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Abstract—Electric vehicles (EVs) will play an important role
in the future smart grid because of their capabilities of storing
electrical energy in their batteries during off-peak hours and
supplying the stored energy to the power grid during peak
hours. In this paper, we consider a power system with an
aggregator and multiple customers with EVs and propose novel
electricity load scheduling algorithms which, unlike previous
works, jointly consider the load scheduling for appliances and
the energy trading using EVs. Specifically, we allow customers
to determine how much energy to purchase from or to sell to the
aggregator while taking into consideration the load demands of
their residential appliances and the associated electricity bill.
We propose two different approaches: a collaborative and a
non-collaborative approach. In the collaborative approach, we
develop an optimal distributed load scheduling algorithm that
maximizes the social welfare of the power system. In the non-
collaborative approach, we model the energy scheduling problem
as a non-cooperative game among self-interested customers,
where each customer determines its own load scheduling and
energy trading to maximize its own profit. In order to resolve
the unfairness between heavy and light customers in the non-
collaborative approach, we propose a tiered billing scheme that
can control the electricity rates for customers according to
their different energy consumption levels. In both approaches,
we also consider the uncertainty in the load demands, with
which customers’ actual energy consumption may vary from
the scheduled energy consumption. To study the impact of the
uncertainty, we use the worst-case-uncertainty approach and
develop distributed load scheduling algorithms that provide the
guaranteed minimum performances in uncertain environments.
Subsequently, we show when energy trading leads to an increase
in the social welfare and we determine what are the customers’
incentives to participate in the energy trading in various usage
scenarios including practical environments with uncertain load
demands.

Index Terms—Bidirectional energy trading; residential load
scheduling; electric vehicles; load demand uncertainty; optimiza-
tion theory; game theory
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I. INTRODUCTION

DUE TO MANY benefits such as environmentally-
friendly energy source, lower maintenance cost, and

energy efficiency, interests in electric vehicles (EVs) have
increased for the past few years. Moreover, compared to
conventional hybrid electric vehicles (HEVs), evolved EVs,
such as battery electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs), have enlarged battery capacities
and intelligent converters so that they can not only charge
but also discharge their batteries [3]. As EVs are being widely
used and deployed, they are expected to lead to two significant
impacts on the grid. First, due to the considerable amount of
their energy consumption, EVs generate a significant amount
of new load on the grid while being charged. This can cause
serious problems such as a large capacity requirement for
the increased peak demand, which causes underutilization of
power plants during off-peak hours [4]. A natural solution to
mitigate this problem is to optimize EVs’ charging schedule
with coordination, as shown in [5], [6], and [7]. Second,
EVs can contribute to the grid by storing electrical energy in
their batteries during off-peak hours and supplying the stored
energy to the power grid during peak hours as distributed
energy storages for the power grid. With the support of an
aggregator, a group of customers with EVs can establish an
energy trading market in which each customer can buy and
sell energy through the aggregator to improve the system-wide
performance (e.g., social welfare) as well as their own benefits.
Existing studies on energy trading among EVs have

been mainly focused on coordinated charing/discharging only
among EVs, e.g., [8], [9], [10], and [11]. In [8], the authors
considered an energy trading market in which a number of
EVs buy or sell energy from/to the aggregator. The energy
trading problem was modeled as a non-cooperative game
among EVs and a linear price function was proposed. In [9],
the authors also considered an energy trading market using a
non-cooperative game among EVs. Assuming multiple sellers
and buyers, they used double auction to model the market
clearing price function. Unlike [8] and [9] that considered
single time-slot models, energy trading scheduling problems
were studied spanning multiple time-slots in [10] and [11]. In
[10], a coordinated charging/discharging scheduling algorithm
was developed for a number of EVs aiming at minimizing
the total cost at the aggregator. In [11], price uncertainty was
considered for the energy trading market, where the energy
trading price was assumed to change dynamically every hour
based on a Markov chain.
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Besides the coordinated charing/discharging only among
EVs, the load scheduling of residential appliances can be
jointly considered to further realize the potential benefits
of EVs. As one of the key ingredients of the smart grid,
residential load scheduling and demand response have been
attracted significant research interests, e.g., [12], [13], [14],
[15], [16], and [17]. If EVs are appropriately incorporated
into load scheduling, they can be utilized to further improve
the overall satisfaction on the load demands and/or reduce
the electricity cost by consuming their stored energy for
residential appliances. Prior studies on the incorporation of
EVs into the residential load scheduling problems include [18],
[19], and [20]. In [18] and [19], load scheduling problems
were considered aiming at maximizing the social welfare of
the power system, in which each customer owns an EV with
charging/discharging capabilities. In [20], a load scheduling
problem was studied in a single home model with an EV.
In particular, in [17] and [20], the authors considered the load
demand uncertainty due to the variation of load demands or the
distortion introduced by the communication channel, which
is one of the key challenges in load scheduling. Although,
in the above works, EVs were considered as a type of
appliance with the capability of charging and discharging, the
use of discharged energy was limited within each customer’s
own household without allowing energy trading among the
customers. If the customers are allowed to supply their en-
ergy stored in their EVs’ batteries to the power system, the
discharged energy can be more efficiently utilized to achieve
a higher utility and/or a lower electricity cost.
In this paper, we study the energy scheduling problem for

a power system that consists of an aggregator and multiple
customers with EVs. Compared to the previous works in which
residential load scheduling and EV-based energy trading were
studied separately, we jointly consider load scheduling for
residential appliances and bidirectional energy trading among
customers by allowing the customers to buy and sell energy
from/to the aggregator using their EVs. We propose two
different approaches: a collaborative and a non-collaborative
approach. In the collaborative approach, we formalize a social
welfare maximization problem for the power system. By solv-
ing this problem, we develop a distributed energy scheduling
algorithm that can achieve the optimal load scheduling and
energy trading, thereby maximizing the social welfare of the
power system. In the non-collaborative approach, we study
the impact of the customers’ non-cooperative behaviors on
energy trading and the associated performance. To this end,
we model the energy scheduling problem as a non-cooperative
game among self-interested customers, where each customer
determines its load scheduling and energy trading to maximize
its own profit. Moreover, in order to resolve the unfairness
between heavy and light customers, we propose a tiered billing
scheme that can control the electricity rates for customers
according to their different energy consumption levels. We
show that the proposed game has a unique Nash equilibrium
and develop a distributed algorithm that converges to the
equilibrium. Finally, the uncertainty issue is investigated for
both approaches. By assuming that the actual energy consump-
tion may vary from the scheduled energy consumption, we
investigate the impact of the uncertainty in load demands and

TABLE I
COMPARISON WITH RELATED WORKS ON ELECTRICITY LOAD

SCHEDULING.(
√
: CONSIDERED, -:NOT CONSIDERED)

Electric
Vehicles

Residential
Load

Scheduling

Bidirectional
Energy
Trading

Load
Demand
Uncer-
tainty

[8]-[11]
√ − √ −

[12]-[16] − √ − −
[17] − √ − √

[18], [19]
√ √ − −

[20]
√ √ − √

Our work
√ √ √ √

develop distributed energy scheduling algorithms based on the
worst-case-uncertainty approach. For various usage scenarios,
we study the benefits from energy trading and incentives to
participate in the energy trading as well as the impact of the
load demand uncertainty. We summarize the comparison of
our work with the existing works on electricity load scheduling
in Table I.
The main contributions of this paper are as follows: (i)

we focus on the bidirectional energy trading that is incorpo-
rated into residential energy scheduling problem in the power
system, which has not been done before to the best of our
knowledge; (ii) we develop distributed energy scheduling al-
gorithms that can be implemented with the limited information
through the communication network in the smart grid system;
(iii) the impact of energy trading is studied in two different
systems (collaborative and non-collaborative systems); (iv) a
tiered billing scheme is proposed that resolves the unfair-
ness between customers in the non-collaborative system; (v)
considering the uncertainty in the load demands, we develop
distributed energy scheduling algorithms that provide robust
performance in the uncertain load demands.
The rest of the paper is organized as follows. In Section

II, the system model is presented. In Sections III and IV,
we define the energy scheduling problems and develop the
distributed algorithms for collaborative and non-collaborative
approaches, respectively. In Section V, the uncertainty in
the load demands is investigated. In Section VI, we provide
numerical results and finally we conclude in Section VII.

II. SYSTEM MODEL

We consider an electric power system which consists of a set
of customers I and one aggregator as in Fig. 1. The aggregator
buys electrical energy from a utility company through a
wholesale electricity market and provides it to its customers.
Each customer i ∈ I is equipped with the energy control
system (ECS) and owns a number of residential appliances.
Furthermore, each customer may have an EV. The ECS in each
household can communicate with the aggregator as well as
the appliances within the household. Through the ECS, each
customer can control the scheduling of energy consumption
for each of its appliances and EV. The entire scheduling
interval (e.g., one day) is divided into T time-slots with equal
duration, whose set is denoted by T = {1, 2, · · · , T } (e.g., 24
time-slots each of which has one-hour duration). We assume
that the scheduling of energy consumption is determined at the
beginning of the entire scheduling interval (e.g., 0:00 AM). In
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Fig. 1. Electric power system.

this paper, focusing on the energy trading among customers,
we consider a simplified appliance model where the amount of
energy consumed by all the residential appliances of customer
i during time-slot t is denoted by a single variable xt

i,App.
1

Then, we model customer i’s utility function for its residential
appliances during time-slot t as an increasing concave function
U t
i (x

t
i,App) of the amount of energy consumed by the residen-

tial appliances, xt
i,App. Compared to residential appliances that

only consume energy, the EV has the capability to charge and
discharge energy into/from its built-in battery. The discharged
energy can be used by other appliances, and thus xt

i,App

includes the energy consumed from the battery in the EV as
well as the aggregator. We denote the total amount of customer
i’s energy consumption during time-slot t by xt

i,Tot with the
inclusion of the energy consumed by both the residential
appliances and the EV. Accordingly, the difference between
xt
i,Tot and x

t
i,App, i.e., x

t
i,Tot−xt

i,App, is the amount of energy
charged/discharged into/from the EV’s battery during time-
slot t. Positive difference, xt

i,Tot − xt
i,App > 0, represents

that the corresponding amount of energy is charged to the
EV’s battery during time-slot t, while negative difference,
xt
i,Tot−xt

i,App < 0, represents that the corresponding amount
of energy is discharged from the EV’s battery. We denote the
overall energy scheduling of customer i by x̄ = [x̄i]i∈I , where
x̄i = [xt

i,Tot, x
t
i,App]t∈T .

We allow the bidirectional energy trading between cus-
tomers and the aggregator, i.e., each customer can sell its
energy to the aggregator when it has surplus energy stored in
its EV’s battery. Due to the energy trading capability, xt

i,Tot

may have a negative value, which means that the correspond-
ing amount of energy is sold to the aggregator. For example,
if xt

i,App = 5 kWh and xt
i,Tot = −10 kWh (accordingly

xt
i,Tot − xt

i,App = −15 kWh), customer i dishcarges 15 kWh
of energy from its battery to use 5 kWh for its own appliances
and to sell 10 kWh to the aggregator at t-th time-slot.
Due to physical constraints, we assume that there exist

1Note that our system model and the following results in the rest of this
paper can be easily extended to a more general model where each appliance’s
energy consumption is separately considered.

both maximum and minimum amounts of energy which the
residential appliances and the customer i’s household can
consume during each time-slot, i.e.,

xmin,t
i,App ≤ xt

i,App ≤ xmax,t
i,App , ∀t ∈ T (1)

xmin,t
i,Tot ≤ xt

i,Tot ≤ xmax,t
i,Tot , ∀t ∈ T . (2)

The amount of charged (or discharged) energy of the EV
during each time-slot is also constrained by the maximum and
minimum values, i.e.,

xmin,t
i,EV ≤ xt

i,Tot − xt
i,App ≤ xmax,t

i,EV , ∀t ∈ T . (3)

Since EVs may not be connected to the power grid through-
out the day for various reasons (e.g., driving on the road), we
assume that each customer’s EV has a set of non-overlapping
charging intervals, Li = {[Si,l, Fi,l]|1 ≤ l ≤ Li, Fi,l ≤
Si,l+1}, ∀i ∈ I, where Li denotes the number of charging
intervals and [Si,l, Fi,l] denotes the l-th charging interval of
customer i’s EV. During the charging intervals, i.e., from the
beginning of Si,l-th time-slot to the end of Fi,l-th time-slot,
the EV is connected to the power system, and thus can be
either charged or discharged. The EV’s battery charge level at
the end of time-slot t is represented as

rti =

{
vi,l(1− εi) + x

Si,l

i,Tot − x
Si,l

i,App if t = Si,l

rt−1
i (1− εi) + xt

i,Tot − xt
i,App if Si,l < t ≤ Fi,l,

∀t ∈ [Si,l, Fi,l], l ∈ Li,
(4)

where vi,l and 0 < εi � 1 denote the initial battery charge
level at the beginning of charging interval l and the self-
discharge rate of customer i’s battery, respectively. For each
time-slot, the EV’s battery charge level is subject to the
requirement on the minimum battery charge level and cannot
exceed its battery capacity, as indicated below

rmin,t
i ≤ rti ≤ Ri, ∀t ∈ [Si,l, Fi,l], l ∈ Li, (5)

where rmin,t
i and Ri denote the required minimum battery

charge level at time-slot t and the battery capacity of customer
i’s EV, respectively.
For each time-slot, the aggregator buys electricity, which

corresponds to the total demand of the power system,∑
i∈I xt

i,Tot, from the utility company in the wholesale elec-
tricity market as illustrated in Fig. 1. 2 The utility company
charges the aggregator an electricity cost based on a linear
wholesale electricity price function per unit energy 3 [21],
which is given by

pt
(∑

i∈I
xt
i,Tot

)
= at

∑
i∈I

xt
i,Tot + bt, ∀t ∈ T , (6)

where at > 0 and bt > 0 may vary in time and are
predetermined by the utility company before the scheduling
interval. We see from (6), as the total demand of the power

2In this paper, we assume that the customers in the power system have
sufficiently large amount of load demands at each time-slot, and thus we do
not consider the cases where the total demand of the power system has a
negative value.
3For the convenience, ‘wholesale electricity price per unit energy’ will be

represented by ‘wholesale price’ in the rest of this paper.
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system increases, the wholesale price also increases. Then, we
can represent the total cost of the aggregator at time-slot t as

Ct
(∑

i∈I
xt
i,Tot

)
= pt

(∑
i∈I

xt
i,Tot

)
×
∑
i∈I

xt
i,Tot ∀t ∈ T .

(7)

III. ENERGY SCHEDULING: COLLABORATIVE APPROACH

In this section, we study the energy scheduling problem
for a collaborative system, where all customers are willing to
cooperate to maximize the social welfare of the system, which
is defined as the sum of all customers’ utilities minus the total
cost charged to the aggregator. The resulting social welfare
serves an upper bound on social welfare obtained using any
feasible approaches.
We first consider the following social welfare maximization

problem:

P : max
x̄

∑
t∈T

∑
i∈I

U t
i (x

t
i,App)−

∑
t∈T

Ct
(∑

i∈I
xt
i,Tot

)
s.t. x̄i ∈ Xi, ∀i ∈ I,

where Xi represents the feasible set of customer i’s energy
scheduling which is defined as a set of x̄i’s that satisfy condi-
tions in (1),(2),(3), and (5). It can be easily shown that problem
P is convex programming. Moreover, the objective function
is strictly concave with respect to x̄i, the scheduling decision
of any customer i, when the other customers’ scheduling
decisions, x̄−i = [x̄i′ ]i′ �=i, are fixed. Due to these properties
of problem P, we can use the Gauss-Seidel method to solve
it [22]. Denoting the objective function of problem P by
φ(x̄1, · · · , x̄|I|), the Gauss-Seidel method is shown below

x̄
(k+1)
i = argmax

x̄i∈Xi

φ(x̄
(k+1)
1 , x̄

(k+1)
i−1 , x̄i, x̄

(k)
i+1, · · · , x̄

(k)
|I| ),

∀i ∈ I, (8)

where |Z| denotes the cardinality of set Z . At each iteration
k + 1, customers update there energy scheduling decisions,
x̄
(k+1)
i , sequencially by solving the following problem:

P1i max
x̄i

∑
t∈T

U t
i (x

t
i,App)−

∑
t∈T

Ct(xt
i,Tot +X

t,(k+1)
−i )

s.t. x̄i ∈ Xi,

where X
t,(k+1)
−i =

∑
i′<i x

t,(k+1)
i′,Tot +

∑
i′>i x

t,(k)
i′,Tot. Problem

P1i is a convex optimization problem and can be solved by
using standard algorithms for convex optimization. Hence, the
proposed algorithm in (8) can be conducted in a distributed
manner. Note that at each iteration, each customer needs
to acquire only the information about the wholesale price
function pt(·), ∀t ∈ T and the sum energy consumption of
other customers, Xt,(k+1)

−i , ∀t ∈ T . Such information can
be updated and broadcast by the aggregator through the
communication with the customer’s ECS at the begging of
each iteration.
We now study some properties of the optimal solution of

problem P and introduce a new interpretation on it.

Proposition 1. The optimal solution of problem P, x̄∗, can
be represented as the collection of optimal solutions of the

following problem:

P2i max
x̄i

∑
t∈T

U t
i (x

t
i,App)−

∑
t∈T

π∗txt
i,Tot

s.t. x̄i ∈ Xi,

where π̄∗ = [π∗t]t∈T is given as

π∗t = C
′t
(∑

i∈I
x∗t
i,Tot

)
= 2at

∑
i∈I

x∗t
i,Tot + bt, ∀t ∈ T , (9)

and function C
′t(z) denotes the first derivative of the total

cost function Ct(z) with respect to z.
Proof: See Appendix.

From Proposition 1, we can interpret problem P2i, ∀i ∈ I
as a distributed energy scheduling framework based on a linear
billing scheme where the aggregator decides the electricity
rates π̄∗ = [π∗t]∀t∈T , and apply these electricity rates to
all customers. Then, each customer i decides its own energy
scheduling to maximize its own utility by solving problem
P2i. The aggregator charges each customer an electricity bill
according to the announced electricity rates and the amount
of energy consumption at each time-slot.

Proposition 2. The sum of bills charged to all customers
calculated based on the linear rate π̄∗ in problem P2i,
is always larger than or equal to the total cost which the
aggregator has to pay to the utility company.

Proof: Comparing the total cost function in (7) and the
sum of bills based on the linear rate in (9), we can conclude
that the following inequality is always true.∑
t∈T

π∗t
∑
i∈I

x∗t
i,Tot =

∑
t∈T

C′t
(∑

i∈I
x∗t
i,Tot

)∑
i∈I

x∗t
i,Tot

=
∑
t∈T

Ct
(∑

i∈I
x∗t
i,Tot

)
+
∑
t∈T

at
(∑
i∈I

x∗t
i,Tot

)2

≥
∑
t∈T

Ct
(∑

i∈I
x∗t
i,Tot

)
. (10)

According to Proposition 2, the linear billing scheme always
guarantees that the aggregator can make a profit regardless
of how much energy the customers consume. However, it
should be noted that the optimal electricity rates, π̄∗, are
determined only focusing on maximizing the social welfare
without consideration on how we distribute the total cost to
customers and the aggregator. Moreover, the linear electricity
rates, π̄∗, which are identically applied to all the customers,
can result in unfairness among customers with different energy
consumption levels. The unfairness issue can be explained as
follows. Since the wholesale price, pt(

∑
i∈I x∗t

i,Tot), increases
as the total demand at time-slot t,

∑
i∈I x

∗t
i,Tot, increases, the

optimal electricity rate, π∗t, also increases as
∑

i∈I x
∗t
i,Tot

increases as shown in (9). Hence, the presence of heavy
customers with a large energy consumption drives up the
electricity rates, which is unfair to light customers. In the next
section, we shall take into consideration the cost allocation and
unfairness issues for a non-collaborative scenario.
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IV. ENERGY SCHEDULING: NON-COLLABORATIVE
APPROACH

In this section, we turn to the non-collaborative system,
where customers are self-interested and try to maximize their
own profits through load scheduling and energy trading. To
model the self-interested customers’ behaviors in the power
system, we formulate the energy scheduling problem as a non-
cooperative game. We then develop a distributed algorithm
that converges to the unique Nash equilibrium of the non-
cooperative game.
First, we propose a tiered proportional billing scheme,

where each customer is charged with an electricity bill that
consists of two parts: base rate and penalized rate. Mathemat-
ically, the billing function can be expressed as follows:

Ct
i (x

t
i,Tot, x̄

t
−i,Tot)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ct
(∑

i′∈I
xt
i′,Tot

) xt
i,Tot∑

i′∈I
xt
i′,Tot

if xt
i,Tot ≤ xt

Avg

Ct
(∑

i′∈I
xt
i′,Tot

) xt
Avg∑

i′∈I
xt
i′,Tot

+αCt
(∑

i′∈I xt
i′,Tot

)
xt
i,Tot−xt

Avg∑
i′∈I

xt
i′,Tot

if xt
i,Tot > xt

Avg ,

∀t ∈ T , i ∈ I (11)

where x̄t
−i,Tot = [xt

i′,Tot]i′ �=i denotes the energy consump-
tions of all customers except for customer i’s energy con-
sumption at time-slot t, xt

Avg =
∑

i′∈I x
t
i′,Tot/|I| denotes

the average energy consumption of all customers at time-slot t,
and α ≥ 1 is a constant penalizing factor which is determined
a priori by the aggregator. Each customer is subject to two-
tier electricity rates according to its own energy consumption,
xt
i,Tot as well as the average energy consumption, x

t
Avg , for

each time-slot. Specifically, when a customer’s energy con-
sumption is less than or equal to the average consumption, i.e.,
xt
i,Tot ≤ xt

Avg , the base rate is applied, which is represented
as Ct(

∑
i′∈I x

t
i′,Tot)/

∑
i′∈I x

t
i′,Tot, and the bill is charged

proportionally to the amount of energy consumption. On the
other hand, when a customer’s energy consumption is larger
than the average consumption, i.e., xt

i,Tot > xt
Avg , the base

rate is applied to the energy consumption below the average
value, xt

Avg , while the penalized rate is applied to the energy
consumption beyond the average value, xt

i,Tot − xt
Avg . The

penalized rate is obtained by multiplying the base rate by the
penalizing factor, α, i.e., αCt(

∑
i′∈I xt

i′,Tot)/
∑

i′∈I x
t
i′,Tot.

Here, the penalizing factor α has two meanings. First, as
α increases, heavy customers, who consume more energy
than the average consumption, will pay more per unit energy
consumption compared to the light customers, who consume
less energy than the average consumption. Hence, by adjusting
α, the aggregator can control the degree of fairness between
heavy and light customers. Second, α affects the aggregator’s
profit. For example, if α = 1, the sum of bills charged to all
customers is equal to the total cost that the aggregator has to

pay to the utility company, whereas if α > 1, the aggregator
can make a profit by charging heavy customers a higher rate.
Based on the tiered billing scheme in (11), the payoff

function of customer i is defined as

ui(x̄i, x̄−i) =
∑
t∈T

U t
i (x

t
i,App)−

∑
t∈T

Ct
i (x

t
i,Tot, x̄

t
−i,Tot),

∀i ∈ I, (12)

where x̄−i = [x̄t
−i,Tot]t∈T . We now define the

non-cooperative energy scheduling game G =
{I, {Xi}i∈I , {ui}i∈I}, where I, {Xi}i∈I , and {ui}i∈I
denote the sets of players, strategy sets, and payoff functions,
respectively. In a non-cooperative game, the most accepted
concept is Nash equilibrium [23]. A Nash equilibrium is a
state of a non-cooperative game where no player can improve
its utility by changing its strategy, if the other players
maintain their current strategies. In our energy scheduling
game G, the Nash equilibrium is defined as an energy
scheduling profile x̄∗ = [x̄∗

i ]i∈I that satisfies the following:

ui(x̄
∗
i , x̄

∗
−i) ≥ ui(x̄i, x̄

∗
−i), ∀x̄i ∈ Xi, i ∈ I. (13)

Next, we prove the existence and uniqueness of Nash
equilibrium in the game G, which are two critical properties
of non-cooperative game [23].

Proposition 3. The game G has a Nash equilibrium.
Proof: We can easily show that Ct

i (x
t
i,Tot, x̄

t
−i,Tot) is

a strictly convex function of xt
i,Tot. Accordingly, the payoff

function ui(x̄i, x̄−i) is a concave function of x̄i. Then, by the
definition of the concave N -person game and Theorem 1 in
[24], game G is a concave N -person game and has a Nash
equilibrium.

Proposition 4. The Nash equilibrium of game G is unique,
and the following algorithm converges to the unique equilib-
rium, x̄∗.

x̄
(k+1)
i = [x̄

(k)
i + δ(k)∇

x̄
(k)
i

ui(x̄
(k)
i , x̄

(k)
−i )]Xi , ∀i ∈ I, (14)

where δ(k) is a step size at the k-th iteration, ∇z̄ denotes the
subgradient with respect to z̄, and [z̄]Z denotes the projection
of z̄ onto constraint set Z .

Proof: Due to the page limitation, we provide the outline
of the proof. As in equation (3.9) in [24], we can define the
following vector:

g(x̄) = [∇x̄1u1(x̄1, x̄−1); · · · ;∇x̄|I|u|I|(x̄|I|, x̄−|I|)] (15)

and denote its Jacobian by G(x̄). If matrix [G(x̄)+G(x̄)T ] is
negative definite, game G has a unique Nash equilibrium and
the iterative algorithm in (14) converges to the equilibrium
by Theorems 2, 6, and 10 in [24]. Although it is a tedious
process, we can easily show that the matrix [G(x̄) +G(x̄)T ]
is negative definite, which completes the proof.

By Propositions 3 and 4, we see that the unique Nash
equilibrium can be achieved using the iterative algorithm in
(14). In the proposed algorithm, each customer updates its
own energy scheduling decision and energy trading based
on the subgradient ∇

x̄
(k)
i

ui(x̄
(k)
i , x̄

(k)
−i ) at each iteration k in

a distributed manner. Each customer needs to acquire the
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wholesale price function, pt(·), ∀t ∈ T , the total amount of
energy consumption,

∑
i′∈I x

t,(k)
i′,Tot, ∀t ∈ T , and the average

energy consumption x
t,(k)
Avg , ∀t ∈ T at each iteration. The

above information can be updated at each iteration through
the communication between the aggregator and the customer’s
ECS.

Remark 1. The base rate and the penalized rate of the tiered
billing scheme can be rewritten as

ρtbase(x̄
t) =

Ct
(∑

i′∈I
xt
i′,Tot

)
∑
i′∈I

xt
i′,Tot

= at
∑
i∈I

xt
i,Tot + bt,

∀t ∈ T , (16)

ρtα(x̄
t) = α

Ct
(∑

i′∈I
xt
i′,Tot

)
∑
i′∈I

xt
i′,Tot

= α
(
at

∑
i∈I

xt
i,Tot + bt

)
,

∀t ∈ T , (17)

respectively, where x̄t = [xt
i,Tot]i∈I . Note that, if α = 1,

these two rates are the same. Let us assume that x̄∗ is the
optimal solution of problem P in the previous section and
α = 1. Then, by comparing the linear electricity rate, π∗t,
in (9) and the tiered electricity rate, ρtbase(x̄

∗t), in (16),
it can be easily shown that, π∗t is larger than ρtbase(x̄

∗t).
The difference between those two rates indicates how the
customers will behave in the two different systems. Specifically,
when the amount of customer i’s energy consumption has a
positive value, i.e., x∗t

i,Tot > 0, it will have an incentive to
buy more energy in the non-collaborative system due to the
lower electricity rate, ρtbase(x̄

∗t). On the other hand, when the
amount of customer i’s energy consumption has a negative
value, i.e., x∗t

i,Tot < 0, it will have less incentive to sell its
energy in the non-collaborative system since the lower elec-
tricity rate, ρtbase(x̄

∗t), will bring it a smaller profit from the
energy trading. From these results, we can anticipate that the
customers in the non-collaborative system will consume more
energy and conduct less energy trading than the customers
in the collaborative system. Even if α > 1, similar behaviors
are expected for the light customers in the non-collaborative
system with the base rates, while the heavy customers will
decrease the amount of their energy consumption according
to α.

V. UNCERTAINTY IN LOAD DEMANDS

In the previous sections, we have assumed that the amount
of energy consumption is scheduled at the beginning of the
entire scheduling interval. Nevertheless, the actual energy
consumption may vary due to unexpected changes in the load
demands of customers, e.g., uncertain weather condition and
human behavior. Hence, it is important to study the impact of
the uncertainty in load demands and develop energy schedul-
ing algorithms that are robust and provide the guaranteed
minimum performance in the uncertain environments. In this
section, to tackle the uncertainty in load demands, we use

the worst-case uncertainty approach in which the uncertain
variables are assumed to be bounded in a given uncertainty set
and the aim is to maximize the performance by considering the
worst case in the uncertainty set. The result of this approach
can be interpreted as the “best immunized against uncertainty”
solution to a problem with uncertain parameters [25].
We define the uncertain load variation in customer i’s

energy consumption for its residential appliances at time-slot
t as eti. Then, we can represent customer i’s actual energy
consumption for its residential appliances not including the
EV as xt

i,App + eti. For simplicity, we assume that when the
load variation occur, each customer change the total energy
consumption by the same amount of energy as the load
variation so that the total energy consumption of customer
i at time-slot t is represented as xt

i,Tot + eti. We assume
that the uncertain load variation is bounded in the following
uncertainty set:

E = {ē|emin,t
i ≤ eti ≤ emax,t

i , ∀i ∈ I, t ∈ T }, (18)

where emin,t
i and emax,t

i denote the minimum and maximum
values of load variation eti, respectively. The maximum and
minimum values of each customer’s load variation are ap-
proved by or at least known to the aggregator (e.g., through
the history database).

A. Load Demand Uncertainty in the Collaborative System

In the collaborative system, we aim to maximize the worst-
case performance which is defined as the minimum social
welfare of the power system under all possible load variation
ē ∈ E using robust optimization techniques [25]. We first
define the actual social welfare of the power system which
comes from the actual energy consumptions as

φ(x̄, ē) =
∑
t∈T

∑
i∈I

U t
i (x

t
i,App+eti)−

∑
t∈T

Ct
(∑

i∈I
(xt

i,Tot+eti)
)
.

(19)
Then, we formulate a robust optimization problem as

RP : max
x̄

min
ē∈E

φ(x̄, ē)

s.t. x̄i ∈ Xi, ∀i ∈ I.

We first solve the inner part of problem RP which aims to
minimize the actual social welfare with respect to ē. We denote
the worst-case load variation which minimizes the actual social
welfare given energy scheduling x̄ by ē(x̄) = [eti(x̄)]

t∈T
i∈I , i.e.,

ē(x̄) = argmin
ē∈E

φ(x̄, ē). (20)

Since the actual social welfare in (19), φ(x̄, ē), is a concave
function of ē given x̄, there is at least one solution of the
minimization that is on the boundary of E . Hence, to find
the worst-case load variation ē(x̄) given x̄, we can compare
the social welfare of all cases in which the load variation of
each customer, eti, has either its minimum value emin,t

i or its
maximum value emax,t

i . Since load variation variables are not
coupled with each other at each time-slot, we can find the
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worst-case load variation at each time-slot as

ēt(x̄) = argmax
ēt∈Ẽt

[∑
i∈I

U t
i (x

t
i,App + eti)

− Ct
(∑

i∈I
(xt

i,Tot + eti)
)]

, ∀t ∈ T , (21)

where ēt(x̄) = [eti(x̄)]∀i∈I and Ẽt = {ēt|eti = emin,t
i or eti =

emax,t
i , ∀i ∈ I}. The complexity for finding the worst-
case load variation ēt(x̄) is 2|I| for each time-slot t, which
exponentially increases with the number of customers. How-
ever, in the next section, we will propose a distributed energy
scheduling algorithm for the non-collaborative system that has
a polynomial complexity.
With the worst-case load variation ē(x̄), which is obtained

by solving (21), we can rewrite problem RP as

RP′ : max
x̄

φ̃(x̄)

s.t. x̄i ∈ Xi, ∀i ∈ I,

where φ̃(x̄) = φ(x̄, ē(x̄)). We call the optimal solution to
problem RP the robust optimal solution.

Proposition 5. Problem RP′ is a convex optimization prob-
lem.

Proof: The actual social welfare φ(x̄, ē) is a concave
function of x̄ given ē. Then, according to equation (3.7)
in [26], the minimum of φ(x̄, ē) along with ē ∈ E , i.e.,
φ(x̄, ē(x̄)), is concave with respect to x̄. As the constraint
sets Xi, ∀i ∈ I remain convex, problem RP′ is a convex
optimization problem.

Due to the fact that customer i’s utility function U t
i (x

t
i,App+

eti(x̄)) is not a function of only its own energy scheduling x̄i

but a function of x̄ which is determined by other customers’
scheduling decisions, we cannot develop a distributed energy
scheduling algorithm based on the Gauss-Seidel method as in
Section III, even though problem RP′ is convex as shown in
Proposition 5. However, we can use the subgradient projection
algorithm to obtain the robust optimal solution as

x̄(k+1) = [x̄(k) + δ(k)∇x̄(k) φ̃(x̄)]X , (22)

where ∇x̄(k) φ̃(x̄) = [∇
x̄
(k)
1

φ̃(x̄), · · · ,∇
x̄
(k)

|I|
φ̃(x̄)] represents

the subgradient of φ̃(x̄) at x̄(k). Since each element of the
subgradient can be represented by using each customer’s
utility function, i.e.,

∇
x̄
(k)
i

φ̃(x̄) = ∇
x̄
(k)
i

[∑
t∈T

U t
i (x

t
i,App + eti(x̄))

−
∑
t∈T

Ct
(∑

i∈I
(xt

i,Tot + eti(x̄))
)]

, (23)

the subgradient projection algorithm in (22) can be represented
as a combination of partial update processes at each customer
as

x̄
(k+1)
i = [x̄

(k)
i + δ(k)∇

x̄
(k)
i

φ̃(x̄)]Xi , ∀i ∈ I. (24)

In the iterative algorithm in (24), customer i requires the infor-
mation about its worst-case load variation, eti(x̄

(k)), ∀t ∈ T ,
and the sum of worst-case load variation for other customers,

∑
i∈I eti(x̄

(k)), ∀t ∈ T as well as the sum energy consumption
of other customers at each iteration. The worst-case load
variation ē(x̄) is calculated by the aggregator at each iteration.
Since each customer requires only the sum of worst-case
load variation and the sum of energy consumption for other
customers, the iterative algorithm in (24) can be conducted
in a distributed manner at each customer i by updating those
information through the communication network between the
aggregator and customers.

B. Load Demand Uncertainty in the Non-Collaborative Sys-
tem

To study the impact of the load demand uncertainty on the
selfish customers’ behavior in the non-collaborative system,
we assume that each customer’s objective is to maximize its
worst-case payoff, i.e., the minimum value of its payoff under
all load variation ē ∈ E . Such a formulation is refereed to
as the robust game [27]. We first define the actual payoff of
customer i as

ui(x̄i, x̄−i, ē) =
∑
t∈T

U t
i (x

t
i,App + eti)

−
∑
t∈T

Ct
i (x

t
i,Tot + eti, x̄

t
−i,Tot + ēt−i), ∀i ∈ I. (25)

Each customer tries to maximize its worst-case payoff defined
as

ũi(x̄i, x̄−i) = ui(x̄i, x̄−i, ē(x̄; i))

= min
ē∈E

ui(x̄i, x̄−i, ē), (26)

where ē(x̄; i) represents the worst-case load variation that
minimizes customer i’s payoff given x̄, i.e.,

ē(x̄; i) = argmin
ē∈E

ui(x̄i, x̄−i, ē). (27)

Since the actual payoff of customer i in (25), ui(x̄i, x̄−i, ē), is
a concave function of ē given x̄, there is at least one solution
to the minimization in (27) lying on the boundary of E . Hence,
to find the worst-case load variation for customer i, ē(x̄; i),
given x̄, we can compare customer i’s payoffs by checking all
the possible cases in which load variation of each customer,
eti, has either its minimum value e

min,t
i or its maximum value

emax,t
i . Since load variation variables are not coupled with
each other at each time-slot, we can find the worst-case load
variation for customer i at each time-slot as

ēt(x̄; i) = argmax
ēt∈Ẽt;i

∑
t∈T

U t
i (x

t
i,App + eti)

−
∑
t∈T

Ct
i (x

t
i,Tot + eti, x̄

t
−i,Tot + ēt−i), ∀t ∈ T , (28)

where ēt(x̄; i) = [eti(x̄; i)]∀i∈I and Ẽt;i = {ēt|eti =
emin,t
i or eti = emax,t

i , ∀i ∈ I}. Note that we can represent
customer i’s actual payoff ui(x̄i, x̄−i, ē) by using its own load
variation eti and the sum of other customers’ load variations,
Et

−i =
∑

i′ �=i e
t
i′ , at each time-slot t, i.e., ui(x̄i, x̄−i, ēi, Ē−i),

where ēi = [eti]t∈T and Ē−i = [Et
−i]t∈T . This implies that

to find the worst-case load variation for customer i, ēt(x̄; i),
it is sufficient to compare its payoffs of only four cases in
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system.

Fig. 2. Distributed implementation of the proposed energy scheduling algorithms.

which customer i’s load variation, eti, has either its minimum
value emin,t

i or its maximum value emax,t
i and the sum of

other customers’ load variations, Et
−i, has either its minimum

value
∑

i′ �=i e
min,t
i′ (i.e., eti′ = emin,t

i′ , ∀i′ �= i) or its maximum
value

∑
i′ �=i e

max,t
i′ (i.e., eti′ = emax,t

i′ , ∀i′ �= i). Hence, if
each customer has the information about the maximum and
minimum values of the sum of load variation in the power
system, each customer can find the worst-case load variation
for its own payoff in a distributed manner. The complexity for
finding the worst-case load variation at each customer is only
4 for each time-slot, which is considerably lower than that of
the algorithm for the collaborative system.
With the worst-case load variation ē(x̄), we define robust

game RG = {I, {Xi}i∈I , {ũi}i∈I}, where I, {Xi}i∈I ,
and {ũi}i∈I denote the sets of players, strategy sets, and
payoff functions, respectively. Moreover, we refer to the Nash
equilibrium of robust game RG as robust Nash equilibrium.

Proposition 6. Robust game RG has a unique robust Nash
equilibrium and the following algorithm converges to the
unique equilibrium, x̄∗.

x̄
(k+1)
i = [x̄

(k)
i + δ(k)∇

x̄
(k)
i

ũi(x̄i, x̄−i)]Xi , ∀i ∈ I. (29)

Proof: Similarly to the proof of Proposition 5, we can
easily show that payoff function ũi(x̄i, x̄−i) is a concave
function of x̄i. Then, we can apply the proofs of Propositions
3 and 4 to prove that robust game RG is a concave N-
person game with a unique Nash equilibrium and the iterative
algorithm in (29) converges to the equilibrium.

According to the payoff function in (26), the subgradient of
customer i’s payoff ∇

x̄
(k)
i

ũi(x̄i, x̄−i) can be calculated based

on its local energy consumption information, x̄(k)
i , the sum of

other customers’ energy consumptions,
∑

i′ �=i x
t,(k)
i′,Tot, ∀t ∈ T ,

and the information of the worst-case load variation ē(x̄(k); i).
As we mentioned, if customer i acquires the information about
the maximum and minimum values of

∑
i′ �=i e

t,(k)
i′ (x̄(t); i),

it can calculate its own worst-case load variation ē(x̄(k); i),
which enables the distributed implementation of the subgra-
dient algorithm in (29). Those information can be updated by
the aggregator at the beginning of each iteration.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to validate the
proposed energy scheduling algorithms. Before addressing the
simulation environments, we summarize the distributed imple-
mentation of our proposed algorithms in Fig. 2 including the
operation of the aggregator and the customers at each iteration
and required information exchange. We refer to the algorithms
proposed in Sections III and IV without considering the load
demand uncertainty as the static algorithms, while referring
to the algorithms proposed in Section V which consider the
load demand uncertainty as the robust algorithms.
We consider the energy scheduling of one day and divide

it into T = 24 time-slots, each of which corresponds to one
hour. For illustration purpose, each customer’s utility function
is defined as

U t
i (x

t
i,App) = θti log(1 + xt

i,App), (30)

where θ̄i = [θti ]t∈T represents customer i’s hourly energy
demand profile. In this paper, each customer has one of
two different types of residential energy demand profiles,
Θ̄A = [Θt

A]t∈T and Θ̄B = [Θt
B]t∈T , as shown in Fig.

3(a), which are based on the average load shapes of com-
mercial services and residential services, respectively [28].
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(a) Two types of residential load demands profiles.
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(b) Time varying coefficient at in the wholesale price function.

Fig. 3. Demand profiles and wholesale price function for the power system.

Each customer’s minimum required energy consumption for
its residential appliances at each time-slot t is set to xmin,t

i,App =
θti/2 kWh, ∀t ∈ T . We assume that the coefficient at in the
wholesale electricity price function varies hourly as in Fig.
3(b), whereas bt is fixed to 0.05.
We consider three types of EVs:
• Type I : EV with only a chargeable battery;
• Type II : EV with a chargeable and dischargeable battery
but no energy trading capability;

• Type III : EV with a chargeable and dischargeable battery
and bidirectional energy trading capability.

If a customer has a Type I or II EV, it cannot sell energy to the
aggregator, i.e., xmin,t

i,Tot = 0. On the other hand, if a customer
has a Type III EV, it has the capability to sell the stored energy
in its EV to the aggregator during its charging intervals, Li.
Hence, in this case, the amount of total energy consumption
at time-slot t can have a negative value, i.e., xmin,t

i,Tot < 0. If a
customer has an EV with the dischargeable battery (i.e., Type
II or III EV), the minimum amount of charged energy during
a time-slot can have a negative value, i.e., xmin,t

i,EV < 0. Note
that we can regard a the case with Type I EV as the reference
case with a residential appliance which only consumes energy
without discharging capability.

A. Impact of Energy Trading

In order to evaluate the benefits of bidirectional energy
trading in the optimal energy scheduling, we first consider a

TABLE II
PERFORMANCE COMPARISON OF THREE TYPES OF EVS.

Type of EVs Type I Type II Type III

Social welfare 13.69 17.98 18.65
Total utility 22.25 27.75 28.53

Customer 1’s utility 8.08 13.49 12.30
Customer 2’s utility 14.16 14.26 16.23
Total demand (kWh) 28.14 33.22 33.79

Total energy trading (kWh) 0 0 5.63
Total cost ($) 8.55 9.77 9.87

Average wholesale price ($/kWh) 0.30 0.29 0.29

simple scenario with two customers in a collaborative system.
Customer 1 and customer 2 have the demand profiles Θ̄A

and Θ̄B , respectively. We assume that only customer 1 has
an EV. Three different types of EVs, i.e., Type I, II, and III,
are considered. For all cases, the EV’s battery has a capacity
of 30 kWh, i.e., R1 = 30 kWh, and the maximum amount
of charged energy is set to 5 kWh, i.e., xmax,t

1,EV = 5 kWh,
∀t ∈ T . For Type I and II cases, the maximum amount of
discharging energy is set to 5 kWh, i.e., xmin,t

1,EV = −5 kWh,
∀t ∈ T . Finally, the maximum amount of energy that the
customer with the Type III EV can sell to the aggregator is
limited by 5 kWh, i.e., xmin,t

1,Tot = −5 kWh, ∀t ∈ T . In this
scenario, we assume that the EV’s initial battery charge level
and minimum required battery charge level are 0. The EV is
assumed to be connected to the power system during the entire
scheduling interval, i.e., L1 = {[1, 24]}.
In Fig. 4, we compare the behaviors of two customers

according to the type of customer 1’s EV. Figs. 4(a), 4(b),
and 4(c) show the energy consumptions of two customers
when customer 1 has a Type I, II, and III EV, respectively.
The solid lines represent the total energy consumed by each
customer and the dashed lines represent the amount of energy
consumed by each customer’s residential appliances. The
difference between those two values represents the amount
of charged or discharged energy from/to the EV. The negative
value of the total energy consumption in Fig. 4(c) represents
the corresponding amount of energy is sold to the aggregator.
Fig. 4(d) shows the wholesale price at which the aggregator
buys energy from the utility company. Fig. 4(e) shows the
total energy demand and the sum of energy consumed by
the residential appliances in the power system. The shaded
region represents the total amount of energy trading among
customers and the aggregator. Performances of the power
system and each customer are summarized in Table II. The
average wholesale price is obtained by dividing the total cost
by the total demand.
When customer 1 has a Type I EV, due to the lack of

discharging capability, customers should buy energy for their
appliances at each time-slot as in Fig. 4(a). Hence, during
customers’ peak hours (e.g., 8:00 to 16:00 for customer 1 and
16:00 to 24:00 for customer 2), the power system buys energy
from the utility company at a relatively high wholesale price
as shown in Fig. 4(d).
When customer 1 has a Type II EV, it can utilize its EV’s

battery as an energy storage by charging it during its off-peak
hours, (e.g., 0:00 to 8:00), and discharging it during its peak
hours, (e.g., 8:00 to 16:00), as in Fig. 4(b). Hence, it can use
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(c) Customers’ behaviors with a Type III EV.
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Fig. 4. Comparison of customers’ behaviors according to different types of EVs in the collaborative system.

the stored energy for its appliances and does not need to buy
energy during it’s peak hours. As a result, as shown in Fig.
4(e), the power system buys more energy during the off-peak
hours and buys less energy during customer 1’s peak hours. As
shown in Fig. 4(d), although the storage of energy raises the
wholesale price of the off-peak hours, the power system can
buy more energy at the lower wholesale price during customer
1’s peak hours, which increases customer 1’s utility as well
as the social welfare as shown in Table II. However, it should

be noted that the discharged energy from customer 1’s EV
can be used only for its own appliances due to the lack of
the the energy trading mechanisms. Hence, the stored energy
cannot be efficiently utilized during customer 2’s peak hours,
in which customer 2 has high load demands while customer
1 does not.
In the Type III case, customer 1 discharges energy from its

EV and sells it to the aggregator during customer 2’s peak
hours (e.g., 16:00 to 24:00) as well as uses it for its own
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Fig. 5. Performance comparison of collaborative system (CS) and non-
collaborative system (NCS) varying amax/amin .

appliances during its peak hours as shown in Fig. 4(c). At
the same time, customer 2 consumes more energy compared
to the Type II case during its peak hours. Fig. 4(e) shows
that with the energy trading, customer 1 uses its battery more
flexibly than in the Type II case by charging more energy
during the off-peak hours, which increases the wholesale price
of the off-peak hours as shown in 4(d). On the other hand,
during customer 2’s peak hours, a large portion of the demand
for appliances in the power system is supplied by customer
1’s discharged energy, which reduces the total demand in

TABLE III
PERFORMANCE COMPARISON OF THE COLLABORATIVE SYSTEM (CS) AND

THE NON-COLLABORATIVE SYSTEM (NCS).

Type of EVs Type I Type II Type III
CS / NCS CS / NCS CS / NCS

Social welfare 2.25 / -1.55 16.13 / 14.10 24.84 / 20.12
Total utility 53.15 / 63.12 61.37 / 75.30 61.49 / 75.11
Total demand

(kWh)
142.36 / 159.50 137.36 / 159.67 123.87 / 151.23

Total energy
trading (kWh)

0 / 0 0 / 0 27.86 / 11.77

Total cost ($) 50.90 / 64.68 45.24 / 61.21 36.64 / 55.00
Average wholesale
price ($/kWh)

0.36 / 0.40 0.33 / 0.38 0.29 / 0.36

Sum of bills ($) 98.96 / 64.68 87.73 / 61.21 70.82 / 55.00

the power system. This enables the power system to buy
more energy while keeping the wholesale price low during
customer 2’s peak hours as in shown Fig. 4(d). Although this
increases the off-peak wholesale prices, the power system can
use more energy for customer 2’s appliances, which leads
to further improvements in customer 2’s utility, and thus the
social welfare as shown in Table II. These results show that
appropriate scheduling with energy trading can bring benefits
to the power system, especially when the energy stored in
a customer’s EV can be efficiently utilized to satisfy other
customers’ load demands during their peak hours.

B. Comparison of the Collaborative and Non-Collaborative
Approaches

In this subsection, we compare the collaborative and non-
collaborative systems. For each system, we consider three
different cases, in each of which the customers have Type
I, II, and III EVs, respectively. We consider 8 customers, each
of which has a uniformly distributed energy demand profile
taking one of two energy demand profiles Θ̄A and Θ̄B as its
average value. We assume that the charging intervals of each
customer are randomly determined with average connected
duration of 10 hours and average disconnected duration of 5
hours. The battery capacity of customer i’s EV, Ri is chosen
randomly within [15kWh, 40kWh]. The minimum required
charge level is chosen randomly within [0.5Ri, 0.7Ri] only
at the last time-slot of each charging interval. For the non-
collaborative system, the penalizing factor α is set to 1.
The results in this subsection are obtained by averaging 10
simulation results.
Table III shows that in both collaborative and non-

collaborative systems, the power system benefits from energy
trading (in terms of social welfare) compared to the cases with-
out energy trading capabilities. Although the power system in
the Type III case achieves almost the same total utility as in
the Type II case, it consumes less amount of energy even at the
lower wholesale price, and thus pays a less total cost. These
results imply that energy trading enables the power system to
more efficiently use the energy consumption for the customers’
appliances as well as to buy the energy consumption at a lower
wholesale price.
Table III also shows that, in the non-collaborative system,

the customers have a tendency to consume more energy
compared to that of the collaborative system. Moreover, in
the Type III case, less amount of energy trading is conducted
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Fig. 6. Performance of non-collaborative system (NCS) varying α.

among customers in the non-collaborative system than in the
collaborative system. These results can be explained by the
fact that for the same amount of energy consumption, the
customers in the non-collaborative system have less incentives
to participate in energy trading since the tiered proportional
billing scheme leads to lower electricity rates than the optimal
billing scheme in the collaborative system as discussed in
Remark 1. Hence, energy scheduling in the non-collaborative
system results in a higher utility and pay the more cost.
Due to self-interested behaviors of customers, the power
system in the non-collaborative system buys energy at a higher

wholesale price, and thus achieves a lower social welfare than
in the collaborative system. We can also observe that, in the
collaborative system, the sum of electricity bills which are
charged to customers based on the linear billing scheme is
larger than the total cost of the aggregator, while those values
are exactly the same in the non-collaborative system with the
penalizing factor α = 1 as discussed in Proposition 2.

C. Impact of the Wholesale Electricity Price

In order to study the impact of the wholesale price function
pt(·) on the energy scheduling, in Fig. 5, we compare the
proposed energy scheduling algorithms with different values
of at, ∀t ∈ T in the wholesale price function in (6). We
adjust the ratio of the highest value to the lowest value of at,
which is denoted by amax/amin, where amax = maxt∈T at

and amin = mint∈T at, while maintaining the shape of time-
varying αt in Fig. 3(b) and letting amin be fixed at 0.0225.
Except for the wholesale price function, we use the same
simulation settings as in subsection VI-B considering two
different systems and three types of EVs. Fig. 5(a) shows
the social welfare of six different cases by varying the ratio
amax/amin. As expected, as the ratio amax/amin increases,
the social welfare decreases in all cases. Fig. 5(b) shows that
the total demand also decreases as amax/amin increases due to
the increased wholesale price. However, with the Type III EVs,
the power system always achieves the highest social welfare
compared to the cases with the Type I and II EVs in both
collaborative and non-collaborative systems. Moreover, we can
observe from Fig. 5(c) that as the ratio amax/amin increases,
both the amount of traded energy and the performance gap
between the cases with Type II and III EVs increase. This
implies that, as the wholesale price increases, energy trading
plays a more important role in mitigating the negative impact
of the wholesale price increase on the power system.

D. Impact of the Penalizing Factor α

In order to study the impact of the penalizing factor α of
the tiered proportional billing scheme on energy scheduling,
we compare in Fig. 6 the average performance of the non-
collaborative system for different values of α. The ratio
amax/amin is set to 3. Except for α and amax/amin, we
use the same simulation settings as in subsection VI-B.
Fig. 6(a) shows the social welfare of three cases with

different types of EVs varying α from 1 to 3. For all cases,
as α increases, the social welfare increases up to a certain
point and then decreases. This implies that we can improve
the social welfare of the non-collaborative system by appro-
priately choosing α. However, as α increases, the customers
monotonically reduce the amount of their energy consumption
as well as the amount of energy trading, as shown in Figs. 6(b)
and 6(c), since the increase in α raises the overall electricity
rates of the power system.
In order to understand the impact of α on customers

behaviors, we show the electricity rates of the tiered billing
scheme and customers’ energy consumptions. Since the three
cases (Type I, II, and III) have similar tendencies according
to α, we consider only the case with Type III EVs in Fig.
7. Fig. 7(a) shows the base electricity rates and the penalized
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rates versus time-slots for different values of α. Compared
to the base rate when α = 1, the penalized rates sharply
increase as α increases, especially when at’s in the wholesale
price function are high. As we have shown in Fig. 6, due
to the increased penalized rates, the total amount of energy
consumption decreases, which in turn lowers the base rates.
Accordingly, heavy customers are charged at higher rates than
light customers as desired. In order to study the impact of α on
individual customer’s behavior, we show in Figs. 7(b) and 7(c)
each individual customer’s energy consumptions at a time-slot
with low at (5:00) and at a time-slot with high at (14:00)
by comparing the cases when α = 1 and when α = 1.4.
In both time-slots, as α increases, the heavy customers tend
to decrease their energy consumption due to the penalized
rates, while the light customers tend to increase their energy
consumption to take advantage of decreased base rates.

E. Impact of the Load Demand Uncertainty

To study the impact of load demand uncertainty in both
collaborative and non-collaborative systems, we compare in
Figs. 8 and 9 the performance obtained by using the robust
algorithms which consider load demand uncertainty to those
obtained by the static algorithms which neglect load demand
uncertainty. We set the maximum and minimum values of
the uncertain energy consumption, emax,t

i and emin,t
i , to be

proportional to the minimum required energy consumption
xmin,t
i , i.e.,

emax,t
i = ω × xmin,t

i , ∀t ∈ ,i ∈ I, (31)

emin,t
i = −min(ω, 1)× xmin,t

i , ∀t ∈ ,i ∈ I, (32)

where ω represents the relative degree of the load demand
uncertainty in the power system. The minimum operation in
(32) represents that the energy consumption for residential
appliances cannot be negative. The uncertain energy consump-
tion eti follows a uniform distribution between its maximum
and minimum values. We use the same simulation settings as
in subsection VI-B and consider only Type III EVs for brevity.
In Fig. 8, we compare the average performances of four

algorithms by varying ω from 0 to 3. The result in Fig. 8
is obtained by repeating and averaging 1000 outcomes of the
random load variation ē. Fig. 8(a) shows that, as ω increases,
the average worst-case social welfare decreases in both col-
laborative and non-collaborative systems. However, the robust
algorithms always achieve a higher worst-case social welfare
than that of the static algorithms. This result means that we can
improve the minimum guaranteed performance of the power
system by using the robust optimization and game. Similarly,
in Fig. 8(b), as ω increases, the standard deviation increases
in both systems. The robust algorithms always have a lower
standard deviation than that of the static algorithms, which
means the energy scheduling obtained by the robust algorithms
is more stable against the load demand uncertainty. In both
worst-case social welfare and standard deviation, it is observed
that the performance differences between the robust algorithms
and the static algorithms increase as ω increases, which
implies the importance of the robust algorithms particularly
in a high uncertainty environment.
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Fig. 7. Impact of α on hourly price and customers’ energy consumption.

In order to show the effect of the robust algorithms in
the practical environments, in Fig. 9, we show the actual
social welfare according to each of outcomes of random load
variation when ω = 3. As in Figs. 9(a) and 9(b), in both
collaborative and non-collaborative systems, we can see that
the robust algorithms achieve the lower degree of variation
in the social welfare than that of the static algorithms. This
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Fig. 8. Performances comparison of the robust algorithms and the static
algorithms varying ω.

property of robust algorithms enables us to achieve stabilized
energy scheduling in the presence of load demand uncertainty.

VII. CONCLUSION

In this paper, we studied an energy scheduling problem
for the power system where bidirectional energy trading is
allowed among the aggregator and customers by utilizing the
charging and discharging capabilities of EVs. We proposed
two different approaches: collaborative and non-collaborative
approaches. In the collaborative approach, we developed a
distributed energy scheduling algorithm that maximizes the
social welfare of the power system. In the non-collaborative
approach, we modeled a non-cooperative energy scheduling
game among self-interested customers and proposed a tiered
billing scheme to resolve the fairness issue between heavy
and light customers. Then, we developed a distributed algo-
rithm that converges to the unique Nash equilibrium of the
energy scheduling game. For both the collaborative and non-
collaborative approaches, a more practical system model was
considered to capture the uncertain load demands. By using
robust optimization and robust game theory, we developed two
distributed scheduling algorithms yielding the optimal solution
and Nash equilibrium that are robust against the load demand
uncertainty.
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Fig. 9. Impact of the load demand uncertainty.

Numerical results show that the appropriately scheduled
energy trading can lead to a higher social welfare to the power
system in both collaborative and non-collaborative systems.
The social welfare improvement becomes more significant
when the energy stored in customers’ EVs can be utilized to
satisfy other customers’ load demands during their peak hours.
Moreover, as the wholesale electricity price increases, energy
trading plays a more important role in mitigating the negative
impact of the increased wholesale electricity price. Comparing
two systems and resulting the corresponding billing schemes,
we show that customers in the non-collaborative system tend
to consume more energy but sell less energy, since the tiered
billing scheme in the non-collaborated leads to lower electric-
ity rates than the optimal billing scheme in the collaborative
system. The results also show that by appropriately adjusting
the penalizing factor of the tiered billing scheme, we can
effectively mitigate the unfairness among customers as well
as improve the social welfare. Finally, we showed that in
the presence of load demand uncertainty, the robust energy
scheduling algorithm based on the worst-case uncertainty
approach can achieve the improved performance in terms of
the worst-case social welfare as well as reduce the degree
of variation of the social welfare while providing stabilized
energy scheduling to customers.
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APPENDIX
PROOF OF PROPOSITION 1

We define the Lagrangian of problem P as

L(λ̄, x̄) =
∑
t∈T

∑
i∈I

U t
i (x

t
i,App)−

∑
t∈T

Ct(
∑
i∈I

xt
i,Tot)

+
∑
t∈T

∑
i∈I

∑
j∈J t

i

λt
i,jh

t
i,j(x̄i), (33)

where J t
i denotes the set of indices for the inequality con-

straint functions of Xi associated to customer i at time-slot t,
and ht

i,j(x̄i), ∀j ∈ J t
i , t ∈ T and λ̄ = [λt

i,j ]
t∈T
j∈J t

i
denote the

corresponding constraint functions and Lagrangian multipliers,
respectively. Using the KKT condition, at the optimal solution
of problem P in the previous section, x̄∗, there exists a
Lagrangian multipliers λ̄ that satisfie the following condition
set:

C :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L(λ̄, x̄)

∂xt
i,App

= U ′t
i(x

∗t
i,App) +

∑
j∈J t

i

λt
i,j

ht
i,j(x̄i)

xt
i,App

= 0,

∀t ∈ T , i ∈ I
∂L(λ̄, x̄)

∂xt
i,Tot

= −C′t(
∑
i∈I

x∗t
i,Tot) +

∑
j∈J t

i

λt
i,j

ht
i,j(x̄i)

xt
i,Tot

= 0,

∀t ∈ T , i ∈ I.

Similarly, the Lagrangian of problem P2i and the correspond-
ing KKT condition set can be represented as

Li(λ̄, x̄) =
∑
t∈T

U t
i (x

t
i,App)−

∑
t∈T

π∗txt
i,Tot

+
∑
t∈T

∑
j∈J t

i

λt
i,jh

t
i,j(x̄i), (34)

and

C2i :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li(λ̄, x̄)

∂xt
i,App

= U ′t
i(x

∗t
i,App) +

∑
j∈J t

i

λt
i,j

ht
i,j(x̄i)

xt
i,App

= 0,

∀t ∈ T
∂Li(λ̄, x̄)

∂xt
i,Tot

= −πt +
∑
j∈J t

i

λt
i,j

ht
i,j(x̄i)

xt
i,Tot

= 0,

∀t ∈ T ,

respectively. If we assume that we already know the
optimal solution of problem P, x̄∗, and set π∗t =
C′t(

∑
i∈I x

∗t
i,Tot), ∀t ∈ T , the collection of conditions

C2i, ∀i ∈ I has the same form as condition C. Hence, if
x̄∗ is the optimal solution of problem P, it also always
maximizes each problem P2i under the condition that π∗t =
C′t(

∑
i∈I x

∗t
i,Tot), ∀t ∈ T .
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