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Abstract

In this paper, we introduce new methods for multiobjective, system-level optimization that
have been incorporated into the Lightweight Dataflow for Dynamic Data Driven Application
Systems (DDDAS) Environment (LiD4E). LiD4E is a design tool for optimized implementation
of dynamic, data-driven stream mining systems using high-level dataflow models of computa-
tion. More specifically, we develop in this paper new methods for integrated modeling and
optimization of real-time stream mining constraints, multidimensional stream mining perfor-
mance (precision and recall), and energy efficiency. Using a design methodology centered on
data-driven control of and coordination between alternative dataflow subsystems for stream
mining (classification modes), we develop systematic methods for exploring complex, multidi-
mensional design spaces associated with dynamic stream mining systems, and deriving sets of
Pareto-optimal system configurations that can be switched among based on data characteristics
and operating constraints.

Keywords: Dataflow, DDDAS, model-based design, stream mining, machine learning.

1 Introduction

The proliferation of sensing devices and cost- and energy-efficient embedded processors has con-
tributed to the increasing interest in adaptive stream mining (ASM) systems. In this class of
application systems, streams of data are analyzed in real-time from various data sources for di-
verse purposes, such as environmental monitoring, surveillance, structural health management,
and cyber-security [8]. For cost- and energy-efficient operation, adaptive stream mining must
be performed in a data-driven manner, so that the applied classifiers do not excessively over-
or under-perform with respect to current data characteristics and operational constraints [15].
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A challenging aspect of ASM systems is the diverse sets of operational constraints and
objectives under which they must be deployed. The specific constraints that take precedence
may depend strongly on the operational scenario and associated data. For example, in the midst
of a security breach or intrusion, conserving energy is less important while delay is key; on the
other hand, if there is no detected threat, conserving energy may be critical. Furthermore, such
multidimensional constraints and objectives are often in conflict with one another so that trade-
offs must be carefully guided and rigorously optimized to achieve results that yield acceptable
levels of reliability and quality of service. For example, classification accuracy (the rate of correct
classifications), false positive rates in classification, processing latency, processing throughput,
and energy consumption per classification operation are metrics that may all be relevant to
some degree in a particular stream mining deployment. Conventional approaches to design and
implementation of ASM systems often focus on small subsets of relevant metrics in isolation
(e.g., the trade-off between accuracy and false positive rate) or orient the implementation
process toward a particular subspace (e.g., throughput-constrained accuracy maximization).

Motivated by these complex, multidimensional, data-dependent design spaces in ASM sys-
tems, we develop in this paper methods for integrated modeling and multiobjective design
optimization of real-time stream mining systems. Our proposed design framework is readily
adaptable to different kinds of operational constraints and objectives. For concreteness, we
develop our methods in the context of real-time performance, multidimensional stream mining
performance (precision and recall), and energy efficiency. These metrics are discussed in detail
in Section 4. Using a design methodology centered on data-driven control of and coordination
between alternative dataflow subsystems for stream mining (classification modes), we develop
systematic methods for exploring complex, multidimensional design spaces associated with dy-
namic stream mining systems, and deriving sets of Pareto-optimal system configurations that
can be switched among based on data characteristics and operating constraints.

We demonstrate and experiment with our methods for data-driven, multiobjective optimiza-
tion through their integration in the Lightweight Dataflow for Dynamic Data-Driven Application
Systems Environment (LiD4E), which is a software tool for experimentation with and optimiza-
tion of dataflow-based design methods for ASM systems [16]. Using LiD4E together with our
new methods for multiobjective optimization, we experiment with a multiclass vehicle classifi-
cation system that categorizes vehicles among three distinct classes — cars, buses and vans —
from images. Through experiments on this vehicle classification application, we demonstrate
the effectiveness of our methods in deriving Pareto-optimal design options and quantifying
complex implementation trade-offs. These capabilities can provide significant insight to the
system designer to identify the set of design configurations that best matches the targeted set
of application scenarios and their associated system requirements.

The remainder of this paper is organized as follows. In Section 2, we discuss related work in
DDDAS methods, real-time stream mining, and dataflow-based design methodologies for signal
processing systems. Section 3 introduces our proposed new multiobjective design optimization
framework, and Section 4 presents a vehicle classification case study to demonstrate the frame-
work. In Section 5, we present experimental results from this case study. Finally, Section 6
provides conclusions and future research directions.

2 Related Work

The work presented in this paper is rooted in core concepts of the DDDAS paradigm [5]; real-
time stream mining [8]; and dataflow-based design methodologies for signal processing systems
(e.g., see [11, 3]). In this form of dataflow modeling, applications are represented in terms of
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dataflow graphs, where graph vertices (actors) represent signal processing tasks of arbitrary
complexity, and edges represent logical FIFO communication channels between pairs of actors.
In this paper, we apply dataflow as a programming model with semantics that are matched to
the domain of adaptive stream mining systems [16, 15]. This modeling approach differs from
uses of dataflow as a compiler intermediate representation (e.g., see [12]), and as a form of
computer architecture [7].

The work presented in this paper builds upon our previous work on ASMs for multimedia
applications [16], and extends the dynamic, multi-mode stream mining framework presented
in [15] with powerful capabilities for multiobjective design space exploration and optimization.
More specifically, contributions introduced in this paper include new techniques for modeling,
control and optimization of multiobjective design spaces in ASM implementation; extension of
the multi-mode design framework of [15] to multiclass recognition systems (i.e., to classifiers
that map to two or more different output classes); and application to a multiclass vehicle
detection problem that is relevant to surveillance and traffic monitoring.

Design and implementation techniques for stream mining systems have been studied before
in a statically configured environment, and with relatively fine granularity (low level) optimiza-
tions on application performance (e.g., see [14, 13, 10]). Here, by “statically-configured,” we
mean that the processing methods are not adapted dynamically in response to data characteris-
tics or operational context. Our work in this paper deviates from this body of prior work in that
our focus is on a dynamic, data-driven implementation context, and also, we focus on coarser
granularity optimizations — in particular, optimizations for configuring and coordinating across
different stream mining classification subsystems and application modes.

Incorporation of data-driven operation in individual signal processing functional compo-
nents has been studied in [4, 1]. This related work has been developed in the context of speech
recognition. Although this work, relates to the dynamic, data-driven theme of our contribution
in this paper, the approach that we develop in this paper is more flexible in terms of data-driven
operation since we consider adaptation of application modes globally (at the dataflow graph
and scheduling levels) as well as locally (at the level of individual actors or subsystems). In
contrast, this body of related work on data-driven speech processing focuses on local optimiza-
tions. However, techniques derived from works such as [4, 1] can provide useful building blocks
(parameterized actor and subsystem designs) for the DDDAS design framework developed in
this paper. Integration of such building blocks into our proposed framework is a useful direction
for future work.

We emphasize that the objective of this paper is not to introduce new types of classification
techniques nor to endorse a particular type of classifier, but rather to provide a systematic
framework for optimized configuration, control, and coordination across arbitrary sets of com-
plementary classifiers (i.e., classifiers with complementary profiles of operational trade-offs). In
our implementations and experiments, we utilize Support Vector Machine (SVM) classifiers,
although our design framework is readily adaptable to the use of other types of classifiers. Use
of SVM classifiers for low-sample data sets, and as efficient, robust components for general
classification purposes has been motivated extensively in the literature (e.g., see [9, 17]).

3 Design Methodology

In this section, we introduce the system model that we employ in our new multiobjective design
optimization framework, which we refer to as the ASM multiobjective design optimization frame-
work, abbreviated as AMDO. AMDO is built upon the DDDAS-HCFDF-Multi-Mode (DHMM)
scheduling framework introduced in [15]. Here, HCFDF stands for hierarchical core functional
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dataflow [16], which is the underlying model of computation for the DHMM framework.

3.1 Background on DHMM

We first review in this section key aspects of the DHMM system model that are inherited by
AMDO. The developments in this paper build on the DHMM model, and incorporate flexible
and powerful new capabilities for multiobjective optimization and design space exploration. In
DHMM, an ASM system design is represented as a set of mutually exclusive application modes
SM = {μ1, μ2, . . . , μN}. Here, each μi represents a set of application subsystems that are active
during the corresponding mode together with the configurations, such as actor-, application-
and schedule-level parameters, that are to be applied to the subsystems whenever μi executes.
Each design is also characterized by a set of measurements, corresponding to the associated
DDDAS-based instrumentation subsystem, M = m1,m2, . . . ,mk. These measurements can be
made from arbitrary sources, including the system input, target platform, system output or
operating environment. Each mi corresponds to a distinct metric, such as power consumption,
remaining battery capacity, or selected frequency content profiles for some kind of sensor data.

A key aspect of the DHMM model is a state machine SDHMM in which states correspond to
application modes, and transitions correspond to changes made by the executing system to the
current mode in response to input data that is monitored by SDHMM . This input data comes
from the measurements mi, which are performed iteratively according to periodic processes or
other kinds of timing patterns (e.g., dependent on the current mode).

In DHMM, the functionality of specific application modes is represented using the hierarchi-
cal core functional dataflow (HCFDF) model of computation [16], while SDHMM is employed for
dynamic and adaptive model-based coordination and parameter control across different modes.
In HCFDF-based dataflow graph specifications, software components (actors) are specified in
terms of sets of processing modes, where each mode has static dataflow rates — i.e., each mode
produces and consumes a fixed number of data values (tokens) on each actor port. However,
different modes of the same actor can have different dataflow rates, and the actor mode can
change from one actor execution (firing) to the next, thereby allowing for dynamic dataflow
behavior (dynamic rates). Additionally, HCFDF allows dataflow graphs to be hierarchically
embedded within actors of higher level HCFDF graphs, thereby allowing complex systems to
be constructed and analyzed in a scalable manner. For further details on the HCFDF model of
computation, we refer the reader to [16].

3.2 AMDO Design Methodology

The AMDO design methodology incorporates the instrumentation subsystem M and mode-
transition state machine SDHMM of DHMM. The methodology additionally incorporates a pa-
rameterization P of SDHMM for use in exploring the design space associated with implemen-
tations that are controlled by SDHMM in conjunction with the underlying application modes.
More specifically, P = (p1, p2, . . . , pK), called the design space parameter set (DSPS) of the
AMDO model, is a sequence of parameters of SDHMM , where each pi has an associated domain
domain(i), which gives the set of admissible parameter settings (configurations) for pi during
execution of SDHMM . For clarity and conciseness, we assume in the remainder of this paper
that the domain(i) ⊂ R for all i, where R denotes the set of real numbers.

When applying the AMDO methodology, the parameterization P of SDHMM is central to
the processes of design space exploration and multiobjective optimization. Different parameter
configurations of SDHMM in general lead to different ways in which data-driven adaptation is
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controlled, and in which the multidimensional design evaluation metrics, such as energy con-
sumption, real-time performance, and stream mining accuracy, are traded-off throughout the
execution process. Additionally, the high level dataflow model of the targeted ASM application
together with the FSM-driven application governed by SDHMM provides a model-based rep-
resentation that can be employed for efficient simulation so that a wide variety of alternative
parameter configurations and associated design points can be evaluated.

Two other aspects in the operation of an AMDO-based stream mining implementation are
periodic performance assessment (PPA), and performance assessment actors (PAAs). In each
state of SDHMM , the recent performance of the system is assessed in terms of the set of relevant
metrics M . This PPA process helps to determine whether SDHMM should remain in its current
state or whether a transition should be made to a different state. The operation of the PAAs
may in general depend on the values of parameters in P . The determination of whether or not
a transition is made and which new state should be the target of each PPA-related transition is
made by SDHMM with input from the PAAs. Each PAA A is a software component (dataflow
actor) that takes as input a selected subset of data obtained from the DDDAS instrumentation
subsystem during a window of recent operation (e.g., during the last 10ms or last 100 processed
data packets).

On each execution of A, the output of A is a member of the set sPAA = {γo, γi , γu}, where
γo represents an indication by A that the system is currently overperforming with respect to the
form of performance assessment carried out by A. Similarly, γu represents and indication by
A that the system is underperforming, and γi indicates that the performance of the system is
within an intermediate range — neither too high (at potential expense of other objectives) nor
too low . Intuitively, a PAA can be viewed as a standard interface for capturing data-dependent
characteristics of system operation, and relating them dynamically to a compact set of values
(γo, γi , and γu). The values generated by the different PAAs can then be processed in an
integrated way by SDHMM to control overall system operation.

For example, an AMDO system could be designed with three PAAs A1, A2, A3 that corre-
spond, respectively, to performance assessment for speech processing quality (accuracy), energy
consumption, and processing speed. During each PPA, these PAAs would each provide an input
to the controller for SDHMM indicating the “health” of the system’s recent performance with
respect to the corresponding assessment considerations. Logic within the controller would then
process these inputs to determine whether or not to remain in the current state, and what state
to transition to if a transition is to be made. For example, if the system is found to be under-
performing in terms of energy consumption (i.e., consuming excessive amounts of energy), this
may favor a transition to a more energy-efficient application mode. Similarly, overperforming
with respect to speed may lead to transition to a processing mode that is slower and more
favorable in terms of other objectives, such as energy consumption or quality.

As with the state machine parameterization P , the design of the PAAs, and the associated
controller logic for processing the PAA outputs are design issues of the given AMDO. The
objective of the AMDO design methodology is thus to raise the level of abstraction for stream
mining system implementation in a structured manner so that the system designer can focus
on a standard, well-defined set of DDDAS-based system components — SDHMM , P , the PAA
set — that interact in a systematic manner. Thus, we represent an AMDO system α by a tuple
α = (SDHMM , P, T ), where the elements of this tuple respectively specify the state machine,
parameterization, and PAA set associated with α.

Using an AMDO system α = (SDHMM , P, T ), the designer can evaluate multidimensional
system performance for a variety of parameter settings within P to generate alternative de-
sign points, while each parameter setting influences system operation (through SDHMM and
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T ) to trade off different performance objectives in a specific way. In Section 4 and Section 5,
we demonstrate the application of the AMDO design methodology on a practical surveillance
application case study involving vehicle detection. This case study helps to make the develop-
ments in this section more concrete, and to demonstrate the utility of the AMDO methodology
as a framework for multiobjective design space exploration and optimization of ASM systems.

4 Case Study: Vehicle Classification

To validate and demonstrate the AMDO framework, we have developed a multiobjective opti-
mization case study of a data-driven ASM application that is relevant to surveillance systems.
Specifically, our case study involves a vehicle classification system in which images of detected
vehicles are analyzed to classify each vehicle as either a bus, car or van. The classification
system is assumed to be a mobile system that is capable of being deployed with agility and low
cost in operational environments. This mobile deployment feature makes energy efficiency an
important metric to consider in the design evaluation space for the system.

We have performed extensive simulations to evaluate a complex, five-dimensional design
evaluation space (i.e., a space of trade-offs involving selected implementation metrics) that is
based on several relevant, and often competing deployment objectives. Specifically, the design
evaluation space considered encompasses the metrics of throughput (data rate), deadline miss
rate (real-time performance), energy efficiency, precision for detecting cars (one objective related
to classification accuracy), and recall for detecting cars (another accuracy-related objective).
Thus, a main goal of the case study is to expose Pareto points in a complex multidimensional
space of designs for deploying the vehicle classification application on a targeted mobile device.

Here the throughput, in terms of images per second, gives the rate at which the system can
process images. If T denotes the throughput, then the reciprocal (1/T ) specifies the deadline,
which is in units of seconds per image, and gives the maximum time allowed to process a single
image. Whenever the AMDO system fails to process an image within its associated deadline
period, a deadline miss occurs. For a given stream mining execution consisting of an input
stream that contains I images, the deadline miss rate r is computed as (Nmiss/I), where Nmiss

is the total number of deadline misses encountered throughout the execution.
Figure 1 provides an illustration of the state machine SDHMM for our AMDO-based ve-

hicle classification system. The state machine includes three application modes, labeled
ZM,1, ZM,2, ZM,3, which represent one-against-one (1A1) support vector machine (SVM) classi-
fier subsystems with varied parameter configurations. For background on this type of classifier,
we refer the reader to [9]. The classifiers are configured with Gaussian radial basis function
kernels that have different combinations of sigma and box constraint values. These three al-
ternative application modes yield different operational trade-offs in terms of execution time,
energy consumption, precision, and recall. The AMDO framework provides a systematic way
to exploit such variety in application modes to derive diverse sets of alternative design points
(Pareto designs) during multiobjective optimization. The states in Figure 1 with labels of the
form ZP,i correspond to PPA points. Each of these states encapsulates a single PAA, and is
entered periodically from its associated application mode. The transitions in the state machine
are executed either from periodic interrupts that trigger PPAs or from decisions that are com-
puted from the relevant PAAs. Further details on the state machine operation are omitted due
to space limitations.

The state labeled ZM,E in Figure 1 is a special state that is dedicated to providing graceful
shutdown of the system once the battery capacity c has fallen to a value that is less than or
equal to a pre-defined threshold ε. In our experiments (see Section 5), we employed ε = 5%.
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Figure 1: An illustration of SDHMM for the experimental vehicle classification system.

Since our targeted application is a multiclass classification application (a classification ap-
plication that involves more than two classes), we employ precision and recall as metrics for
assessing classification accuracy. These metrics are commonly used for multiclass classification
systems. We arbitrarily choose cars as the relevant vehicle class for the precision and recall
calculations. Thus, the precision is calculated as TP/(TP +FP) and the recall is calculated as
TP/(TP + FN ), where TP , FP , and FN denote, respectively, the numbers of true positives,
false positives, and false negatives as related to detection of cars (the selected relevant class).

5 Experiments

In this section, we present experimental results derived from applying the AMDO framework
on the vehicle classification application introduced in Section 4.

5.1 FSM Parameterization

Recall from Section 3 that an AMDO system can be expressed by a tuple (SDHMM , P, T ), where
the elements of this tuple specify the state machine, parameterization, and PAA set for the
system. In our experimental vehicle classification system, the employed SDHMM is illustrated
in Figure 1. The PAA set consists of 3 actors, which provide performance assessment in terms
of deadline miss rate, execution speed, and remaining battery capacity.

The FSM parameterization P that we employed in our experiments can be expressed as
P = (p1, p2, p3, p4, p5). Here, p1 represents the deadline for processing each image (i.e., the
reciprocal of the supported image processing throughput); p2 represents the deadline miss
tolerance, which specifies what percentage of deadlines can be tolerated before the system is
considered to be underperforming in terms of real-time operation; p3 represents an analogous
tolerance on execution-time overperformance — the system is considered to be overperforming
in terms of execution time if the average execution time of an application mode is less than the
product (p1 × p3); p4 specifies what percentage of system battery capacity must be exceeded
for the system to be overperforming in terms of energy availability; and similarly, p5 specifies a
minimum threshold (percentage) on battery capacity below which the system is considered to
be underperforming in terms of battery capacity. Collectively, the five parameters in the vector
P defined above control how the PAAs in SDHMM cooperate, in a deeply data-driven manner,
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to explore different regions of the overall design evaluation space — as these parameters are
varied, different design trade-offs are concretely realized.

This particular parameterization P is one specific parameterization that we experimented
with to concretely demonstrate the AMDO framework; other parameterizations can be derived
to drive data-driven, multiobjective optimization in different ways. A central contribution of the
AMDO framework is to structure and raise the level of abstraction in data-driven multiobjective
optimization by introducing this kind of parameterization as a first class citizen in the design
process for ASM systems. This is an advance over conventional methods for ASM system
implementation, which focus on ad-hoc fine-tuning of control code, on analysis of static (non-
data-driven) design configurations, or on individual design metrics in isolation.

5.2 Experimental Setup

We have implemented a simulation model for the vehicle classification system on a desktop com-
puter using the model-based design approach underlying AMDO. The developed simulation en-
vironment provides validation of the vehicle classification functionality, along with multidimen-
sional performance assessment of system operation. Using the LiD4E environment described
in Section 1, we have also implemented the classifier subsystems (application modes) employed
for vehicle classification on a mobile platform (Android-based, Nexus 7, first-generation tablet).
We performed extensive profiling of the performance of these mobile-device-targeted subsystem
implementations. Data from this mobile-device-based profiling, including execution time and
energy consumption data, was employed to provide characterizations of classifier operation that
were applied in the simulation model.

We used 561 vehicle silhouettes from the Statlog dataset [2] for training and 281 images
for experimentation. The image sets for training and testing were chosen randomly. We made
a minor modification to the annotations in the Statlog dataset by combining the two distinct
class labels for cars, “Saab” and “Opel”, into a single class labeled “cars”. Hence, as described
in Section 1, our modified dataset consists of three class labels in total — buses, cars, and vans.

5.3 Experimental Results

Using the AMDO system design and experimental setup described in Section 5.1 and Section 5.2,
we simulated 26 different design points corresponding to 26 different configurations of the
FSM parameter SET P . The alternative combinations of parameter settings were selected
manually with a view towards experimenting with diverse combinations of parameter settings.
Alternatively, one could generate and simulate parameter settings using an automated approach,
such as an approach that employs a multiobjective evolutionary algorithm (e.g., see [18]) to
maintain populations of parameter settings, and employs our AMDO simulation framework for
fitness evaluation. Such automated design space exploration using the AMDO framework is a
useful direction for future work.

As discussed in Section 4, the design evaluation metrics considered in our experiments are
throughput; deadline miss rate; energy efficiency; and both precision and recall for detecting
cars. Here, energy efficiency is measured as the number of images that were processed (ex-
cluding deadline misses) for a given amount of initial battery capacity. The amount of initial
battery capacity employed in the experiments was 432.5 milliampere-hours (mAh). The metric
employed for energy efficiency thus gives an indication of the total volume of data that can be
processed before the given amount of battery capacity expires.

Table 1 lists the set of Pareto-optimal designs from among the set Y of 26 design points
that we generated in our experiments. Here, we say that a point y ∈ Y is Pareto-optimal if for
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any other point y′ ∈ Y , y′ is inferior to y in terms of at least one design evaluation metric. For
general background on Pareto optimization in the context of electronic system design, we refer
the reader to [6]. Intuitively, a Pareto point represents a useful design point to keep track of
during design space exploration because such a design point cannot be improved upon in any
dimension without sacrificing quality in at least one other dimension. Among the 26 design
points explored in our experiments, 16 (61%) were found to be Pareto-optimal. These 16 points
are the ones that are listed in Table 1 along with their simulated performance results in terms
of the five targeted design evaluation metrics.

In summary, the experiments and results presented in this section demonstrate concretely
how AMDO enables designers to rapidly investigate diverse sets of alternative design points for
an ASM system (1) relative to a complex multidimensional design evaluation space, and (2) in
a manner that systematically takes into account data-driven adaptation of application modes
and system implementation parameters within a unified framework.

Design Energy Deadline Throughput Average Average
ID Efficiency Miss Rate (images per Precision Recall for

(images processed) (%) second) for Cars (%) Cars (%)

AMDO-1 861237 0.13 83.33 99.15 95.42
AMDO-2 847853 0.36 90.91 99.15 95.49
AMDO-3 679407 2.01 90.91 98.27 97.34
AMDO-4 656775 0.36 66.67 97.90 97.90
AMDO-5 861438 0.07 66.67 99.15 95.42
AMDO-6 651649 4.20 100.00 98.09 97.61
AMDO-7 656566 0.35 62.50 97.90 97.90
AMDO-8 821935 0.06 62.50 99.02 96.76
AMDO-9 861654 0.03 62.50 99.15 95.42
AMDO-10 861312 0.10 76.92 99.15 95.42
AMDO-11 861162 0.13 83.33 95.42 99.15
AMDO-12 653875 1.06 83.33 97.90 97.90
AMDO-13 849897 0.03 62.50 99.15 95.50
AMDO-14 723423 18.13 135.14 99.27 95.17
AMDO-15 18470 98.09 169.49 99.27 95.10
AMDO-16 155060 83.75 166.67 99.27 95.10

Table 1: Pareto-optimal design points derived through design space exploration.

6 Conclusions

In this paper, we have introduced a new multiobjective design optimization framework for
adaptive stream stream mining systems (ASMs). The framework, called the ASM multiobjec-
tive design optimization (AMDO) framework, employs a novel design methodology centered
on data-driven control of and coordination between alternative dataflow subsystems for stream
mining. AMDO allows system designers to efficiently explore complex, multidimensional design
evaluation spaces in a data-driven manner, and is readily adaptable to different kinds of opera-
tional constraints and objectives. We have integrated AMDO into the Lightweight Dataflow for
DDDAS Environment (LiD4E) tool for design and implementation ASM systems, and demon-
strated the framework using a case study involving real-time and energy-constrained multiclass
vehicle classification. Useful directions for future work include development of automated de-
sign space exploration methods using the AMDO framework, such as integration of AMDO
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methods with multiobjective evolutionary algorithms.
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