocol Ψ is said to be ∆-Pareto optimal (∆-PO) if C(Ψ) < ∆.

A ∆-PO protocol yields a sum utility no less than 1 − ∆ of the first-best sum utility. If a protocol Ψ
prescribes the scheduling action profile a

PO every day regardless of the history, then V (Ψ) = V ∗ and
thus Ψ achieves the first-best sum utility (0-PO). However, such a protocol is not IC, and hence, the
first-best is not achievable.

4.3 Statistical test

In this subsection, we discuss how the public signal based on the prices is constructed. The consumers
cannot know the actual scheduling actions made by the other consumers but can only observe the prices
announced by the utility company at the end of each billing cycle. According to (3), if all consumers
take the recommended optimal scheduling actions, the corresponding price on that day is p̂(aPO) =
p(aPO) + ε, where

p(aPO) =
Cpeak(

∑

n a
PO
n dn) + Coff-peak(

∑

n(1− aPOn )dn)
∑

n dn
(11)

If there are some consumers who deviated by consuming more than the recommended amount of energy
during the peak hours, the price of that day is increased4. Due to the monitoring noise, the actual price
is p̂(adn,a

PO
−n) = p(adn,a

PO
−n) + ε.



The statistical test determines whether the consumer set was following the recommended strategy in the
previous billing cycle by comparing the average value of the prices to a threshold value,

z =















1, if 1
L

L
∑

t=1
p̂t < 1

L

L
∑

t=1
p(aPO) + pth

0, if 1
L

L
∑

t=1
p̂t ≥ 1

L

L
∑

t=1
p(aPO) + pth

(12)

We are interested in the following two kinds of error probabilities by performing the statistical test.

• False alarm probability qF (L, pth): the probability that z = 0 when all consumers follow the
recommended strategy σR, i.e., they all scheduling the optimal amount of energy consumption in
peak hours.

• Miss detection probability qM,n(L, pth): the probability that z = 1 when consumer n deviates
to the action adn in the previous billing cycle, i.e., it schedules more than the optimal amount of
energy consumption in peak hours while all other consumers take the optimal scheduling.

Note that our design can also be extended to analyze the collusion problem where a subset of consumers
colludes in order to gain higher utilities. In that case, we can simply take the consumers who collude as
a single consumer with its demand being the aggregate demand.

The following proposition characterizes the impact of the threshold and the billing cycle length on the
error probabilities.

Proposition 3. ∀pth ∈ [0, p(adn,a
PO
−n)− p(aPO)], lim

L→∞
qF (L, pth) = 0 and lim

L→∞
qM,n(L, pth) = 0.

Proof. By the law of large numbers, the sample averages converge in probability and almost surely to
the expected value as the sample number tends to infinity. Therefore, when the threshold is large than 0,
the false alarm probability goes to 0 and when the threshold is smaller than p(adn,a

PO
−n) − p(aPO), the

miss detection probability goes to 0.

Proposition 3 informs the protocol designer’s selection of the statistical test (i.e., the test threshold).
It also proves that, in order to accurately detect self-interested consumers’ excessive usage in peak
hours, a longer billing cycle should be chosen such that the monitoring mitigated. However, a very long
billing cycle also reduces the consumers’ valuation of utilities in the future billing cycles, and hence, the
punishment may not be strong enough to induce consumers’ compliance. Therefore, the optimal billing
cycle as well as the punishment length should be carefully designed to induce the optimal performance
of the smart grid system.

5 Design and performance analysis

In this section, we design the optimal incentive-compatible protocols based on review strategies and
analyze their performance. The outline of this section is as follows.

• We first establish the existence of IC protocols based on review strategies and provide the IC
conditions such that the consumers have incentives to perform the recommended scheduling in
the review phase.

• Next, we propose a greedy algorithm to determine the optimal design of review strategies.



• We then evaluate the performance of the optimal protocol based on review strategies. Specifically,
the proposed protocol is able to achieve ∆-PO of the first-best efficiency.

5.1 Incentive-compatibility

Recall that Proposition 2 provides us with a simple method to determine whether a protocol based on
review strategies can be IC. In this subsection, we study how to design protocol parameters according to
Proposition 2. To do this, we need to compute Un(σ

R|s = 1), Un(σ
R|s = 0), and Un(σ̃n|s = 1) where

s = 1 denotes that the system is in a review phase and s = 0 denotes that the system is in a punishment
phase. These utilities are dependent on each other as follows,

Un(σ
R|s = 1)

= (1− δ)(
L−1
∑

t=0
δtuPO

n + δL[qF (L, pth)Un(σ
R|s = 0)

+(1− qF (pth, L))Un(σ
R|s = 1)])

(13)

and
Un(σ

R|s = 0)

= (1− δ)(
KL−1
∑

t=0
δtuNE

n + δKLUn(σ
R|s = 1))

(14)

The first term in (13) is the utility in the current review phase. The second term is the continuation utility
after the review phase. With probability 1 − qF (L, pth) the system remains in the review phase; with
probability qF (L, pth), the system moves to a punishment phase due to the monitoring error. The utility
of consumer n by choosing a deviation scheduling action adn at the beginning of a review phase is given
by,

Un(σ̃n|s = 1)

= (1− δ)(
L−1
∑

t=0
δtudn + δL[qM,n(L, pth)Un(σ

R|s = 1)

+(1− qM,n(L, pth))Un(σ
R|s = 0)])

(15)

The first term in (15) is the utility gain by the deviation in the current review phase which is larger
than uPOn . The second term is the continuation utility after the review phase. With probability 1 −
qM,n(L, pth) the deviation is detected, so the system moves to a punishment phase; with probability
qM,n(L, pth) the system remains in the review phase.

We define the following “incentive ratio” of a protocol based on review strategies for consumer n:

gn(L, pth) =
1

1− qF − qM,n

1− δL

δL
udn − uPOn
uPOn − uNE

n

(16)

Let us examine the physical meaning of this incentive ratio. Essentially, the numerator represents the
long-term utility gain due to deviation, and the denominator represents the maximal long-term utility
loss due to the punishment. To enforce consumers to cooperatively optimize their energy consumption,
this loss should be positive and larger than the gain obtained when deviating. Therefore, the incentive
ratio should be in the range [0, 1]. It is worth noting that gn(L, pth) should be strictly less than 1 since
the denominator is only an upper bound on the loss induced by the punishment but not the actual loss
(which depends on L,K, pth). Theorem 2 provides a condition such that a protocol based on review
strategy is IC against a deviation action adn. This condition serves as a guideline for the choices of the
proper protocol parameters L,K, and pth.

Theorem 2. The protocol Ψ(L,K, pth) is IC against adn for consumer n if and only if the billing cycle
length satisfies 0 ≤ gn(pth, L) and the punishment phase length is large enough, i.e.

K ≥
1

L
logδ(1− gn(pth, L)) (17)



Proof. According to Proposition 2, we only need to check the utility difference below,

Un(σ
R|s = 1)− Un(σ̃|s = 1)

= (1− δ)(
L−1
∑

t=0
δt(uPOn − udn)

+δL(1− qF − qM,n)(Un(σ
R|s = 1)− Un(σ

R|s = 0)))
= −(1− δL)(uPOn − udn)

+δL(1− δLK)(1− qF − qM,n)(u
PO
n − uNE

n )

(18)

In the last equation of (1 − δL)(uPOn − udn) is the utility gain in the current review phase billing cycle
by deviation, and the remaining term is the utility loss for the future due to the punishment. For Ψ to be
IC, the utility loss due to the punishment should exceed the utility gain due to deviation, i.e.,

(1− δL)(uPOn − udn) ≤
δL(1− δLK)(1− qF − qM,n)(u

PO
n − uNE

n )
(19)

The sufficient and necessary condition for the above to hold is 0 ≤ gn(L, pth) < 1 and KL ≥ logδ(1−
gn(L, pth)).

5.2 Optimal protocol parameters

We first determine the efficiency of a given protocol. If a protocol is IC, then all consumers follow
the recommended strategy and play the PO action profile. Therefore, the efficiency depends on the
probability that the system is in review phases and punishment phases due to monitoring errors. Denote
these two probabilities by ηR(Ψ) and ηP (Ψ) = 1−ηR(Ψ), respectively. The efficiency of an IC protocol
is thus V (Ψ) =

∑

n(u
PO
n ηR(Ψ) + uNE

n ηP (Ψ)) where ηR(Ψ) is determined in the following Lemma.

Lemma 1. ηR(Ψ) = 1
1+KqF (pth,L)

Proof. Solving the stationary distribution of the Markov chain in Fig. 6 yields the result. The transition
probabilities of the chain are R-R with probability 1 − qF , R-P with qF , P-P and P-R with probability
1.

Lemma implies that in order to maximize the system efficiency, the protocol designer should choose
L,K, pth such that KqF (L, pth) is minimized subject to IC conditions in Theorem 2. These design
parameters are coupled in a complex manner, and thus, to find the optimal design parameters, it is better
to work backwards.

Step 1. We first determine the optimal K∗(L, pth) given L, pth. Therefore, the false alarm probability
qF (L, pth) and the miss detection probability qM,n(L, pth) are also determined. If 0 ≤ gn(L, pth), the
optimal K is chosen as

K∗(L, pth) =

⌈

max
n

(

1

L
logδ(1− gn(pth, L))

)⌉

(20)

Step 2. Given L, the statistical test determines qF (L, pth) and qM,n(L, pth), ∀n ∈ N . Note that
K∗(L, pth) depends on the statistical test through the term qF (L, pth) + qM,n(L, pth). Therefore, the
optimal statistical threshold is chosen as

p∗th = argmin
pth

K∗(L, pth)qF (L, pth) (21)



In general, the statistical test threshold pth has two opposite effects on K∗(L, pth)qF (L, pth).
Minimizing qF (L, pth) often leads to a large qM,n(L, pth), and hence, qF (L, pth) + qM,n(L, pth) may
also be large. This by (16) induces a large K∗(L, pth). Therefore, the protocol designer has to trade-off
when selecting pth between minimizing the false alarm probability qF (L, pth) and the punishment
phase length K∗(L, pth).

Step 3. The previous two steps provide the optimal p∗th and K∗(L, p∗th) given the review phase length
L. However, the space of L includes all positive integer numbers and is infinite. In the following, we
determine the upper bound on L such that an IC protocol can be designed.

Proposition 4. If Ψ(L,K, pth) is IC, then

L ≤ min
n

logδ
udn − uPOn
udn − uNE

n

(22)

Proof. Note that

gn(L, pth) >
1− δL

δL
udn − uPOn
uPOn − uNE

n

(23)

If (22) does not hold, then there must exist n ∈ N such that gn(L, pth) > 1 which violates the IC
condition in Theorem 2. Therefore, for a protocol to be IC, (22) must be satisfied.

Proposition 4 leads to a crucial trade-off of the review phase length. On one hand, the protocol designer
wants to choose a longer review phase period L because it improves the monitoring accuracy, and
hence, there is a smaller probability that the system goes into a punishment phase due to monitoring
errors. On the other hand, a longer review increases the current gain of a consumer in the review phase
upon deviation while it reduces the future loss due to the punishment because of the discounting of the
future utility. This requires a stronger punishment (longer punishment phase), and hence, it induces more
energy consumption in peak hours as the system stays longer in the punishment phase. More importantly,
if the review phase is too long, then even the strongest punishment (i.e., a trigger strategy that prescribes
to stay in the punishment phase forever upon deviations) is not able to provide the sufficient incentives
for the consumers to schedule the PO energy consumption in the current review phase. Therefore, given
consumers’ valuation of the future utility (i.e., the discount factor δ) and the structure of the stage game
(i.e., udn, u

PO
n , uNE

n , ∀n ∈ N ), there is a maximum length of the review phase, and hence, the billing
cycle should not be too long. To make the protocol IC, the protocol designer must choose a review phase
no longer than the upper bound determined in Proposition 4. The optimal review phase length L (i.e.,
billing cycle) is thus such that it minimizes the product of K∗(L, p∗th) and qF (p

∗
th, L) which have been

determined in the previous two steps for a fixed L. Based on the above three design steps, we propose
a greedy algorithm (presented in Table 2) to determine the optimal protocols based on review strategies
which requires only finite iterations on L. If the candidate threshold pth belongs to a continuous interval,
then we need to quantize pth to solve (19) in finite iterations, and hence, the algorithm leads to a sub-
optimal protocol.

5.3 Performance evaluation

In the previous subsection, we determine the optimal protocol design. In this subsection, we characterize
the performance of these optimal protocols. Specifically, we are interested in determining whether a
protocol based on review strategies Ψ can be ∆-PO.

Recall that the first-best efficiency is V ∗ =
∑

n u
PO
n , and the sum utility of a given IC protocol can be

determined using the result in Proposition 3. Therefore, if ηR(Ψ) is close enough to 1, then (V (Ψ) −



V ∗)/V ∗ can be made less than a given ∆. According to Proposition 3, this can be done if qF is close
enough to 0 and if K is finite. That is, an accurate enough statistical test is required. By Proposition
4, if L is long enough, then the monitoring can be accurate enough. However, a long L can be chosen
only when the consumers valuate the future utilities sufficiently high enough. The following theorem
characterizes the condition when a protocol is ∆-PO.

Theorem 3. ∀pth ∈ [0, pdn−pPO
n ], for a given ∆ ∈ [0, 1], there exists δmin ∈ (0, 1), such that ∀δ ≥ δmin

there exists a protocol Ψ(L,K, pth) such that it is ∆-PO.

Proof. Let us write ∆-PO condition in terms of ηR and qF . V (Ψ) ≥ (1−∆)V ∗ implies:

ηR
∑

n∈N uPOn + (1− ηR)
∑

n∈N uNE
n

≥ (1−∆)
∑

n∈N uPOn
⇒ ηR ≥ (1−∆)uPO

n −uNE
n

uPO
n −uNE

n

, A

⇒ qF (L, pth) ≤
1−A
KA

(24)

Note that ∆ ∈ (0, 1) → A ∈ (0, 1), ∆ = 0 → A = 1, and ∆ = 1 → A = 0.

Fix pth = p̄th ∈ [0, pdn − pPO] and

K = K̄ > max
n

∈ N
udn − uPOn
uPOn − uNE

n

(25)

Now, we select L = L̄ such that

qF (L̄, p̄th) ≤
1−A

KA
(26)

Such L̄ exists due to the law of large numbers (see Proposition 3).

Ψ(L̄, K̄, p̄th) is a ∆-PO protocol by the above construction. Now, we show that it is also IC for δ close
enough to 1. The condition under which Ψ(L̄, K̄, p̄th) is an IC protocol is:

1− δL̄

1− δL̄K̄
≤ δL̄(1− qF − qM,n)

uPOn − uNE
n

udn − uPOn
, ∀n ∈ N (27)

For δ → 1, the above inequality becomes

K̄ ≥ max
n

udn − uNE
n

uPOn − uNE
n

(28)

This implies that there exists a δmin close to 1 such that for every δ ≥ δmin the above inequality defines
an IC protocol (the inequality must be strict). Since (28) is exactly that same as (25), the constructed
protocol Ψ(L̄, K̄, p̄th) is IC for δ ≥ δmin.

Theorem 3 characterizes the asymptotical performance of the protocols based on review strategies.
Specifically, when the consumers highly value their future utilities, then the protocol designer can
design a protocol based on review strategies whose sum utility is close enough to the first-best. That is,
consumers will comply with the recommended scheduling most of the time.

Corollary 1. If δ → 1, then the efficiency loss of the optimal protocol goes to 0.

The corollary states that if the consumers do not discount their future utilities, then the protocol
designer can design a review strategy-based protocol which is IC and also asymptotically achieves the
full efficiency.



Remark: Our analysis depends on the deviation strategy a
d. To compute adn, we consider the unilateral

deviation by consumer n at the optimal action profile a
OPT, i.e., adn = a∗n = argmaxan µn(an;a

OPT
−n ).

In this way, a consumer chooses to deviate to the action that maximizes its own utility. However, if the
consumer is “smarter”, it can deviate to a slightly lower action than a∗n to avoid being detected but still
gains some increased utility (of course, since there is noise, the probability of being detected is higher if
its selected action is closer to adn). Hence, a more practical way to set adn is by setting a maximal tolerable
deviation action adn = (1 + γ)aOPT

n where γ < 1 depends on the maximal tolerable social welfare loss.
Since, by doing this the (one-shot) social welfare loss is at most un(aOPT

n ) − un((1 + γ)aOPT), the
designer can determine γ according to the maximal tolerable social welfare loss and set adn accordingly.

6 Simulations

In this section, we present numerical results and assess the performance of our proposed framework. For
illustration purposes, we assume that the benefit function takes the linear form Bn(an) = bpeakandn +
boff-peak(1 − an)dn, the cost functions have the quadratic forms [3] Cpeak(x) = cpx

2, Coff-peak(x) =
0.5cpx

2. We regard cp as parameter determined by the power generation technology and the power
market and will investigate their impact of the protocol design and performance.

Figure 5 shows how the optimal design of the billing cycle varies depending on consumers’ valuation
of future utilities (reflected by the discount factor δ). On one hand, a longer billing cycle improves
the monitoring accuracy, and therefore, the system has a smaller probability to go into the punishment
phase. Hence, the efficiency is increasing in the billing cycle. On the other hand, a too long billing cycle
reduces the consumers’ valuation of future utilities and, beyond some point, it violates the consumers’
incentives to comply. Moreover, the optimal billing cycle depends on how much the consumers value
the future utilities which is parameterized by the discount factor δ. When δ is large, consumers value
more their future utilities, and hence, a longer billing cycle can be used.

Fig. 5 Optimal billing cycle length (review phase length). (N = 8, δ = 0.95, cp = 0.2, dn = 1, pth =
0.5, bpeak = 2, boff-peak = 1)

Figures 6 and 7 show the impact of environment parameters (the consumer set size and cost function)
on the performance of the proposed protocols. In Fig. 8, we investigate the impact of the consumer set
size on the performance of our proposed protocols. As the number of consumer increases, the protocol
is able to provide sufficient incentives for consumers to follow the recommended optimal energy
scheduling actions, and therefore, an improved performance is attained. Fig. 9 varies the cost function
parameter c1 in peak hours and illustrates the corresponding efficiency for the optimal protocol and two
protocols with fixed design parameters. As the cost in peak hours increases, the efficiency decreases.
The system efficiency of the optimal protocol is 80 to 250 % higher than that when no incentive
protocols are deployed. The optimal protocol also outperforms the fixed protocols by 50 % on average.
This highlights that designing the optimal protocol could bring significant improvement on the system
efficiency. Varying the cost functions represents different utility functions for the consumers. Note that
different optimal scheduling schemes are required for these different utilities, and hence, these
simulations also highlight the capability of the proposed framework to design review strategy-based
protocols which are applicable to a variety of DSM schemes.



Fig. 6 Impact of the consumer set size on the protocol performance. (δ = 0.85, cp = 0.2, dn = 1, pth =
0.5, bpeak = 2, boff-peak = 1)

Fig. 7 Impact of the cost functions on the protocol performance. (N = 8, δ = 0.99, cp = 0.2, d =
1, pth = 0.5, bpeak = 2, boff-peak = 1)

Fig. 8 Daily energy scheduling for each consumer with and without protocol deployment. (δ =
0.95, cp = 1, bpeak = 8, boff-peak = 6, dn = 1, pth = 0.5)

Fig. 9 Real-time energy prices with protocol deployment. (N = 5, δ = 0.95, cp = 1, bpeak =
2, boff-peak = 1, dn = 1, pth = 0.5)

In Fig. 8, we consider a set of eight consumers with various load demands. The first subplot illustrates the
consumers’ energy consumption scheduling actions with and without the proposed protocol deployment.
With the deployment of the protocol, consumers tend to consume less energy in peak hours. At the same
time, their individual utilities are increased as illustrated in the second subplot. This is because the
energy cost is smaller, and hence, the bills charged to consumers are smaller. The third subplot further
shows the prices with respect to various discount factors. Note that the price is proportional to the energy
cost. Therefore, the lower the price is, the more energy-efficient the system is. When the consumers
value more the future utilities (i.e., the discount factor is larger), consumers tend to schedule less energy
consumption in peak hours, and therefore, the price is also lower.

Figure 9 illustrates a real-time curve of the prices for the considered set of consumers. Note that the
price also reflects the energy generation and transmission cost of this consumer set. The energy price
is low in the review phase since consumers schedule less power in peak hours. Due to the imperfect
monitoring, if the average price of the previous billing cycle exceeds the predetermined threshold, the
system goes into the punishment phase. In the punishment phase, the energy price is high because
consumers schedule more consumption in peak hours. When the punishment phase ends, the system
automatically goes back to a new review phase and the price drops again.

7 Conclusions

In this paper, we augment existing DSM schemes using aggregate usage information of a set of
participating consumers by proposing a novel framework which incentivizes consumers to reduce their
consumption in peak hours. The proposed technology is review strategy-based protocols. It is general
and can be deployed in conjunction with any DSM schemes proposed in smart grids to make it
incentive-compatible (i.e., selfish consumers find it in their self-interest to follow it). The proposed
protocols are simple, and thus, they are suitable for practical implementation in smart grids where the
energy scheduling actions cannot be perfectly monitored. Even though this paper considers a simplified
smart grid model, our analysis provides important and useful insights for designing
incentive-compatible demand-side management schemes based on aggregate energy usage information
in a variety of practical scenarios.

The success of DSM relies heavily on the energy producer’s knowledge of individual consumers’ energy
usage information. However, a huge concern is that smart meters threaten consumers’ privacy as data
mining techniques are applied to energy consumption traces in order to infer consumers’ habits and
behaviors [2, 23, 24]. This information may be used for other purposes besides improving the efficiency
of smart grids, thereby giving rise to privacy concerns [25]. To respond to these concerns, in 2010,
California’s new smart meter privacy law [26] was adopted, which mandates privacy protection for the



consumers’ energy consumption data. The proposed scheme does not require detailed knowledge of
household electricity demand profiles at the appliance level or for a fine time granularity. Instead, it
only needs the aggregate usage pattern of individual consumers at large time scales, e.g., the aggregate
usage in peak hours of a day and the aggregate usage in off-peak hours of a day. This information is
very limited for the detection of the actual consumption traces of individual consumers, and hence, we
believe that the proposed scheme can be applied in a wide range of practical deployment scenarios.

Endnotes

1The proposed protocol can also be extended to directly recommend per-appliance scheduling actions.
However, such an extension would only complicate the notation and presentation of the proposed
methods while the proposed methods will remain unchanged.
2In practice, the utility function may dynamically change over time. In this paper, we make the
common assumption that the utility function is fixed. One way to handle the dynamically changing
utility functions is by periodically updating the design of the proposed protocol to adapt to the changes.
3The proposed method allows both continuous and discrete value space of actions. For illustration
purpose, we consider only continuous value space in this paper.
4If consumers consume less than the recommended amount of energy in peak hours, the price is reduced.
Since self-interested consumers only have incentives to deviate to a higher consumption in peak hours
(by Proposition 1), we do not regard consuming less in peak hours as a deviation.
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