
Ensemble Online Clustering through Decentralized Observations

Dimitrios Katselis, Carolyn L. Beck and Mihaela van der Schaar

Abstract— We investigate the problem of online learning
for an ensemble of agents clustering incoming data, i.e., the
problem of combining online local clustering decisions made
by distributed agents to improve knowledge and accuracy of
implicit clusters hidden in the incoming data streams. We focus
on clustering using the well-known K-means algorithm for
numerical data due to its efficiency in clustering large data sets.
Nevertheless, our results can be straightforwardly extended to,
e.g., the K-modes variant of the K-means algorithm to handle
categorical data, as well as to other clustering algorithms.
We show that the proposed ensemble online solutions, which
are based on a simple majority-voting scheme, converge to
the centralized solutions that would be made by a fusion
center, that is, the solutions resulting from one agent with
access to all information across agents. Given the dimensions
of the clustering model, the aforementioned convergence is
demonstrated to be achievable for relatively small sizes of the
ensemble.

I. INTRODUCTION

In the generic framework of supervised learning, we are
given data in the form of pairs, {(xn, yn)}Nn=1, which are
related by an implicit mapping yn = f(xn). The goal
is to identify or to approximate the mapping f(·) [4].
Nevertheless, in many applications there is a lack of feedback
from the supervisor in terms of data labels, which motivates
the need for unsupervised procedures while making efficient
learning much more challenging. In the unsupervised learn-
ing context, the data misses the labels, i.e., the available
data set is {xn}Nn=1. The main goal here is to identify the
structure in the data or more explicitly to use the available
data set sampled from a particular distribution or mixed
distributions in order to describe properties of the underlying
probabilistic law. Among others, one possible procedure of
descriptive statistics that could be cast in the unsupervised
learning framework is clustering [11]. Clustering finds nu-
merous applications, e.g., in biology for inferring population
structures based on gene similarities, in marketing for market
segmentation and product positioning, in social networks for
recognizing communities in large groups of people, and in
recommender systems for predicting users’ preferences based
on the preferences of other users in the same cluster [1], [4],
[5], [11].

A generic definition of clustering is the process of group-
ing data together based on some measure of similarity. The
usual outcome of such a process is the division of the feature
space into regions of high and low data densities. Selecting

Dimitrios Katselis and Carolyn L. Beck are with the Coordinated Sci-
ence Laboratory and the Department of Industrial and Enterprise Systems
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-
2925, Emails: {katselis|beck3}@illinois.edu.

Mihaela van der Schaar is with the Electrical Engineering Department,
UCLA, Los Angeles CA 90095, USA. Email: mihaela@ee.ucla.edu.

representatives in each region, we can establish prototypes,
e.g., for encoding/decoding the data. Forming the clusters we
can detect outliers, while we can also simplify the data for
further analysis and learning. Generally, there are no ‘bad’ or
‘good’ clusterings. What is actually the case is that different
clusterings can unveil different aspects of the data. Clustering
can be hierarchical or partitional [11]. In this paper, we
focus on the latter case, also called flat clustering.

In the data mining framework, one generally deals with
very large and complex data sets [1]. This creates the
incentive for employing algorithms that can efficiently cluster
large data sets, where the data points can take both numerical
and categorical values. Such efficient algorithms are the
K−means and the K−modes algorithms [5]. Furthermore,
in many current applications there is a motivation for decen-
tralizing the clustering procedure, e.g., in sensor networks
where the nodes have different collections of data associated
with possibly the same event across time which need to
be collectively labeled, in robotics where multiple robots
observe similar objects and try to identify them for example
as obstacles or targets, and possibly in military applications
where the agents observe various adversarial objects which
require classification of the corresponding types [3], [7], [9].
Furthermore, real time operation of a group of coordinated
agents collectively performing a task, e.g., that of clustering,
requires online implementation of the underlying algorithms.
This allows for introducing dynamics into the aforemen-
tioned task, while maintaining control over it.

In this paper, we propose two online ensemble learning
implementations of the K−means algorithm. Specifically, we
consider a set of distributed learners that at every time instant
observe cluster-correlated data from a single or multiple
sources. This setup is motivated by the aforementioned
sensor network and robotics applications. Upon the arrival
of a new observation, each learner assigns it to a cluster
and broadcasts this information to all other learners. The
final clustering decision is based on a majority vote. Some
theoretical guarantees for the resulting clustering rules are
then derived. The proposed approach shares in principle
some common features with the approaches in [9] mainly de-
veloped in the supervised learning framework. Furthermore,
only scalar decisions are exchanged once among the nodes at
every time instant due to the majority rule in our framework.

The rest of the paper is organized as follows: Section
II sets up the considered ensemble framework. Section III
proposes different online implementations of the K−means
algorithm. Approaches for selecting the initial means are
provided in Section IV. Some theoretical analysis is given
in Section V, while simulations are presented in Section VI.
Finally, Section VII concludes the paper.

Notation: Sets are denoted by uppercase calligraphic let-
ters. Bold lower case letters are used to denote vectors. R
stands for the real field and Z for the set of integer numbers.
For n ∈ Z, [n] corresponds to the set {1, 2, . . . , n}. For a set
A with at least t elements obtained in a specific temporal
order, A[t] is the subset of A with elements up to time t and
At is the singleton containing only the element obtained at
time t. For a set M ⊂ Rd, dist(m,M) denotes the usual
distance of m ∈ Rd from M. Finally, Id is the d×d identity
matrix and N (m,Σ) denotes the Gaussian distribution with
mean m and covariance Σ.

II. ENSEMBLE-BASED LEARNING FRAMEWORK

Consider a set of M distributed learners or agents L =
[M]. Each learner observes a sequence of samples from
one or many sources. The underlying assumption is that the
sources exhibit correlation on a common event, namely the
cluster to which their current sample is allocated. Except
for this correlation, the data points from different sources
are considered conditionally independent given the cluster
to which they belong. Furthermore, we make the usual
assumption that the data are stationary1 and the first and
second order moments of their underlying statistical laws
are finite.

We consider the synchronous scenario where all learners
receive a new observation at the beginning of each time
slot. Let x

(i)
n ∈ Rd be the observation of the ith learner

at the beginning of the nth slot. Assuming the existence
of K clusters2 for all learners, the task of each learner
is to assign this observation to the appropriate cluster so
that a properly defined cost is minimized. The clustering
process utilizes the idea of ensemble data mining: each
learner generates a local clustering decision, the clustering
decisions are then exchanged and each learner combines
the received decisions with its own to produce the final
clustering decision. We assume that the local clustering rules
are given and we focus on their adaptivity when the aggregate
clustering information becomes available. Upon the reception
of the aggregate clustering information, each learner uses a
simple majority-voting rule to finally decide the appropriate
cluster for the datum. The update of the cluster means is
based on this decision and it is performed on the basis of
each learner’s current observation. Clearly, in the case that
M > K, such a majority notion is well-defined due to the
pigeonhole principle3. On the other hand, if M ≤ K, such
a majority may fail to exist. In this case, each learner will
use its original local clustering decision as the final one.

The decentralized clustering schemes in this paper will
be compared with the best possible clustering that can be
achieved by an agent who has access to the data across all
learners and for all time instants. In practice, such an agent

1spatially
2Information a priori known in applications such as the design of vector

quantizers for data compression or decided based on metrics such as the
Akaike Information Criterion (AIC) etc [2], [11].

3Ties can occur but under some regularity conditions on the separation of
clusters or the variances of the data points within each cluster and possibly
on the size of M , such ties are assumed improbable.

will wait for the end of the observation time interval and will
perform a one time clustering over all the available data. We
refer to such an agent as the fusion center. Centralized online
algorithms will be also investigated. Although a fusion center
can admit online operations, we will refer to the central node
implementing the centralized online algorithms as the central
learner to avoid any confusions between online and batch
schemes.

III. CENTRALIZED AND ENSEMBLE K−MEANS SCHEMES

In the classical setup of the K−means algorithm, the ith
learner has a set of N observations O(i)

[N] = {x(i)
n }N−1

n=0 ,

where x
(i)
n ∈ Rd,∀i ∈ [M], n ∈ [N], and wants to organize

them into K subsets {C1, C2, . . . , CK}. The partitioning aims
at solving the following nonconvex combinatorial optimiza-
tion problem:

min
{b(i)kl ∈{0,1}}K,N

k,l=1,{m
(i)
k }K

k=1

K∑
k=1

N∑
l=1

b
(i)
kl d

(
x
(i)
l ,m

(i)
k

)
s.t.

K∑
k=1

b
(i)
kl = 1, ∀l ∈ [N],

b
(i)
kl ∈ {0, 1}, ∀k ∈ [K], l ∈ [N],

(1)

where b
(i)
kl = 1 if x(i)

l ∈ Ck and b
(i)
kl = 0 otherwise. Addition-

ally, d
(
x
(i)
l ,m

(i)
k

)
can be any distance function. Usually, the

squared Euclidean distance is used, i.e., d
(
x
(i)
l ,m

(i)
k

)
=

∥x(i)
l −m

(i)
k ∥2. After initializing the means of the clusters,

the K−means algorithm solves the last problem iteratively
by alternating between the two different sets of variables{
b
(i)
kl

}K,N

k,l=1
and

{
m

(i)
k

}K

k=1
in (1). The algorithm converges

since it generates a sequence of decreasing objective values.
Moreover, it works well for compact and hyperspherical
clusters [5]. It additionally tessellates the observation space
with convex clusters. Nevertheless, due to the nonconvexity
of (1), the convergence point can be a local minimum highly
dependent on the initialization of the cluster means.

In the case of multiple learners, the problem is as follows:
Assume that the samples of all learners were available
centrally at the fusion center. Then, one would want to
cluster all data jointly. Ideally, the goal is to have each
learner assigning its data to the cluster that the fusion center
would have assigned it only by using the assumption that
observations in the same time slot correspond to the same
cluster. Moreover, as already mentioned in the previous
section, the central clustering performed by the fusion center
is assumed to be implemented in a batch fashion, i.e.,
after all measurements have been collected. Assuming that
the learners make some initial clustering decisions on the
incoming data, the aforementioned ideal goal has to be
satisfied when only these initial clustering decisions are
exchanged among the learners to keep the communication
cost at a minimal level.

Let us first examine the possibility of different online
clustering approaches performed by a central learner. Col-
lecting all sets of observations, the central learner obtains
O[N] = ∪M

i=1O
(i)
[N]. Using the fact that contemporary samples

belong to the same cluster, the corresponding optimization
problem becomes:

min
{βkl∈{0,1}}K,N

k,l=1,{mk}K
k=1

K∑
k=1

N∑
l=1

βkld
′
(
∪M
i=1O

(i)
l ,mk

)
s.t.

K∑
k=1

βkl = 1, ∀l ∈ [N]

βkl ∈ {0, 1}, ∀k ∈ [K], l ∈ [N].
(2)

Here, d′
(
∪M
i=1O

(i)
l ,mk

)
=

∑M
i=1 d

(
x
(i)
l ,mk

)
, which

serves as the candidate distance function.
Clearly, (2) can be solved using the K−means algorithm.

Furthermore, it is not hard to see that (2) admits an online im-
plementation of the K−means algorithm: At time instant n,
the central learner re-initializes and executes the K−means
algorithm with O[n] = ∪M

i=1O
(i)
[n]. For every re-initialization,

the mean values are always set to the same initial values as
those in the batch implementation performed by the fusion
center. This point is necessary, since the clustering solution
produced by the fusion center is the reference basis for all
the comparisons in this paper. More explicitly, at the N th
time instant we would like the just described central online
solution to coincide with the fusion center solution. We
call this online implementation Central Online K-means
with Re-Initialization (CRI). Furthermore, the clustering
decisions up to time n − 1 are updated by the K−means
execution at time n. This update may or may not be ignored
by the system designer.

Algorithm 1 CRI
Require: Initial means M0 = {m0

1,m
0
2, . . . ,m

0
K}.

1: loop
2: while n ≤ N
3: Re-initialize the means to M0.
4: Solve (2) using K-means with N = n.
5: Return the clustering decision(s) for On or O[n].

Under computational considerations, a different online
implementation of the central K-means is possible: initially,
all cluster means are set to the same values as those used by
the fusion center. At time instant n, the new data is assigned
to a cluster by the central learner and only the corresponding
mean is updated. Already clustered data up to time n−1 are
considered decided and they are not re-clustered. Therefore,
only the mean of the selected cluster is updated. We call
this online implementation Central Online K-means with
Hard Temporal Decisions (CHTD). Clearly, depending on
the accuracy of the intial mean values the CHTD does not
generally deliver the same solution as the central K−means
implemented by the fusion center. This is the price paid for

the computational efficiency of the CHTD and its possible
flexibility to time-varying statistics of the incoming data
streams.

Algorithm 2 CHTD
Require: Initial means M0 = {m0

1,m
0
2, . . . ,m

0
K}.

1: loop
2: while n ≤ N
3: Assign On to the closest cluster.
4: Declare the clustering decision of On as final.
5: Update the corresponding cluster mean.

We now focus on the ensemble setup. Suppose that n = 0
corresponds to an instant that all learners initialize their
cluster means to the same a priori agreed values. Therefore,
all learners are assumed to have the initial cluster means
M0 = {m0

1,m
0
2, . . . ,m

0
K}, where m0

j ∈ Rd, ∀j ∈ [K].
This common mean initialization is essential for setting up
the reference basis of the cluster decisions to be exchanged
among the learners later on. Furthermore, M0 is assumed to
coincide with the initial mean values employed by the fusion
center. At time instant n, each learner receives a new datum.
A local K−means algorithm is initialized at M0 and it
operates on O(i)

[n], ∀i ∈ [M]. The clustering decisions of x(i)
n

are exchanged. Based on the majority rule, the final cluster
decision about x(i)

n is made. We call this algorithm Ensemble
Online Majority K-means with Re-Initialization (EMRI).
One may observe that in order to make the majority decisions
meaningful, the already clustered data up to time n− 1 are
not re-clustered, i.e., the online clustering decisions are tem-
porally hard. This is a major difference from the centralized
analog CRI, if the system designer chooses to implement the
CRI with re-clustering of the past data. To elaborate on this
point, note that the local K−means procedures executed at
time n may cluster the data up to time n − 1 to different
clusters than those already decided based on the majority
rule. Nevertheless, although the clustering decisions of the
data up to time n− 1 by the local K−means algorithms are
correlated with the clustering decision of x(i)

n ,∀i ∈ [M], this
point is ignored by the EMRI.

Algorithm 3 EMRI
Require: Common initial means M0 =

{m0
1,m

0
2, . . . ,m

0
K}.

1: loop
2: while n ≤ N
3: Each learner performs a local K-means based on

O(i)
[n] with re-initialization to M0.

4: The learners exchange their votes.
5: Final clustering decisions for O(i)

n are made.

Finally, there is an ensemble analog of the CHTD algo-
rithm. The operation is exactly the same as that of EMRI
with the difference that at time instant n the new data are
clustered by the learners based on their distance from the
current cluster means. The local decisions are exchanged and

the majority rule is applied. Only the cluster mean of the
selected cluster is updated. Assuming that the final cluster
mean at learner i is m

n(i)
k and the number of cluster points

in this cluster is4 Nn
k , the mean update equation is

m
n+1(i)
k = m

n(i)
k +

1

Nn
k + 1

(
x(i)
n −m

n(i)
k

)
(3)

with Nn+1
k = Nn

k +1. By definition this update is meaningful
when Nn

k ≥ 1 for good initial mean choices. We call this
algorithm Ensemble Online Majority K-means with Hard
Temporal Decisions (EMHTD).

Algorithm 4 EMHTD
Require: Common initial means M0 =

{m0
1,m

0
2, . . . ,m

0
K}.

1: loop
2: while n ≤ N
3: Each learner assigns O(i)

n to the closest cluster mean.
4: The learners exchange their votes.
5: Final clustering decisions for O(i)

n are made. The
selected cluster means are updated based on (3).

Remark: The CHTD algorithm assigns the incoming data
at time n to the cluster whose mean is the nearest one. This
assignment is based on minimizing d′

(
∪M
i=1O

(i)
n ,mn

k

)
=∑M

i=1 d
(
x
(i)
n ,mn

k

)
at time instant n. Here mn

k is one of the
K current centroids within CHTD’s framework.

All presented algorithms are sensitive to the initial means
selection. In the next section, we briefly discuss ways that
such a choice can be made.

IV. INITIAL MEANS SELECTION

In this section, we investigate a crucial point, namely, the
choice of the initial cluster means. Theoretical guarantees
about the proposed algorithms are sensitive to this choice.
We assume that we have an initialization phase where all
algorithms use observations to select their cluster means.
Suppose that it is known a priori that the cluster means are
well separated by more than some value ∆ > 0. The first M
points selected by the learners5 are exchanged and the first
cluster mean is formed as the sample mean of the current
observations. The next M observations are again exchanged.
If the corresponding sample mean has a distance less than
∆/2 of the already selected mean, this mean is rejected6. The
process is continued until the selection of K means. Each
time, every new sample mean is tested against all previously
selected means. Such a procedure terminates in finite steps
with probability 1 (w.p.1), if all clusters have a nonzero
probability of occurrence. Moreover, N0

k = M,∀k ∈ [K].
Lemma 1: The initial mean selection process corresponds

to an irreducible and recurrent Markov chain. Moreover, it
terminates in finite steps w.p. 1.

4Note that the means may differ per learner, but the number of points
per cluster coincide for all learners based on the majority rule.

5The procedure is applicable by the centralized online algorithms as well.
6A different option would be to update the closest sample mean.

Algorithm 5 Initial Means Selection
Require: Initial cluster mean m0

1. Set M0 = {m0
1}.

1: loop
2: while the number of means is ≤ K
3: The learners exchange their observations.
4: A new mean m̃ is formed locally based on these

observations.
5: if dist

(
m̃,M0

)
≥ ∆/2 then

6: M0 = M0 ∪ {m̃}.
7: Return M0 = {m0

1,m
0
2, . . . ,m

0
K}.

Sketch of Proof : Assume that the initialization process
has just begun and that the first M observations have been
received, i.e., O1 = ∪M

i=1O
(i)
1 is available. The sample mean

of the received data points is formed and the centroid of
the first cluster is determined. Given our assumptions, it
is easy to see that the remaining mean selection process
can be modeled as a finite state Markov chain with K
states, each state being associated with a different cluster.
The transition probabilities from any state to any other
state are pi, i = 1, 2, . . . ,K, where pi is the probability of
occurrence of the ith cluster. Note that these probabilities are
the same for any current state. Clearly, the Markov chain is
irreducible since all the states form a single communicating
class. Additionally, the Markov chain is recurrent, since
starting from any state the probability of never returning
to the same state is zero. To prove this, consider the usual
definition of the hitting time for state i as the minimum
time required to return to state i when starting at state i,
Ti = inf{n ≥ 1 : Xn = i|X0 = i}, where Xn is the state of
the Markov chain at time n. Denoting as fn

ii the probability
Pr{Ti = n}, it is not hard to see that fn

ii = pi(1 − pi)
n−1,

which leads to

Pr{Ti < ∞} =
∞∑

n=1

fn
ii =

pi
1− pi

∞∑
n=1

(1− pi)
n = 1

Therefore, we conclude that the hitting time for every state
is finite w.p.1. This holds for all states of the Markov chain.
Moreover, starting from any state i, the probability to visit
any other state j in finite steps is 1. To see this, notice that
this probability can be computed as follows:

∞∑
n=1

Pr {Xn = j,Xn−1 ̸= j, . . . , X1 ̸= j|X0 = i} =

∞∑
n=1

pj(1− pj)
n−1 = 1. �

In this paper, we will focus only on the previously
described selection of the initial means. Nevertheless, we
can possibly describe a different approach to the choice of
the initial means that would be investigated in a different
venue. The idea is to use local clustering rules that are
nonsensitive to the initialization process. To this end, we can
employ clustering algorithms based on the Maximum Entropy
Principle (MEP), described in [8], [10]. More specifically,
we can employ an approach also known in the context of

vector quantization for data compression as the determin-
istic annealing (DA) algorithm, which has the following
hierarchical property: it progressively seeks finer subclusters
inside larger clusters. Due to this property, the DA algorithm
is empirically verified to avoid local minima and to be
robust with respect to the initial means selection. During the
initialization phase, the ensemble learners collect data and
cluster them according to local DA algorithms, which aim at
minimizing the free energy, while employing an appropriate
geometric cooling law. It is straightforward to describe
the corresponding central and ensemble online algorithms
developed in this paper for the K-means procedure in the
context of the DA algorithm. The local learners can again
base their individual clustering decisions on the majority
rule. Upon obtaining K means, the initialization phase is
terminated. All learners have to agree on the mean values of
a preselected node, who is a priori agreed to be the leader.
In this sense, we have the common initial means required by
the ensemble online algorithms described in Section III.

In the sequel, we present some theoretical guarantees
for the proposed algorithms based on the first initialization
procedure described in Alg. 5.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, we give some theoretical results character-
izing the behavior of the described algorithms in Section III
with the first proposed means initialization.

Proposition 1: Consider the problem given by (2). As-
sume that common initial mean values are used by the fusion
center implementing the batch K−means algorithm and the
CRI algorithm. Then the CRI algorithm, implemented to
update the past clustering decisions, will give the same
solution as the fusion center at time instant n = N .

Sketch of Proof : Clearly, at n = N the CRI executes a
K−means algorithm based on O[N], which coincides with
the operation of the centralized batch K−means algorithm
implemented by the fusion center. Since the CRI is assumed
to update the clustering decisions made so far, the result is
obvious. �

Proposition 2: Let mn
CRI denote the cluster mean asso-

ciated with On as determined by the CRI algorithm. Then
the CHTD algorithm will identify the same cluster mean for
On, almost surely (a.s.) as M → ∞.

Sketch of Proof : Letting M → ∞, the means of the
clusters at time n−1 obtained by both the CRI and the CHTD
algorithms coincide a.s. with the true cluster means due to
the fact that the cluster means at time n− 1 are the sample
means of infinite many conditionally independent points.
More explicitly, since at every time instant the available
data points belong to the same cluster, the strong law of
large numbers implies a.s. convergence to the true centroid
of the cluster. Reoccurrence of the cluster at later time
instants makes no difference in the limit M → ∞. The
aforementioned coincidence of the generated centroids with
the true means also holds for n = 1 with n−1 corresponding
to the initial mean selection. Additionally, by assumption
mn

CRI minimizes
∑∞

i=1 d
(
x
(i)
n ,mn

k

)
, where mn

k is one of

the K true cluster means due to the limit M → ∞. Focusing
on the CHTD algorithm, its corresponding selected mean
mn

CHTD minimizes the same distance function at time n. �
Proposition 3: The clustering decisions up to time n− 1

from the (local) K−means algorithms implemented by each
learner at time n are the same as the final clustering decisions
of the EMRI algorithm a.s. as M → ∞.

Sketch of Proof : The EMRI algorithm requires that the
learners perform local K−means algorithms at every time
instant over their own data to cluster the datum at time
n. Then they exchange their votes and update their local
clustering models. Consider now the temporal sequence of
decisions made by a local K−means algorithm and those
made by the majority-voting scheme. As M → ∞, the
common initial means tend to the true cluster means w.p.1
due to the strong law of large numbers. This implies that
all incoming data to any learner are correctly clustered by
a local K−means algorithm, since in this context no other
(true) mean is closest to each datum. This also implies that
the majority voting scheme almost always selects the same
(true) cluster mean. �

Proposition 4: The EMRI and EMHTD solutions con-
verge a.s. to that of the centralized batch K−means algo-
rithm for any n as M → ∞.

Sketch of Proof : The proof can be easily derived along
the lines of the proofs of Propositions 2 and 3. �

Remarks:
1) In the simulation section, we demonstrate that the

desired M in the aforementioned propositions can ac-
tually be very small given the form and the separation
of the clusters, as well as the dimensionality of the
ambient space Rd.

2) By Propositions 1 and 2 we deduce that the CHTD
solution converges a.s. to that of the centralized batch
K−means as M → ∞.

3) Note the bidirectional implications between Proposi-
tions 3 and 4.

VI. SIMULATIONS

In this section we provide numerical examples to verify
the theoretical guarantees and to demonstrate the operational
requirements of the proposed schemes in the previous sec-
tions. We assume equiprobable clusters with means separated
by ∆ = 5

√
d distance. The cluster points are selected as

N (mj , 64Id), where mj corresponds to the true cluster
mean and the variance 64 corresponds to a value that is large
enough to create intersections between the clusters given
∆ and the choice of d in each case. The first initialization
algorithm for the means in Section IV has been used in both
figures.

In Fig. 1, we assume that N = 100,K = 6, d = 3.
N is selected small so that the behavior of the algorithms
against M is highlighted. The vertical axis corresponds to the
number of errors made by the CHTD, EMRI and EMHTD
algorithms against the centralized batch K−means algorithm
implemented by the fusion center. We can see that with
approximately 60 assumed learners, the CHTD converges to

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

Number of Learners

N
um

be
r

of
 E

rr
or

s

N=100, K=6, d=3

CHTD
EMRI
EMHTD

Fig. 1. N = 100,K = 6, d = 3: Total number of errors for the
CHTD, EMRI and EMHTD algorithms against the central batch K−means
algorithm.

0 100 200 300 400 500
0

5

10

15

20

25

30

Number of Learners

N
um

be
r

of
 E

rr
or

s

N=100, K=15, d=3

CHTD
EMRI
EMHTD

Fig. 2. N = 100,K = 15, d = 3: Total number of errors for the
CHTD, EMRI and EMHTD algorithms against the central batch K−means
algorithm.

the solution of the centralized batch K−means algorithm.
The CRI algorithm with cluster decision updates delivers the
same solution at n = N as the centralized batch K−means
algorithm. Fig. 1 implicitly verifies Propositions 2 and 4.
Moreover, the CHTD converges to the centralized batch
solution much faster in the number of agents, M , compared
to the EMRI and EMHTD algorithms. For the final value
of M , i.e., M = 287 agents, the execution time of the
centralized batch K−means algorithm was 0.6020s and for
the CHTD algorithm 0.2847s. The execution times of the
ensemble schemes (per agent) were 0.1088s and 0.0023s for
the EMRI and EMHTD algorithms, respectively.

To examine the behavior of the proposed schemes with
an increasing number of clusters, in Fig. 2 we assume that
N = 100,K = 15, d = 3. The axes are as before. At
approximately 70 learners we have convergence of the CHTD
solution to that of the centralized batch K−means algorithm.
For the ensemble schemes, this convergence practically oc-
curs for M ≥ 330. Fig. 2 implicitly verifies Propositions
2 and 4 as well. Moreover, for the final value of M , i.e.,
M = 496 agents, the execution time of the centralized
batch K−means algorithm was 2.3358s and for the CHTD
algorithm 1.1450s. The execution times of the ensemble
schemes (per agent) were 0.2179s and 0.0032s for the EMRI
and EMHTD algorithms, respectively.

Finally, Fig. 3 presents the average number of errors made
by the EMRI and EMHTD algorithms against the centralized
batch K−means scheme, when the probability of each
learner to receive a datum at n in the same cluster with the

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

Number of Learners

A
ve

ra
ge

 N
um

be
r

of
 E

rr
or

s

N=50, K=7, d=2, Pr=0.9

EMRI
EMHTD

Fig. 3. N = 50,K = 7, d = 2,Pr = 0.9: Average total number of errors
for the EMRI and EMHTD against the central batch K−means algorithm
with probabilistic cluster selection.

others is 0.9. Here, the cluster points are selected according
to N (mj , 25Id). This plot demonstrates the robustness of
the EMRI and EMHTD algorithms against a mismodeling
assumption, namely, that the data at each time instant belong
to the same cluster. Notice that this mismodeling also affects
the centralized K−means algorithm. The good performance
depends heavily on the parameter choices and on the selected
probability.

VII. CONCLUSIONS

In this paper, various distributed algorithms for the clus-
tering problem have been proposed, when the local learners
are assumed to receive incoming streams correlated on
the cluster index. We have demonstrated that a majority
voting rule can be used to reduce the communication cost
among learners, while delivering the same performance as
the corresponding centralized batch clustering algorithm with
an increasing number of learners. The results in this paper
exhibit the gains that can be achieved by having multiple
learners learning together as opposed to isolated learners.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopoulos, P. Raghavan, “Automatic
Subspace Clustering of High Dimensional Data for Data Mining
Applications”, Proc. ACM SIGMOD Int. Conf. Management of Data,
1998, pp. 94–105.

[2] H. Akaike, “A new look at the statistical model identification”, IEEE
Trans. on Aut. Control, vol. AC-19, no. 6, pp. 716–722, Dec. 1974.

[3] S. Basagni, “Distributed Clustering for Ad Hoc Networks”, Proc.
ISPAN, Fremantle, Australia, 23–25 June, 1999.

[4] V. Cherkassky, F. Mulier, Learning from Data: Concepts, Theory and
Methods, Wiley, NY, 1998.

[5] Z. Huang, “Extensions to the k−means Algorithm for Clustering
Large Data Sets with Categorical Data”, Data Mining and Knowledge
Discovery, 2, pp. 283–304, 1998.

[6] J. R. Norris, Markov Chains, Cambridge University Press, 1998.
[7] J. B. Predd, S. R. Kulkarni, H. V. Poor, “Distributed Learning in

Wireless Sensor Networks”, IEEE Sig. Proc. Mag., vol. 23, no. 4,
pp. 56–69, July 2006.

[8] K. Rose, “Deterministic Annealing for Clustering, Compression, Clas-
sification, Regression and Related Optimization Problems”, Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2210–2239, Nov. 1998.

[9] A. H. Sayed, S-Y. Tu, J. Chen, X. Zhao, Z. J. Towfic, “Diffusion
Strategies for Adaptation and Learning over Networks”, IEEE Sig.
Proc. Mag., vol. 30, no. 3, pp. 155–171, May 2013.

[10] P. Sharma, S. M. Salapaka, C. L. Beck, “Entropy-Based Framework
for Dynamic Coverage and Clustering Problems”, IEEE Trans. on
Automatic Control, vol. 57, no. 1, pp. 135–150, Jan. 2012.

[11] R. Xu, D. Wunsch II, “Survey of Clustering Algorithms”, IEEE Trans.
on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

