
A Unified Online Directed Acyclic Graph Flow Manager for Multicore Schedulers

Karim Kanoun†, David Atienza†, Nicholas Mastronarde‡, and Mihaela van der Schaar�

† Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. ‡ State University of New York at
Buffalo (UB), U.S.A. � University of California, Los Angeles (UCLA), U.S.A

email: {karim.kanoun, david.atienza}@epfl.ch, nmastron@buffalo.edu, mihaela@ee.ucla.edu.

Abstract— Numerous Directed-Acyclic Graph (DAG) sched-
ulers have been developed to improve the energy efficiency of var-
ious multi-core systems. However, the DAG monitoring modules
proposed by these schedulers make a priori assumptions about the
workload and relationship between the task dependencies. Thus,
schedulers are limited to work on a limited subset of DAG models.
To address this problem, we propose a unified online DAG mon-
itoring solution independent from the connected scheduler and
able to handle all possible DAG models. Our novel low-complexity
solution processes online the DAG of the application and provides
relevant information about each task that can be used by any
scheduler connected to it. Using H.264/AVC video decoding as
an illustrative application and multiple configurations of complex
synthetic DAGs, we demonstrate that our solution connected to an
external simple energy-efficient scheduler is able to achieve signif-
icant improvements in energy-efficiency and deadline miss rates
compared to existing approaches.

I. INTRODUCTION

Emerging real-time video processing applications such as

video data mining, video search, and streaming multimedia

(e.g., H.264 video streaming [17]) have stringent delay con-

straints, complex Directed Acyclic Graph (DAG) dependencies

among tasks, time-varying and stochastic workloads, and are

highly demanding in terms of parallel data computation. Mul-

timedia applications are in general modeled with DAGs where

each node denotes a task, each edge from node j to node k indi-

cates that task k depends on task j and each group of tasks has

a common deadline di. As illustrated in Fig. 1, DAG models

for applications with dependent tasks can be roughly classified

into 4 types depending on the relationship between the task de-

pendencies and task deadlines.

We define a DAG monitoring solution as the module used to

process and analyze these DAGs before scheduling the tasks.

This module is different from the scheduler and it is respon-

sible for finding parallelization opportunities, tracking the exe-

cution of the DAG and providing relevant information to a con-

nected external scheduler. Numerous offline [15][16] and on-

line [6][7][8] DAG monitoring solutions have been proposed to

assist schedulers for multimedia applications. However, these

solutions are usually closely related to their connected sched-

ulers, and their output cannot be directly exploited by other

schedulers. Thus, the problem of finding a generic online DAG

This work was supported in part by a Joint Research Grant for ESL-EPFL

by CSEM, and the Spanish Government Research Grant TIN2008-00508.

monitoring solution to assist online energy-efficient schedulers,

making the DAG processing problem independent from the

connected scheduler, is becoming increasingly important.

Moreover, we also contend that none of these existing online

DAG monitoring solutions have considered the general DAG

model in which a task’s children can have different deadlines

(e.g., model 4 in Fig. 1). We present an example of this prob-

lem in the remainder of this paragraph. Fig. 2 illustrates an ex-

ample of two different DAGs modeling the same H.264 video

decoder application. The DAG of Fig. 2a preserves the orig-

inal dependencies between I, P and B frames, where I-frames

are compressed independently of the other frames, P-frames

are predicted from previous frames, and B-frames are predicted

from previous and future frames [1]. Each frame is composed

of three type of tasks, namely, initialization (e.g., I1), slice de-

coding (e.g., S2, S3 and S4) and the deblocking filter (e.g., F5).

In the example shown in Fig. 2 with 4 frames (I-B-P-B), there

are 2 deadlines corresponding to the display deadlines of the

two B frames. These deadlines are imposed by the frame rate

and the underlying dependency structure. In fact, if frame k de-

pends on frame k + l (with l > 0), then both frames will have

their deadlines set to the minimum one, i.e., k/30 seconds. Fi-

nally, in this DAG model, a task’s children may have different

deadlines (e.g., F5 → (I6, I16)). Existing online DAG mon-

itoring approaches (cf. Section II) are not able to handle the

additional dependencies between the tasks with different dead-

lines. Instead, they are forced to convert the original DAG to

the fork-join DAG model as presented in Fig. 2b where critical

edges (i.e., edges linking 2 tasks with different deadlines) are

removed and replaced by a single join edge that links the last

task with deadline di to the first task with deadline di+1. Al-

though the fork-join model (which is defined as a sequence of

sequential and parallel segments [2]) preserves the dependency

coherency between tasks, it restricts the scheduler to operate on

tasks belonging to one deadline at a time (i.e., the earliest dead-

line). Hence, several parallelization opportunities are missed

(e.g., frame B with a deadline di and frame P with a deadline

di+1 can be decoded in parallel, once frame I is decoded).

To summarize, each existing scheduler implements its own

DAG monitoring solution with several restrictions on the DAG

model. Moreover, none of the existing solutions are able to

handle the general DAG illustrated with model 4 in Fig. 1,

which allows a task’s children to have different deadlines.

In this paper, we propose a novel unified DAG monitoring

solution, which we call DAG Flow Manager (DFM). The key

contributions of this work are as follows:

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 714

8A-2

Dependent deadlines Independent deadlines
Application with dependent tasks

Aperiodic independent DAGs Connected DAGs: fork-join model Connected DAGs: general model

Our proposed solution: DAG Flow Manager (DFM)
Unified online DAG monitoring solution

Any external online energy-efficient scheduler (e.g., [9])

Periodic independent DAGs
6

7 12

4

5

11

8 9

10

13 14

16

1

2 3

15 10

6

7

8 9

12

13 14

16

1

2 3

4

5 15

11 6

7

8 9

10

12

13 14

16

1

2 3

4

5 15

11 di+2

Time

1

2 3

4

5 6

1

2 3

4

5 6

1

2 3

4

5 6

di di+1

Model 1 Model 2 Model 3 Model 4

di+2 di di+1

Time

di+2 di di+1

Time

di+2 di di+1

Time

Fig. 1. Classification of DAG models of applications with dependent tasks. Our proposed solution handles all possible DAG models

I1

S2 S4

F5

S3

I
I11

S12 S14

F15

S13

P

I16

S17 S19

F20

S18

B
I6

S7 S9

F10

S8

B

di di+1

Time

(a) Original model

I1

S2 S4

F5

S3

I
I11

S12 S14

F15

S13

P

I16

S17 S19

F20

S18

B
I6

S7 S9

F10

S8

B

di di+1

Time

(b) Fork-join model

Fig. 2. H.264 decoder DAG model [1]

• A low-complexity online DAG monitoring solution that is

fully independent of the scheduler that it is connected to it.

• Our DFM does not impose any restrictions on the DAG

(e.g., restrictions on deadline dependencies as in the fork-join

model). Our DFM covers online all DAG models (Fig. 1).

• Our DFM provides detailed information about the execu-

tion status of tasks and deadlines within a look-ahead window,

allowing simple connected schedulers to have optimal control

of the core assignment and DVFS selection of each task.

Our results for the H.264 video decoder and different con-

figurations of synthetic DAGs demonstrate that our proposed

DFM allows a connected online scheduler based on [9] to reach

over 50% reduction in energy consumption and over 80% re-

duction in deadline miss rates compared to existing DAG mon-

itoring solutions [7][8] connected to the same scheduler.

The remainder of this paper is organized as follows. In Sec-

tion II, we describe the limitations of current offline and online

DAG monitoring approaches. In Section A, we introduce the

system and application model. In Sections B, C, D and E, we

describe our online DFM algorithm in detail. In Section IV,

we present our experimental results. Finally, we summarize

the main conclusions in Section V.

II. RELATED WORK

In Table I, we summarize different application models con-

sidered by existing DAG analyzers and we compare them to the

DAG modeled by our solution.

Existing static approaches [15][16] model the application as

a DAG with periodic dependent tasks as shown in Fig. 1 (model

1). They propose a coarse-grained task-level software pipelin-

ing algorithm to transform periodic dependent tasks into a set

of independent tasks based on a retiming technique. However,

these approaches are unsuitable for multimedia applications

with dynamic DAGs. In fact, the assumption of a periodic DAG

limits the applicability of static approaches because highly op-

timized modern and emerging video coders do not always have

periodic task-graphs (e.g., they may use adaptive group of pic-

tures structures). Hence, applying techniques such as pipelin-

ing is not possible, especially for applications that do not adopt

a fixed task-graph structure but instead adapt their task-graphs

on the fly (e.g., stream mining applications [18]). Moreover,

for H.264 video decoding, such pipelining techniques require

buffering delays that are proportional to the Group of Pictures

(GOP) size, which may be large. Finally, static approaches rely

on worst-case execution time estimates to generate the sched-

ulers input. These approaches are efficient if the workload and

the starting time of each task is fixed and known. However, they

are unsuitable for multimedia applications with dynamic work-

loads because modeling a non-deterministic workload with its

worst-case execution time leads a connected scheduler to create

significant slack time and utilize resource inefficiently.

Few online DAG monitoring solutions [6][7][8] have been

recently proposed for scheduling problems. In [6][7][8], they

consider periodic tasks where each task is represented as an in-

dependent DAG with a single deadline (i.e., a task is modeled

as a group of jobs or threads having the same deadline similar

to models 1-2 of Fig. 1). Therefore, in this approach, monitor-

ing n deadlines simultaneously requires n independent DAGs.

Then, each DAG (i.e., each deadline) is decomposed into seg-

ments in order to identify future parallelization opportunities.

Therefore, if we consider the general case of DAG of applica-

tions with dependent deadlines illustrated with model 4 of Fig.

1 and Fig. 2a where a job’s children may have different dead-

lines, the solutions presented in [7][8] are then forced to con-

vert these DAGs into the fork-join model (e.g., model 3 of Fig.

1 and Fig. 2b). Although the fork-join model preserves the de-

pendencies between tasks, it restricts schedulers to scheduling

tasks belonging to only one deadline at a time. Hence, several

parallelization opportunities are missed (e.g., Fig. 2: frames

B and P with deadline di and di+1 respectively). The solu-

TABLE I

COMPARISON OF EXISTING DAG MONITORING APPROACHES TO OUR

DFM: APPLICATION MODEL AND ANALYSIS TYPE

DAG-monitoring type of type of analysis

solution deadlines DAG

[15, 16] independent periodic offline

[6, 7, 8] independent periodic online

[13] dependent H.264 online

Our solution dependent general online

715

8A-2

d0 d1 d2 d3

Time

T0 T1 T2 T3 T1 T2 T3 T4 T2 T3 T4 T5 T6 T4 T5

d4
T0 T1 T2 T3 T4

WS buffer WS buffer WS buffer WS buffer WS buffer

Fig. 3. Evolution of the WS buffer during the execution

tions in [10][9] also suffer from the same limitation. Only one

existing solution accounts for dependencies among tasks with

different deadlines [13], however, it is restricted to the H.264

DAG model.

III. ONLINE DAG FLOW MANAGER (DFM)

A. System Model

We model our target computationally intensive application

as a DAG G =< N , E > of dependent tasks tj with non-

deterministic workload wj and coarse-grained deadlines. N is

the node set containing all the tasks. E is the edge set, which

models the dependencies between the tasks. Each node in the

DAG denotes a task tj . ekj denotes that an edge is pointing

from tj to tk indicating that task k depends on task j. Each

task tj is characterized with its index j and a deadline di (i is

the deadline index). Each deadline can be assigned to a subset

of tasks. Our model covers all general DAG models (e.g., Fig.

1) including the general case where a task’s children may have

different deadlines than the task itself and its other children

(e.g., model 4 of Fig. 1). Finally, we assume that our target

multicore platform has M cores with DVFS capability to trade

off energy consumption and delay. Each processor can operate

at a different frequency fi ∈ �, where � denotes the set of

available operating frequencies and fi < fi+1.

B. Overview of the proposed DFM

We define Ti as the subset of tasks having the same dead-

line di. We also define the Working Set WS as a look-ahead

window buffer of n Tis. Each time all the tasks inside a Ti

finish their execution, we request the next Ti input from the

application. For each new added Ti to the WS buffer, our ap-

proach requires from the application its adjacency matrix, its

deadline value and the list of edges connecting this Ti with

Ti+l (with l �= 0). In our DAG Flow Manager (DFM), we

propose then to process the full DAG of the application using

this WS buffer where only a limited number of deadlines are

processed at a time. Analyzing the full DAG of an application

by subset of n deadlines (i.e., Tis) is the key for having a low

complexity online DAG monitoring solution. Thus, it will be

possible to efficiently adapt to applications that have a highly

variable workload and adapt their task-graphs on the fly. Fig. 3

illustrates an example of our DFM processing a general DAG

model using a WS buffer of 3 deadline slots. In this exam-

ple, for the sake of clarity, we assume that each Ti finishes its

execution at di. First, at the beginning of the execution, the

WS buffer is filled with T0, T1 and T2. Next, when a deadline

finishes its execution, a slot becomes available and it gets auto-

matically filled with the next available deadline. In Section C,

we describe the initialization phase that we apply on each new

Application
Any external

 online scheduler
(e.g. [9])

Sort each deadline tasks in a priority table and update
the specification of each deadline DAG

Multi-core platform

Finished task

Pr
io

ri
ty

 T
ab

le

D
ea

dl
in

e
Sp

ec
 T

ab
le

1
7

yes

Update DAG
decomposition Update dependencies

with existing deadlines

Depth level
computation

Update local and
external dependencies

Initialize Deadline
Spec. Table Is the deadline

finished ?

Re
qu

es
t t

he
 n

ex
t d

ea
dl

in
e

D
AG

no

2

3

4

5

8

9

10

Topological sorting

In
iti

al
iz

at
io

n
of

 e
ac

h
ne

w
 T

i
(S

ec
tio

n
II

I-
C

)

U
pd

at
in

g
T

i
(S

ec
tio

n
II

I-
E

)

Generating Scheduler input (Section III-D)

6

Fig. 4. A complete overview of our DFM

added Ti to the WS buffer and how we handle online the addi-

tional dependencies between these Tis. In Section D, we then

describe different data structures that our DFM provides to as-

sist an external scheduler and how they can be used efficiently.

Finally, we explain how we update online the generated data

structures and synchronize it with recent scheduling decisions.

C. Initialization of each new added deadline to the WS

The full initialization process is illustrated in Fig. 4 (arrows

1, 2, 3 and 4). First, we sort the tasks of each new added Ti

in the WS buffer, in topological order. An optimal topological

sorting algorithm with a complexity of O(|N |+ |E|) has been

proposed in [12]. Moreover, in [14], it was demonstrated that

a DAG with n nodes has a worst case of n ∗ (n − 1)/2 edges.

The topological sorting step is applied only once for each new

Ti. This reduces the complexity of computing the depth δji of

each task tj with deadline di in the WS buffer. While sorting

the tasks, the list of direct parent tasks LP
j (i.e., list of tasks tk

linked to ingoing edges ejk) and the list of direct children tasks

LC
j (i.e., list of tasks tk linked to outgoing edges ekj) for each

task tj are also generated. LP
j is used to compute the critical

path workload in Section D, while LC
j is used for the depth

level computations of each available task in the WS buffer. In

fact, for each outgoing edge ekj (i.e., edges connecting tj to LC
j

tasks) of each remaining task tj in Ti, our solution updates the

depth value δki of the node tk with δki ←max(δji +1, δki). The

complexity of the graph traversal algorithm that we apply to

compute δki is then O(|E|).
We denote by li,k the group of tasks tj having the same depth

level δji = k in Ti. Note that, for all tasks in Ti, tasks at depth

level k + 1 (i.e., li,k+1) can only be scheduled after tasks at

depth level k (i.e., li,k) are finished. Fig. 5 illustrates in detail

the difference between tj , Ti, li,k and δji after applying our

algorithm on a WS buffer containing part of the DAG of the

H.264 video decoder.

While traversing the DAG for the first time for each new Ti,

the number of unfinished direct parent tasks tk for each task tj ,

that we call the dependency status rj , is also computed. rj is

used to assist the scheduler in detecting available paralleliza-

tion opportunities from the remaining unscheduled tasks in the

WS (i.e., entry nodes rj = 0). In fact, the dependency status

rj is the key idea to track existing dependencies between tasks

716

8A-2

I1

S2 S4

F5

S3

I6

S7 S9

F10

S8

I11

S12 S14

F15

S13

I16

S17 S19

F20

S18

I21

S22 S24

F25

S23

I26

S27 S29

F30

S28

di di+1 di+2

Ti Ti+1 Ti+2

li, 1 =1

li, 2 = 2

li, 3 = 3

li, 4 = 4

li, 5 = 5

li, 0 = 0

li+2, 2 = 2

li+1, 3 = 3

li+1, 4 = 4

li+1, 5 = 5

li+1, 0 = 0

li+2, 1 =1

li+2, 2 = 2

li+2, 3 = 3

li+2, 4 = 4

li+2, 5 = 5

li+2, 0 = 0

Time

li+1, 1 =1

B B B

P I P

Fig. 5. The decomposition applied by our DFM on H.264 DAG [1]

with different deadlines (i.e., between Tis). Once the initial de-

pendency status rj is computed for each task within the newly

added Ti, we check for its dependencies with other deadlines.

To this end, for each task tj in Ti with an incoming edge from

tasks with earlier deadlines (i.e., Ti+l with l < 0), we incre-

ment its rj value. Then, for each task tj in Ti with an outgoing

edge to other deadlines tasks (i.e., Ti+l with l > 0) we update

its list of direct children tasks LC
j . This will be used later for

the update phase in Section E for clearing the dependencies be-

tween the Tis. Finally, it may happen that a task finishes its

execution and the other deadline that is connected to does not

yet exist in the WS buffer. In this case, we need to make sure

that when this new deadline is added to the buffer, its depen-

dency with this finished task is cleared correctly. Therefore,

we store this dependency in a new list, that we call the list of
non-cleared dependencies. This list is generated during the up-

date process (cf. Section E). We use the list of non-cleared

dependencies in the last step of this initialization phase in or-

der to check if a dependency has to be cleared by decrementing

the rj value of the concerned task. Each time a dependency is

cleared, we remove its corresponding entry from the list.

D. Generation of the scheduler input

To assist online schedulers with immediate parallelization

opportunities and the priorities of the available tasks, we define

the first output structure, called Priority Table, that we provide

to any connected scheduler. Each entry in the Priority Table

corresponds to a task tj and it is characterized by: estimated

workload wj , earliest release time sj , expected ending time zj ,

fixed deadline dji where i refers to Ti and dji = di ∀j, critical

path workload to its deadline wdi
j and the dependency status rj

(i.e., the total number of parent tasks that it still depends on).

wj , sj , zj and wdi
j are in clock cycles and dji is in seconds.

The tasks in the Priority Table are sorted by our DFM accord-

ing first to their deadline di, then refined to their depth level

li,k in Ti and finally to their estimated workload in case of a

tie. We use the Quicksort algorithm with an average complex-

ity of O(|N |.log(|N |)). Several workload estimation methods

[3][4] with a negligible overhead have been proposed for multi-

media applications. Full overhead measurements on the H.264

decoder application are provided in Section IV.

Regarding the computation of this output, zj and sj are cal-

culated while the WS buffer is traversed by the depth level

computation algorithm (cf. Section C) with zj ← wj + sj and

sk ← max(zj , sk) for ∀tk ∈ LC
j . If the task is currently run-

ning at frequency fj then we use zj ← wj ∗ fmax

fj
+ sj to take

into account the applied frequency. Finally, for the calculation

of the critical path workload value wdi
j starting from each task

tj to its local sink node in Ti, the method used to calculate wdi
j

is the same as the depth level computation algorithm except that

we traverse the topological graph in the inverse order and we

replace LC
j with LP

j . Our solution indicates to the scheduler

which tasks are entry nodes in the remaining tasks set using

the dependency status rj of each task tj . Nodes with rj = 0 in

the Priority Table are potential starting tasks for parallelization.

Even though the Priority Table gives a straightforward solution

to select the task to schedule, it does not give the scheduler

general information related to the execution status of each re-

maining Ti in the buffer, such as their currently running tasks

progress. Having such information, a scheduler will be able to

efficiently tune the deadlines values for a more energy efficient

execution [9]. Moreover, such information could be exploited

by any connected scheduler to set the priority of each Ti, which

can be efficiently used in parallel with the priority table. To this

end, we then propose a second output to online schedulers in

order to track the execution status of future deadlines tasks that

we call the DeadlineSpec Table. This latter output is used to

track the overall progress of each group of tasks Ti. Each entry

in the DeadlineSpec Table stores relevant computed informa-

tion related to each Ti namely: total workload, executed work-

load, scheduled workload and finally a depth table. Each entry

k in the depth table corresponds to a li,k in Ti and it stores rele-

vant computed information namely: total workload, maximum

number of allowed cores and minimum amount of paralleliz-

able workload. The full DeadlineSpec Table is initially gen-

erated using previously computed information related to each

task. The complexity of creating this table is then linear to the

number of nodes in the considered WS.

E. Updating the DAG decomposition and the scheduler input

As shown in Fig. 4 (arrows 8, 9 and 10), the working set

decomposition and the generated output are updated each time

a task finishes its execution. First, we remove the finished task

tj from the list of remaining tasks and re-estimate the workload

of similar tasks. Then, we decrement rk of each task tk in LC
j

(i.e., its direct children tasks tk). However, it may happen that

one direct child has a different deadline that is not available yet

in the WS buffer. In this case, we save this dependency in a

list that contains all the non-cleared dependencies. This list is

used during the initialization phase to clear future dependen-

cies when a new Ti linked to this edge is added to the WS
buffer as described in Section C. This first step allows instantly

detecting new entry nodes (i.e., when rj = 0) among all the

available tasks of all the Tis in the Priority Table output. Then,

we set the earliest starting time of each task tj depending on

its execution status. If the task tj is an entry node and did not

start yet, then the current execution time is assigned as its earli-

est starting time. However, if the task tj is currently executing

then some values from the DeadlineSpec Table, namely, the

scheduled workload and executed workload, are updated from

values of the currently running task tj . Finally, we update the

information related to each remaining task tj in Ti by applying

the same graph traversal algorithm of Section C on the remain-

ing unscheduled nodes of Ti. Therefore, the total number of

times the graph traversal algorithm is applied for the full exe-

cution of a Ti will be equal to twice the number of tasks in the

717

8A-2

Fig. 6. H.264 decoder: comparison between our DFM and [8], connected to

the same scheduler. (a)Energy consumption. (b)Deadline miss rates.

Ti and during each update it will be executed with one node

less (i.e., without the finished tasks). Indeed, each time a task

finishes its execution the algorithm will be executed first dur-

ing the depth computation phase and then for the critical path

workload. This guarantees real-time information regarding fu-

ture available parallelization each time before a scheduler has

to make a decision.

IV. EXPERIMENTAL RESULTS

We demonstrate the advantages of our DFM, which we have

implemented in C, to assist an energy-efficient online sched-

uler on two experimental benchmarks namely, the H.264 video

decoder [17], and multiple configurations of synthetic DAGs

generated with GGEN tool [11]. We explain our experimental

setup in Section A. Then, we present our results for the two

sets of experiments in Sections B and C.

A. Experimental setup

As described in Sections I and II, existing online DAG mon-

itoring solutions [6][7][8] do not consider DAG models where

a task’s children can have different deadlines. The only way for

these approaches to handle such a DAG online is to process it

deadline by deadline (i.e., fork-join parallelism model) where

critical dependencies between the deadlines are replaced with

a single join edge as shown in Fig. 2. However and since our

DFM applies similar task decompositions technique to exist-

ing solutions for DAGs without critical dependencies between

the deadlines, we can perfectly simulate existing approaches by

first converting general DAG model to the fork-join model then

by applying our DFM on the converted DAGs.

We connect the simulated existing solution [8] ([8] uses

the same decomposition technique as in [7]) and our DFM to

an external online scheduler based on [9], which applies the

least possible restrictions on its application model compared to

other schedulers. In [9], an online scheduling approach called

MLTF was proposed for multimedia application, where the ear-

liest deadline is scheduled with limited consideration of future

tasks’ deadlines and workloads. Indeed, based on the derived

estimated duration of all pending tasks, a new virtual deadline

is set in order to have more balanced workload distribution over

the time. Then, a Largest Task First (LTF) schedule is applied.

In [9], the algorithm applied for frequency selection does not

take into account the dependencies between the tasks. There-

fore, we made the scheduler select the frequency of each task

based on the remaining critical path workload and the available

amount of clock cycles. Due to dependencies between tasks,

gaps (i.e., when a core is idle and waiting for another task to fin-

ish) may occur during the schedule. Therefore, we add another

simple module on top of the MLTF scheduler presented in [9]

to fill the gap. This module compares the amount of available

gap (which can be easily estimated from the schedule generated

by [9]) to the workload estimation of the available task tj with

tj ∈ Te+l (i.e., having deadline de+l) to compute the minimum

frequency f j
de

that allows tj to fit the available gap occurring

before de. Then, the module applies again the MLTF schedule

but this time on Te+l between de+l and de+l−1 to estimate the

minimum frequency f j
de+l

used when scheduling task tj dur-

ing its allocated time (i.e., between de+l and de+l−1. Finally, if

f j
de

≤ f j
de+l

, then the gap is filled. All these computations are

then based on MLTF [9].

B. H.264 decoder - Energy, deadline miss rates and overhead

For our multimedia benchmark, we have used the Joint

Model reference software version 17.2 (JM 17.2) of an H.264

encoder [17]. The DAG model and the deadlines configura-

tion that we consider for our benchmark are similar to the

one shown in Fig. 2 with an IBPB GOP structure, 8 slices

per frame and 30 frames/second for CIF (352x288) resolution

video sequences. We use accurate statistics generated from an

H.264 decoder that we have parallelized and executed on a so-

phisticated multiprocessor virtual platform simulator. In fact,

in this work, we use the multiprocessor ARM (MPARM) vir-

tual platform simulator [5], which is a complete SystemC sim-

ulation environment for MPSoC architectural design and ex-

ploration. MPARM provides cycle-accurate and bus signal-

accurate simulation for different processors. In our experi-

ments, we have generated with MPARM the workloads and

the dynamic power consumption statistics of each task (i.e.,

frame initialization, slice decoding and deblocking filter) us-

ing ARM9 power consumption figures with DVFS support

(300MHZ at 1.07V, 400MHZ at 1.24V and 500MHZ at 1.6V).

In Fig. 6, we show the energy consumption and frame miss

rates when decoding the Foreman sequence. We have used the

same scheduler connected first to our DFM and second to exist-

ing DAG monitoring solution [8] as described in the previous

section. The results of Fig. 6a show that [8] does not allow the

connected scheduler to use more than 8 cores as the maximum

number of parallelizable tasks within a single Ti is 8 in the con-

sidered DAG (i.e., 8 slices per frame). However, our solution

allows the connected scheduler to take advantage of the addi-

tional number of cores as demonstrated by the relative energy

decreasing with the number of cores. The results show also

that our DFM can efficiently exploit the increased size of the

WS buffer. In fact, our DFM allows the connected scheduler

to reduce the energy consumption by up to 52% compared to

[8] thanks to the information provided by our DFM regarding

each of the available deadlines in the buffer to the connected

scheduler. For the frame miss rates, the decomposition tech-

nique and the information provided by existing DAG monitor-

ing solution do not allow the connected scheduler to efficiently

schedule the tasks before their deadlines. In fact, as shown in

Fig. 6b, all the frames are missed if the number of cores is less

than 8 cores due to heavy workloads. However, by exploiting

our DFM output related to each of the available deadlines in

the buffer and the detected parallelization among the deadlines

tasks, the connected scheduler is then able to achieve less than

1.5% miss rates starting from only 6 cores as the gaps are filled

with available tasks with future deadlines.

718

8A-2

0%

25%

50%

75%

100%
W

or
kl

oa
d

%

(a)

f1=300MhZ f2=400MhZ f3=500MhZ

45%

0%

63%

2% 0% 0%

(b)

Deadline miss rates

Fig. 7. Synthetic DAGs (deadlines values are only 1% greater than the critical

path workload) : comparison between our DFM and [8], connected to the

same scheduler. (a)Frequency usage. (b)Deadline miss rates.

Finally, we present the overhead in terms of processor clock

cycles with respect to the workload of the Foreman video se-

quence. We measured an overhead of 0.82%, 0.93% and 1.04%

of our proposed DFM when using 2, 3 and 4 deadlines per WS

respectively (with 20 tasks per deadline). The overhead of the

connected scheduler varies between 0.7% and 1.24% depend-

ing on the number of cores and the WS buffer size.

C. Generalizing the results to the general DAG model

We use the GGEN [11] tool to model an application with

100 connected generated DAGs. We connect these DAGs by

randomly adding m edges in a way that some tasks in DAG g
depend on some other tasks in DAG g−1. For the workload, we

assume that an application of n tasks has k types of workloads.

We assign then each task tj with a random type number aj
between 1 and k, and we compute the workload with wj =
w(aj) + x where w(aj) is the minimum workload value of all

the tasks with type aj , and x is a random number between 0
and (w(aj) ∗ α) with α ∈ [0, 0.5]. x represents the workload

variation of each task with respect to its type. Finally, to assign

a deadline to each DAG, we compute the critical path workload

wcp
i of each DAG i and the final deadlines values (in seconds)

are assigned with di = di−1 + wcp
i ∗ 1+β

fmax
with β ∈ [0, 0.5].

We generate the synthetics DAGs with Erdos, TGFF and

Layers DAG generation methods as presented in [11]. We set

the number of cores to 6 and previously described parame-

ters to n = 25, k = 5, β = 0.01 (i.e., deadlines values are

only 1% greater than the critical path workload), α = 0.4 and

m ∈ [10, 15]. For TGFF method, we set the maximum num-

ber of ingoing and outgoing edges per node to 4, for Erdos and

Layer we set the probability of an edge to appear in each DAG

to 0.5 and for the Layer method we set the number of layers to

4. We choose these parameters in order to simulate a congested

system. Fig. 7a shows the distribution of the frequency us-

age of the total workload assigned by the scheduler exploiting

our DFM output compared to the same scheduler exploiting [8]

output. A higher fraction of workload processed at lower fre-

quencies is desirable because it indicates lower dynamic energy

consumption. We also compare the deadlines miss rates in Fig.

7b. Our DFM significantly reduces the usage of the maximum

frequency by up to 84% and the deadline miss rates by up to

61% (with 0% to 2% miss rates overall). Our solution provides

the information related to the execution status of each dead-

line which allows a connected scheduler to take foresighted

decisions that target the lowest possible frequency, reducing

then the dynamic energy consumption. Moreover, connecting

the deadlines together with multiple edges restricts existing so-

lutions [8] to provide the scheduler with only parallelization

within a single deadline. Therefore, our DFM allows any con-

nected scheduler to exploit more parallelization opportunities

resulting into a more balanced workload distribution and more

optimal usage of the available resources.

V. CONCLUSION

In this paper we have proposed a novel unified DAG mon-

itoring solution, that we called DAG Flow Manager (DFM).

The key contributions of this work were as follows: (i) A low-

complexity online DAG monitoring solution that is fully inde-

pendent of the scheduler that it is connected to it; (ii) Our DFM

does not impose any restrictions on the DAG and covers on-

line all DAG models (Fig. 1); (iii) Our DFM provides detailed

information about the execution status of tasks and deadlines

within a look-ahead window, allowing simple connected sched-

ulers to have optimal control of the core assignment and DVFS

selection of each task. Our results for the H.264 decoder have

demonstrated that our proposed DFM solution allowed a con-

nected online scheduler to reach up to 52% reduction in energy

consumption and over 80% reduction in deadline miss rates

compared to the schedule generated by the same scheduler but

relying on existing DAG monitoring solutions. The overhead in

terms of processor clock cycles for the proposed DFM, for the

aforementioned results, is less than 1% with respect to the total

workload of the foreman video sequence. Finally we have gen-

eralized these results on synthetic DAGs with different DAG

configurations.

REFERENCES

[1] T. Wiegand, et al., “Overview of the h.264/avc video coding standard,”

in IEEE TCSVT, vol. 13, no. 7, pp. 560–576, July 2003.

[2] “OpenMP,” http://openmp.org.

[3] Y. Andreopoulos, et al., “Adaptive linear prediction for resource estima-

tion of video decoding,” in IEEE TCSVT, vol. 17, no. 6, pp. 751–764,

June 2007.

[4] S.-Y. Bang, et al., “Run-time adaptive workload estimation for dynamic

voltage scaling,” in IEEE TCAD, vol. 28, no. 9, pp.1334 –1347, Sept.

2009.

[5] L. Benini, et al., “Mparm: Exploring the multi-processor soc design

space with systemc,” J. VLSI Signal Process. Syst., vol. 41, no. 2, pp.

169–182, Sept. 2005.

[6] M. Qamhieh, et al., “A Parallelizing Algorithm for Real-Time Tasks of

Directed Acyclic Graphs Model,” in Proc. RTAS, Apr. 2012.

[7] A. Saifullah, et al., “Real-time scheduling of parallel tasks un-

der general dag model,” online: http://www.cse.wustl. edu/˜ saiful-
laha/BIB Files/dag parallel. pdf, 2012, tech. report.

[8] J. Li, et al., “Outstanding Paper Award: Analysis of Global EDF for

Parallel Tasks,” in Proc. ECRTS, 2013..

[9] Y.-H. Wei, et al., “Energy-efficient real-time scheduling of multimedia

tasks on multi-core processors,” in Proc. ACM SAC, 2010.

[10] J. Cong, et al., “Energy efficient multiprocessor task scheduling under

input-dependent variation,” In Proc DATE, 2009.

[11] D. Cordeiro, et al., “Random graph generation for scheduling simula-

tions,” in Proc. SIMUTools, 2010.

[12] T. H. Cormen, et al., “Introduction To Algorithms,” MIT Press, 2001.

[13] N. Mastronarde, et al., “Markov decision process based energy-efficient

on-line scheduling for slice- parallel video decoders on multicore sys-

tems,” in IEEE TMM, vol. 15, no. 2, pp. 268–278, Feb, 2013.

[14] O. Sinnen, “Task scheduling for parallel systems,” in Wiley, 2007.

[15] Y. Wang, et al., “Overhead-aware energy optimization for real-time

streaming applications on multiprocessor system-on-chip, in ” ACM TO-
DAES, vol. 16, no. 2, pp. 14:1–14:32, Apr. 2011.

[16] Y. Wang, et al., “Optimal task scheduling by removing inter-core com-

munication overhead for streaming applications on mpsoc,” in Proc.

RTAS, 2010.

[17] H.264/14496-10 AVC Reference Software Manual (revised for JM 17.1).

[18] R. Ducasse, et al., “Adaptive topologic optimization for large-scale

stream mining,” in IEEE JSTSP, vol. 4, no. 3, pp. 620–636, June 2010.

719

8A-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

